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Abstract

The prediction of drug-target interactions (DTIs) is of extraordinary significance to modern drug 

discovery in terms of suggesting new drug candidates and repositioning old drugs. Despite 

technological advances, large-scale experimental determination of DTIs is still expensive and 

laborious. Effective and low-cost computational alternatives remain in strong need. Meanwhile, 

open-access resources have been rapidly growing with massive amount of bioactivity data 

becoming available, creating unprecedented opportunities for the development of novel in silico 

models for large-scale DTI prediction. In this work, we review the state-of-the-art computational 

approaches for identifying DTIs from a data-centric perspective: what the underlying data are 

and how they are utilized in each study. We also summarize popular public data resources and 

online tools for DTI prediction. It is found that various types of data were employed including 

properties of chemical structures, drug therapeutic effects and side effects, drug-target binding, 

drug-drug interactions, bioactivity data of drug molecules across multiple biological targets, and 

drug-induced gene expressions. More often, the heterogeneous data were integrated to offer better 

performance. However, challenges remain such as handling data imbalance, incorporating negative 

samples and quantitative bioactivity data, as well as maintaining cross-links among different data 

sources, which are essential for large-scale and automated information integration.
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INTRODUCTION

Human health nowadays has been considerably improved through medical interventions. 

However, many diseases remain poorly treated while new ones are emerging. Some complex 

diseases such as cancer and neurodegenerative disorders still lack efficient therapies. 
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Moreover, drugs are not available for many rare and neglected diseases due to little interest 

from pharmaceutical companies. Unfortunately, drug development is costly and lengthy 

while existing drugs may become less effective due to drug resistance. Despite enormous 

investments and advances, the number of approved drugs has not increased proportionally. 

The therapeutic dogma entered on “one drug-one target-one disease,” which has prevailed 

in the industry over the years, is now being challenged. It is becoming evident that drugs 

can interact with other targets in addition to that aimed primarily. According to DrugBank, 

one drug can have three targets on average (Fig. 1). Such off-target interactions often lead 

to adverse side effects or toxicity, but they also open the door to drug repositioning (1), an 

appealing drug discovery strategy that potentially is cheaper, faster, and less risky that can 

result in identifying new indications for old drugs. Furthermore, growing evidence shows 

that several drugs exert their effects through interactions with multiple targets in a complex 

system (2). These findings have promoted a shift from single to multi-target paradigm in 

drug discovery (3), which is especially helpful in treating complex diseases like cancer 

or central nervous system disorders, where the modulation of one single protein is often 

insufficient to accomplish a desired therapeutic effect. Consequently, the identification of 

potential drug-target interactions (DTIs) is of critical importance in many applications, such 

as suggesting new uses for existing drugs, identifying drug candidates for known therapeutic 

targets, and understanding the pharmacological actions for those approved drugs without 

known targets (Fig. 1).

Given the high cost of wet-lab experiments, in silico methods have been developed and 

proven successful to explore the potential DTIs (4). Conventional approaches fall roughly 

into two categories: ligand-based and structure-based, e.g., quantitative structure activity 

relationship (QSAR) (5), pharmacophore modeling (6), or molecular docking (7). Many 

recent studies have focused on chemogenomic approaches taking advantage of the rapid 

growth of the large-scale chemical biology data in the public domain, such as those 

provided by PubChem BioAssay (8-10) and ChEMBL (11). Depending on how the DTI 

prediction problem is generalized, there can be various solving strategies. For example, the 

interaction space of drugs and targets can be represented as a bipartite graph with nodes 

being drugs and targets and edges being their interactions. The task of predicting novel 

DTIs is equivalent to finding “missing” links in the graph. Accordingly, graph-based and 

network-based analysis can be applied. Similarly, the bipartite graph can be transformed into 

an association matrix and “hidden” associations can be inferred through methods like matrix 

factorization. In machine learning methods, drugs and targets are expressed as features, 

with their interactions being denoted as class labels. A potential DTI can be determined 

by the predicted class label. There are other possible solutions, and some recent reviews 

focused on the technical aspect of mathematical or statistical methods (12-17). Regardless, 

prior knowledge of drugs, targets, and their interactions is required for all in silico method 

development. The growth of publicly available chemical biology data is expected to continue 

at an accelerating rate with high-throughput screening (HTS) becoming affordable at 

universities and academic institutions, and with further policy implementation of mandatory 

data sharing (https://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm), 

which provides huge opportunities for DTI modeling by incorporating various information 

resources for drugs, compounds, and knowledge about their therapeutic targets.
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In this work, we provide a data-centric review on applications/approaches in the past 5 

years for predicting DTIs with a primary focus on data, i.e., data categories and utilities in 

each study. We first summarize a number of commonly used public databases for predicting 

