Table 2.
NTU-RGB+D 120 dataset | |||||
---|---|---|---|---|---|
Rank | Paper | Year | Accuracy (C-Subject) | Accuracy (C-Setup) | Method |
1 | Wang et al. [55] | 2023 | 92.0 | 93.8 | Two-stream Transformer |
2 | Xu et al. [146] | 2023 | 90.7 | 91.8 | Language knowledge-assisted |
3 | Zhou et al. [56] | 2022 | 89.9 | 91.3 | Transformer |
4 | Duan et al. [134] | 2022 | 89.6 | 91.3 | Dynamic group GCN |
5 | Chen et al. [136] | 2021 | 88.9 | 90.6 | Topology refinement GCN |
6 | Chen et al. [147] | 2021 | 88.2 | 89.3 | Spatial-temporal GCN |
7 | Liu et al. [103] | 2020 | 86.9 | 88.4 | Disentangling and unifying GCN |
8 | Cheng et al. [148] | 2020 | 85.9 | 87.6 | Shift GCN |
9 | Caetano et al. [90] | 2019 | 67.9 | 62.8 | Tree structure + CNN |
10 | Caetano et al. [89] | 2019 | 67.7 | 66.9 | SkeleMotion |
11 | Liu et al. [149] | 2018 | 64.6 | 66.9 | Body pose evolution map |
12 | Ke et al. [150] | 2018 | 62.2 | 61.8 | Multitask CNN with RotClips |
13 | Liu et al. [151] | 2017 | 61.2 | 63.3 | Two-stream attention LSTM |
14 | Liu et al. [12] | 2017 | 60.3 | 63.2 | Skeleton visualization (single stream) |
15 | Jun et al. [152] | 2019 | 59.9 | 62.4 | Online+Dilated CNN |
16 | Ke et al. [153] | 2017 | 58.4 | 57.9 | Multitask learning CNN |
17 | Jun et al. [82] | 2017 | 58.3 | 59.2 | Global context-aware attention LSTM |
18 | Jun et al. [76] | 2016 | 55.7 | 57.9 | Spatiotemporal LSTM |