Skip to main content
. 2024 May 16;5:0100. doi: 10.34133/cbsystems.0100

Table 2.

The performance of the latest state-of-the-art 3D skeleton-based methods on NTU-RGB+D 120 dataset

NTU-RGB+D 120 dataset
Rank Paper Year Accuracy (C-Subject) Accuracy (C-Setup) Method
1 Wang et al. [55] 2023 92.0 93.8 Two-stream Transformer
2 Xu et al. [146] 2023 90.7 91.8 Language knowledge-assisted
3 Zhou et al. [56] 2022 89.9 91.3 Transformer
4 Duan et al. [134] 2022 89.6 91.3 Dynamic group GCN
5 Chen et al. [136] 2021 88.9 90.6 Topology refinement GCN
6 Chen et al. [147] 2021 88.2 89.3 Spatial-temporal GCN
7 Liu et al. [103] 2020 86.9 88.4 Disentangling and unifying GCN
8 Cheng et al. [148] 2020 85.9 87.6 Shift GCN
9 Caetano et al. [90] 2019 67.9 62.8 Tree structure + CNN
10 Caetano et al. [89] 2019 67.7 66.9 SkeleMotion
11 Liu et al. [149] 2018 64.6 66.9 Body pose evolution map
12 Ke et al. [150] 2018 62.2 61.8 Multitask CNN with RotClips
13 Liu et al. [151] 2017 61.2 63.3 Two-stream attention LSTM
14 Liu et al. [12] 2017 60.3 63.2 Skeleton visualization (single stream)
15 Jun et al. [152] 2019 59.9 62.4 Online+Dilated CNN
16 Ke et al. [153] 2017 58.4 57.9 Multitask learning CNN
17 Jun et al. [82] 2017 58.3 59.2 Global context-aware attention LSTM
18 Jun et al. [76] 2016 55.7 57.9 Spatiotemporal LSTM