DTIs. Then we describe selected approaches according to the underlying data type, mostly 

from the drug side, followed by a list of online tools. Finally, we highlight some recent 

trends in DTI prediction studies as well as challenges from the data perspective. We hope 

our review will be helpful towards designing more accurate and robust approaches through 

better consideration over the nature of the data, which will eventually facilitate the process 

of drug discovery and repositioning.

DATA RESOURCES

As a premise for predicting DTIs, it is necessary to collect as much data as possible on 

drugs, targets, and their interactions. With the advent of new technologies and open data 

initiatives, the past decade has witnessed an exponential growth of chemical biology data 

available in the public databases (18-40). As an example, PubChem currently contains over 

two million compounds tested in biochemical or cell-based assays generating 250 million 

bioactivity outcomes (Fig. 2). Over a half million of those compounds, including 4000 

drugs, were biologically tested against 11,000 protein targets, and more than one million 

compound-protein interactions (CPIs) were reported. The numerous biological data, with 

dramatically increased volume and diversity, have created unprecedented opportunities for 

developing novel algorithms and online tools for DTI prediction. In this review, we focus 

on a subset of public databases directly relevant to DTI prediction according to our survey 

(Table I). Brief description, data type, access link, and reference are also provided. A few 

databases will be referenced below for illustrative purposes.

Curation Efforts

Valuable information on drugs, targets, and their associations usually scatter among 

literature and patent documents. Tremendous efforts have been devoted to literature 

curation, resulting in a great number of public databases, including DrugBank (18), KEGG 

(19), BRENDA (20), SuperTarget (21), STITCH (22), SIDER (24), ChEMBL (11), and 

BindingDB (25). As probably the most used resource, DrugBank contains comprehensive 

information about thousands of well-studied drugs and their targets. SIDER is a widely 

adopted database about marketed drugs and their recorded adverse drug reactions. In 

particular, Yamanishi et al. compiled a dataset (41) from DrugBank, KEGG, BRENDA, and 

SuperTarget on four major therapeutic target classes (i.e., enzyme, ion channel, G-protein 

coupled receptor, and nuclear receptor), which subsequently became a golden standard 

for DTI modeling. Many algorithms were built upon this dataset or its derivatives (see 

Supplementary Table S1). While most curated databases contain relatively small-scale and 

specialized data, ChEMBL has very large-scale bioactivity data, which were manually 

extracted from over 60,000 publications in medicinal chemistry literature. Additionally, the 

BindingDB project has recently started to curate chemical biology data in patent documents.
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Screening Programs and Open Repositories

Large-scale chemical biology data only became publicly available in the recent decade with 

the advent of several important screening programs and data repositories including NCI/DTP 

(26), Connectivity Map (CMap) (36), and PubChem BioAssay (8-10). The NCI/DTP is 

one of the first screening programs including the well-studied NCI human tumor cell line 

anticancer drug screen (NCI-60) dataset. CMap is a well-established resource on gene 

expression profiles induced by chemical perturbation in cell lines (36). The establishment of 

the PubChem project (https://pubchem.ncbi.nlm.nih.gov/) marks a milestone of open access 

to millions of biological test results of small molecules from HTS experiments. Unlike 

most curation projects, which usually contain only active data, PubChem serves as a public 

chemical biology data repository, which also archives inactive data from biological assays. 

This is crucial because accurate and robust predictive models depend on reliable negative 

samples as well. Moreover, the PubChem BioAssay database is growing rapidly with data 

deposited by worldwide researchers (Fig. 2) and becomes a hub for integrating chemical 

biological data resources including the abovementioned ChEMBL and NCI/DTP. As a data 

archiving and sharing system, a particular feature of PubChem BioAssay is that one can 

easily aggregate bioactivity data from multiple depositions for a specific target or drug, 

which could be beneficial for DTI prediction and evaluation purposes.

APPROACHES

The expanding data accessibility has greatly facilitated innovative development for DTI 

prediction. In this review, we survey recent approaches and applications that were published 

in the last 5 years as well as a few earlier pioneering studies. Traditional methods like 

QSAR, pharmacophore modeling, and molecular docking were excluded. We obtained a list 

of over 80 studies aiming at DTI prediction, suggesting strong and growing research interest 

from the community. A concise summary of these studies is presented in Supplementary 

Table S1. The primary modeling method for each study has also been described briefly, 

although the discussion of technical details is beyond our scope.

Most studies for DTI prediction were based on the hypothesis that similar targets interact 

with same drug, and the same target interacts with similar drugs. The similarities among 

drugs reflect a chemical space while similarities among targets reflect a genomic space. 

These similarities play a key role and can be derived from various types of data. Our survey 

shows that the target similarities are mostly obtained on the basis of genomic sequence, e.g., 

sequence similarity by structural and physicochemical features or by sequence alignment 

score, though a few other target features were also used (42), including biological function 

(43), domain annotation (44), and proximity in the protein-protein interaction network (45). 

In comparison, data from the drug perspective is much more diverse as shown below. Due to 

page limitation, only a few applications will be described.

Drug-Target Interaction

A set of known DTIs is required by any approach to build and/or evaluate models. 

Interestingly, using only the connections among drugs and targets, it is possible to make 

novel predictions via graph theory, network analysis, matrix factorization, etc. For instance, 
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van Laarhoven et al. introduced the Gaussian interaction profile (GIP) kernel (46) and 

showed that it is capable of predicting true interaction pairs with high accuracy. Based on 

the complex network theory, Cheng et al. demonstrated that the network-based inference 

(NBI) performed best on the benchmark datasets (47). Cobanoglu et al. developed an 

active learning method with probabilistic matrix factorization (PMF), which is particularly 

useful for analyzing large interaction networks (48) because it is independent of chemical, 

structural, or other similarity metrics and its computation time scales are linear with the 

number of known interactions.

Chemical Similarity

It is probably the most intuitive approach to predict novel DTIs for a query drug from a 

similar drug with known targets. Chemical similarity between two drugs can be defined by 

various means, e.g., based on sub-structural features or physicochemical descriptors, which 

can be calculated by popular software (Supplementary Table S2). A wide range of chemical 

descriptors were lately benchmarked in the context of DTI prediction (49). Recently, the 

SMILES-based compound similarity functions were proposed (50), which were found 

to be comparable to 13 other more computationally demanding similarity measures. It 

is noteworthy that one should use isomeric SMILES in order to handle stereochemistry 

correctly. The similarity ensemble approach (SEA) (51), developed by the Shoichet group, 

is a pioneering method for drug repositioning relying on two-dimensional (2D) similarity. 

A recent application of SEA from the same group (52) revealed that SEA can suggest 

structurally dissimilar compounds for a given target, although the similarity measure behind 

the scene is 2D. An extension to SEA was proposed recently by Zheng et al., termed 

weighted ensemble similarity (WES) (53). There are also other SEA-like approaches, e.g., 

SuperPred (54) and similarity ranking with data fusion (55).

While most predictive approaches for DTIs utilized 2D-based similarity given its lower 

computational cost, three-dimensional (3D) chemical similarities have demonstrated their 

strengths not seen in 2D similarity methods. For instance, AbdulHameed et al. presented 

a shape-based target fishing approach by using the ROCS program to generate 3D profiles 

for a set of drugs against a given target (56). Their method can successfully identify 

off-targets and also highlight the fact that the 3D-based method facilitates enrichment even 

for compounds which are not found to be similar in 2D. ChemMapper (57) is another 

approach for exploring target pharmacology using SHAFTS as the 3D similarity calculation 

method.

Bioactivity Profile

The availability of chemical biology data across multiple assays for a common compound 

library enables the generation of bioactivity profiles, which can be informative for predicting 

DTIs. For example, Cheng et al. developed a bioactivity profile similarity search (BASS) 

method for associating targets to small molecules by using the known target annotations 

of related compounds (58). BASS was able to identify a significant fraction of structurally 

diverse compounds with similar bioactivities, indicating its capability of “scaffold hopping.” 

In another study, Vilar et al. (59) calculated the target interaction profile fingerprint (TIPF) 

based on the activity data from ChEMBL, as a binary vector of presence or absence of 
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interaction with an array of targets. TIPF was further verified through molecular docking 

and experimental assays. Based on the HTS data in PubChem BioAssay, Helal et al. 

generated the comprehensive bioactivity profiles (PubChem HTSFPs) for more than 300,000 

small molecules with bioactivity data from 243 different bioassays (60). By using PubChem 

HTSFPs as molecular descriptors, the authors achieved a 27-time improvement in hit 

expansion experiments. It was also found that PubChem HTSFPs retrieved hits that are 

structurally diverse and distinct from active compounds obtained by chemical similarity-

based methods.

Drug Side Effect

Side effects, or the adverse effects of drugs, contain important clinical phenotypic 

information that may be useful for predicting novel targets of a drug (61) and have been 

explored in relating drug-protein interaction network (62). Takarabe et al. developed a 

pharmacogenomic approach for predicting DTI by using the adverse event reporting system 

(AERS) from the US Food and Drug Administration (FDA). The authors demonstrated that 

the approach could predict unknown DTIs which cannot be predicted by drug chemical 

structure-based approaches (63). Most recently, side effect profiles have been applied to 

explore the similarities shared between antidepressants and immune-modulators, revealing 

potential novel targets for treating major depressive disorders (64). Drug side effects have 

also been incorporated as an important information source in various other studies for DTI 

prediction (65-69).

Therapeutic Effect

The Anatomical Therapeutic Chemical (ATC) classification system categorizes drugs 

by their therapeutic and chemical characteristics. Cheng et al. (65) proposed the drug 

therapeutic similarity inference (DTSI) method by using the ATC code. The DTSI methods 

were found to be comparable to a drug structural similarity inference (DSSI) method 

and a drug side effect similarity inference (DSESI) method reported in the same work. 

Shi et al. (66) enhanced the drug similarity metric by including the non-structural ATC-

based similarity, which performed better than previous measures. In combination with an 

eigenvalue transformation technique (70), the ATC taxonomy similarity between drugs was 

computed using a semantic similarity algorithm and used as one drug similarity metric. 

Likewise, disease terms related to drugs can be applied to evaluate the drug similarity via 

terminology metrics as shown in the semantics-based edge partitioning approach (semEP) 

for DTI prediction (71).

Drug-Induced Gene Expression

Gene expression profiles arising from drug treatment can provide insights to DTI prediction. 

Our survey shows that CMap is the mostly used resource in this regard. To name a few 

examples, a transcriptomic approach (72) based on the drug-induced gene expression data 

in CMap with a machine learning classification technique was developed. It was observed 

that this approach can predict target proteins independent of data on compound chemical 

structures. Compound profile correlations from CMap can be utilized to create a drug 

network with densely connected nodes, which were then used by Jaeger et al. in a graph-

based model to predict causal targets (73). In the work of Fakhraei et al., the Spearman 
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rank correlation coefficient of gene expression responses to drugs retrieved from CMap was 

applied as one similarity measure between drugs (43).

Drug Binding Site

Ligand-target interactions are mainly determined by the physicochemical properties of the 

binding sites, which also largely depend on the ligand substructures. A fragment interaction 

model (FIM) was proposed to describe the interactions between ligands and targets (74) by 

using the binding sites of the target-ligand complexes extracted from the sc-PDB database. 

The FIM method has the potential capability of molecular interpretation of ligand-target 

binding. In another study, Cao et al. (75) extracted 3D binding information from complex 

structure, either experimental result or theoretical model, according to well-established 

geometric criteria for a series of important interactions, such as H-bond, ionic interaction, 

π-π stacking, and non-polar contact. These 3D interactions were transformed into a one-

dimensional (1D) binary string, named ligand-based interaction fingerprint (LIFt), which 

was able to recognize most of the native targets for the promiscuous kinase inhibitor 

staurosporine on the basis of experimentally determined complex structures. Meslamani 

et al. (76) found that an SVM classifier with a 3D-binding site kernel significantly 

outperformed a sequence-based target kernel in discriminating target-ligand PDB complexes 

from false pairs.

Drug-Drug Interaction

Kim and co-workers proved that drug-drug interaction (DDI) is a promising feature for 

predicting DTIs (77). They collected two sources of DDI data, i.e., adverse DDI effect from 

drugs.com and pharmacological DDI from STITCH. The former is a modification of the 

effect of drugs when other drugs are co-administered, and the latter is a relation between 

compounds that is derived from similar activities. The accuracies of DPIs prediction using 

DDI were compared to those obtained using chemical structure and side effects data, 

indicating that DDI information contributed most to DTI prediction based on two machine 

learning methods.

Ontology and Semantic Data

Drug similarity can be measured by ontological terms in a hierarchical classification. Based 

on the ChEBI ontology, Gao et al. developed a model for identifying the target group 

for given drugs (78). Though this method does not predict DTIs explicitly, it is helpful 

for deducing the potential drug target within those target groups. The ChEBI ontology 

was also used by Chen et al. as one data source in their semantic annotated network 

(79). The authors developed the semantic link association prediction (SLAP) algorithm for 

predicting “missing links” in the network. Using an ontology-based data representation of 

the relationships among drugs, diseases, genes, pathways, and SNPs, Tao et al. successfully 

identified potential targets for colorectal cancer drugs through semantic reasoning (80).

Literature and Text Mining

Hidden DTIs in literature can be discovered via text mining based on co-occurrence of drug 

and target entities. One pioneer study is from Zhu et al., in which the authors developed a 
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probabilistic model, called the mixture aspect model (MAM), for mining implicit “chemical 

compound-gene” relations from the MEDLINE records (81). Recently, a new text mining 

technique was proposed by Geethanjali et al. (82) that can estimate the point-wise mutual 

information (PMI) among protein names obtained from UniProtKB and the Medical Subject 

Headings (MeSH) that contain drug terms extracted from MEDLINE. Based on PMI scores, 

gene/protein profiles and drug were produced and candidate drug-gene/protein associations 

were constructed when evaluating the relevance of their profiles.

Quantitative Bioactivity Data

Most DTI prediction approaches have not taken full advantage of the quantitative bioactivity 

data provided in many chemical biology datasets; instead, only the true/false association of 

a DTI was used based on an activity threshold, usually 10 μM. In a recent work, Sugaya 

transformed the activity data from ChEMBL into binding efficiency index (BEI) (83). The 

SVM classifiers from the BEI-based training data demonstrated slightly higher performance 

in the cross-validation tests. Using a modified version of the influence-relevance voter 

(PS-IRV), Lusci et al. (84) showed that target prediction can be improved by making use of 

bioactivity data, where a compound was assigned different weights according to its potency 

range. In the work of Wang et al. (85), multiple types of DTIs (e.g., activation, inhibition, 

and binding) were differentiated. Their approach, called restricted Boltzmann machine, was 

able to predict drug mode of action in addition to DTIs.

ONLINE TOOLS

Stimulated by the growing interest in DTI study and the availability of open data resources, 

many online tools have now been provided with open-access for DTI prediction including 

SEA (51), SuperPred (54), and ChemMapper (57). These tools may be readily used for 

DTI prediction without the need of a comprehensive understanding for the mathematical 

and computational complexity, hence greatly lower the barrier of collaborations among 

researchers across multiple disciplines. Undoubtedly, having easy access to tools for large-

scale data analysis plays an important role in the era of big data for supporting data science. 

More online tools can be found in Supplementary Table S3 together with brief descriptions 

about algorithms, data types and additional information.

DISCUSSION

Data Integration and Data Fusion

The studies described above were purposely categorized according to individual types 

of data. Nevertheless, it is extremely important to integrate data from multiple sources 

and categories, and indeed, various sources of data were often combined in practice. For 

example, Wang et al. (69) calculated drug similarities on the basis of molecular structure, 

pharmacological information from the JAPIC database, therapeutic information from ATC 

code, side effects from the SIDER database, and activity data with target proteins from 

multiple sources, respectively. With these drug-related omics data, the authors concluded 

that data integration did help to improve DTI prediction. Moreover, data integration is not 

limited to drug centric information. Protein sequence information were also incorporated 
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in their study. Actually, most applications in our survey make use of both drug and target 

data to a certain extent in chemogenomic methods. In a semantic network, Chen et al. 

(79) included different annotations relating to drugs, chemical compounds, protein targets, 

diseases, side effects, and pathways from 15 public databases, demonstrating the great 

potential of semantic network for integrating complex and heterogeneous data. In addition, 

data fusion is commonly observed in many approaches. In the chemical similarity ensemble 

approach (86), Wang et al. combined several SEA models, each employing a different 

fingerprint/descriptor (i.e., Morgan, atom pair, topological torsions, MACCS keys, 2D 

pharmacophore fingerprint, and SHED), which can be calculated from chemical structures. 

The ensemble version was found to outperform individual SEA models. There are also 

applications of data fusion using target information (42). Therefore, data integration using 

distinct and complementary source and data fusion through ensemble learning will continue 

to be promising approaches in the future.

Data Imbalance and Negative Samples

One key challenge in DTI prediction is that the number of experimentally verified DTIs 

is relatively small. The fact that negative DTIs dominate over positive ones creates a 

known issue named “data imbalance”. This is especially critical to supervised learning, 

where models built with imbalanced data are prone to be biased toward major classes (i.e., 

negative DTIs), leading to more false negatives and thus may miss important DTIs. Common 

strategies to address this issue include random sampling, down sampling, over sampling, 

and balanced sampling (87). However, the resulting dataset may become unreliable due to 

data redundancy and/or information loss. Moreover, negative DTIs may not be reliable in the 

first place. Known DTIs were primarily curated from literature, which hardly report negative 

DTIs. As a consequence, researchers have little choice other than treating all unverified DTIs 

as negative samples despite that some of them may be true DTIs. Several recent applications 

were proposed to tackle this problem by treating non-interaction pairs as unlabeled (88,89), 

building up highly credible negative samples (44), or class imbalance-aware ensemble 

learning (90). Nevertheless, these techniques may be overly simplified according to a recent 

review (17). Therefore, much room is left along this direction. One possible strategy is 

to take advantage of the negative samples reported in large repositories, for example, the 

HTS data in PubChem. Figure 2 highlights that over 150 million negative CPIs are publicly 

available in PubChem BioAssay, which were experimentally verified and could be beneficial 

for building more accurate predictive models. One recent application from Fu et al. made 

use of the PubChem BioAssay data to negatively label about 800,000 out of a total of 5.6 

billion links in their semantic network (91).

Data Availability and Cross-Linking

DTI prediction in a “big data” era creates both opportunities and challenges. The increasing 

availability of data has dramatically stimulated the development of novel DTI prediction 

methods. On the other hand, there are many data types that are still not adequately 

available; also, the lower data quality may lead to inaccurate prediction. In fact, our 

knowledge regarding the entire chemogenomic space is far from comprehensive. As an 

example, only half a million compounds out of the total 90 million unique chemicals 

registered in PubChem are associated with CPI data (Fig. 2). Furthermore, the widely 
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applied pharmacological and therapeutic data (e.g., side effect and ATC code) are very 

sparse and difficult to obtain. In addition, bioactivity profile and gene expression are costly 

to produce. 3D protein structures and thus the binding sites, which are essential for the 

profound understanding of DTIs, are largely unavailable for some important therapeutic 

targets including membrane proteins. Besides data availability, another major issue is the 

varying data quality among different data types. Data generated from HTS experiments 

are known to be noisy and possibly contain artifacts. Inconsistency may occur when 

incorporating bioactivity data from multiple experiments for the same chemicals regardless 

of experimental conditions, warning that data quality control should be taken into account 

when applying data for DTI prediction.

It has been demonstrated that the utility of integrated data sources helps to improve DTI 

prediction. Computer-readable cross-links among different sources of biological data thus 

play a key role for data integration and information discovery. However, hurdles still exist 

due to the lack of cross-references among data sources which are highly relevant but 

generated by different research communities. For instance, gene expression data provides 

valuable information for deducting gene targets when small-molecule drugs were used for 

perturbation of the cell system. However, drug molecule information in a gene expression 

data repository may be limited to a chemical name and may be stored simply in a textual 

context; hence, the lack of accurate linking to chemical structure data in a public chemical 

database makes it difficult to combine widely available gene expression data on a large scale 

for DTI prediction.

Despite the lack of communications and linking for data resources across research 

communities, there are encouraging progresses. Recently, the Findability, Accessibility, 

Interoperability, and Reusability (FAIR) principle has been proposed to provide guidance 

for managing public data, maintaining data flow, and sharing analysis tools and pipelines 

(92). This effort is to bring clarity and encourage public data stakeholders to work toward 

the simple guidance together with funding agency, researcher, and publisher to harmonize 

research data. Identifiers of genomic data, such as accession of a nucleotide sequence, have 

been required for submission of PubMed. Open-access journals, such as those from Elsevier, 

require the provision of chemical identifiers in PubChem (e.g., unique chemical structure 

accession, CID) for chemicals reported in the publication. Government funding agencies and 

journal publishers are required to take further steps toward open access and data sharing. 

Synergized efforts from researchers of multiple disciplines in support of open data and data 

science are needed and would greatly help to develop novel system biology methodologies 

and accelerate discoveries.

SUMMARY

We have reviewed public databases, online tools, and recent applications relevant to DTI 

prediction from the data perspective. It is found that various types of data were employed 

for in silico studies, such as chemical structure, bioactivity profile, side effect, therapeutic 

effect, drug-induced gene expression, drug binding site, drug-drug interaction, and ontology 

and semantic data. More often, the heterogeneous data were integrated to offer boosted 

performance. Given such an important field in drug discovery, we anticipate more advances 
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to come along with the growing availability of chemogenomic data and innovations in 

computation power. However, many challenges remain with respect to data accessibility, 

process, and analysis. Better strategies for dealing with data imbalance and incorporating 

negative samples are desired. Full utility of quantitative bioactivity data remain to be 

explored. Multiple dimensional and high-quality data as well as open-access online tools 

supporting data analysis are in great need. Additionally, it also remains a great challenge for 

public data repositories, database stakeholders, and journal publishers to work harmoniously 

for producing and maintaining cross-links among data generated from different scientific 

disciplines.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution of drug as a function of the number of target. The statistics is based on about 

2000 approved small-molecule drugs and their associated targets in DrugBank. The analysis 

shows that while the majority of drugs have one or a few targets with three targets per 

drug on the average, some drugs are “promiscuous” and have multiple targets. One extreme 

drug, Flavin adenine dinucleotide (DrugBank ID: DB03147), has 85 targets according to 

DrugBank
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Fig. 2. 
The growth of biological data in PubChem BioAssay including biologically tested 

compounds, bioactivity outcomes, protein targets, drug-protein interactions (DPIs), 

compound-protein interactions (CPIs), negative compound-protein interactions (CPIs). The 

number in parenthesis is the total count of each data category. DPI and CPI are counted 

based on the confirmatory and literature-based assays
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Table I.

Public Databases Relevant for Predicting Drug-Target Interactions

Resource Description Data
content

Website Ref.

Curated drug-target interactions

DrugBank A comprehensive resource 
that combines detailed 
drug (i.e., chemical, 
pharmacological and 
pharmaceutical) data with 
comprehensive drug target 
(i.e., sequence, structure, and 
pathway) information

8206 drug entries 
including 1991 
FDA-approved small-
molecule drugs, 
207 FDA-approved 
biotech drugs, 93 
nutraceuticals and over 
6000 experimental 
drugs;

http://www.drugbank.ca/ (18)

ChEMBL A manually curated chemical 
database of bioactive 
molecules with drug-like 
properties

11,019 targets; 
1,592,191 compounds; 
13,967,816 activities

https://www.ebi.ac.uk/chembldb/ (11)

KEGG A comprehensive resource, 
including drugs, genes, 
reactions, pathways, and 
diseases, for understanding 
high-level functions and 
utilities of the biological 
system

17,840 compounds; 
10,431 drugs; 
20,620,439 genes

http://www.kegg.jp/kegg/ (19)

Comparative 
Toxicogenomics 
Database (CTD)

A public website and 
research tool that 
curates scientific data 
describing relationships 
between chemicals/drugs, 
genes/proteins, diseases, 
taxa, phenotypes, GO 
annotations, pathways, and 
interaction modules

1,379,105 chemical-
gene interactions; 
19,753,624 gene-
disease associations; 
2,060,371; 14,672 
chemicals; 6401 
diseases; 42,761 genes

http://ctdbase.org/ (27)

Guide to 
PHARMACOLOGY

An open-access website, 
acting as a portal to 
information on the biological 
targets of licensed drugs and 
other small molecules

2789 targets; 8611 
ligands; 14,577 
curated binding 
constants; 31,207 
binding constants from 
large-scale screening

http://www.guidetopharmacology.org/ (28)

Therapeutic Target 
Database (TTD)

A database to provide 
information about the known 
and explored therapeutic 
protein and nucleic acid 
targets, the targeted disease, 
pathway information, and the 
corresponding drugs directed 
at each of these targets

2025 target; 17,816 
drugs

http://bidd.nus.edu.sg/group/cjttd/ (23)

STITCH A resource to explore known 
and predicted interactions of 
chemicals and proteins

300,000 small 
molecules; 2.6 
million proteins; 1133 
organisms

http://stitch.embl.de/ (22)

SuperTarget An extensive web resource 
for analyzing drug-target 
interactions

6219 targets; 
195,770 compounds; 
332,828 drug-target 
interactions; 282 
drug-target related 
pathways; 6532 
drug-target related 
ontologies; 63 
cytochromes

http://insilico.charite.de/supertarget/ (21)

DrugKiNET An open-access, online 
resource to foster 
the identification and 

400 human 
kinases; 800 

http://www.drugkinet.ca/
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characterization of inhibitors 
of protein kinases for 
academic and industrial 
research

inhibitors; 105,000 
kinase-compound pairs

PROMISCUOUS An exhaustive resource 
of protein-protein and drug-
protein interactions with the 
aim of providing a uniform 
dataset for drug repositioning 
and further analysis

5258 drugs with 
targets; 6548 targets 
with drugs; 23,702 
drug-target interactions

http://bioinformatics.charite.de/promiscuous/ (29)

NCGC 
Pharmaceutical 
Collection

A comprehensive resource 
of clinically approved drugs 
enabling repurposing and 
chemical genomics

14,814 compounds; 
1270 targets

https://tripod.nih.gov/npc/ (30)

ChemProt A resource of annotated and 
predicted chemical-protein 
interactions

1.7 million chemicals; 
20,000 proteins

http://potentia.cbs.dtu.dk/ChemProt/ (37)

BRENDA The main enzyme and 
enzyme-ligand information 
system

83,000 enzymes; 
206,000 enzyme 
ligands

http://www.brenda-enzymes.org/ (20)

MATADOR A manually annotated targets 
and drug online resource

1500 drugs; 2500 
target proteins; 7300 
drug-protein elations

http://matador.embl.de/ (39)

3D structures and/or binding affinities

Protein Data Bank 
(PDB)

A crystallographic database 
for the three-dimensional 
structural data of large 
biological molecules, such as 
proteins and nucleic acids

120,642 biological 
macromolecular 
structures

http://www.rcsb.org/pdb/home/home.do (31)

MMDB A collection of publicly 
accessible experimentally 
determined macromolecular 
structures with added 
information on the biological 
function and the evolutionary 
history of macromolecules

119,566 
macromolecular 
structures, with 86,960 
contains chemicals

https://www.ncbi.nlm.nih.gov/structure (32)

PDBbind A comprehensive collection 
of the experimentally 
measured binding affinity 
data for all types of 
biomolecular complexes 
deposited in the Protein Data 
Bank (PDB)

14,620 biomolecular 
complexes, including 
protein-ligand 
(11,987), nucleic acid-
ligand (109), protein-
nucleic acid (717), 
and protein-protein 
complexes (1807)

http://www.pdbbind-cn.org/ (33)

BindingDB A public, web-accessible 
database of measured binding 
affinities, focusing chiefly on 
the interactions of proteins 
considered to be candidate 
drug targets with ligands 
that are small, drug-like 
molecules

1,242,569 binding 
data; 6395 protein 
targets, 547,013 small 
molecules

http://bindingdb.org/ (25)

Binding MOAD A collection of well-resolved 
protein crystal structures 
with clearly identified 
biologically relevant 
ligands annotated with 
experimentally determined 
binding data extracted from 
literature

25,771 protein-ligand 
structures; 9142 
binding data; 12,440 
different ligands; 7599 
different families

http://bindingmoad.org/ (34)

PDSP Ki database A unique resource in 
the public domain which 

59,705 Ki values http://kidbdev.med.unc.edu/databases/pdsp.php (40)
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provides information on the 
abilities of drugs to interact 
with an expanding number of 
molecular targets

Side effects

SIDER An information portal on 
marketed medicines and 
their recorded adverse drug 
reactions

1430 drugs; 5868 side 
effects; 139,756 drug-
side effect pairs

http://sideeffects.embl.de/ (24)

FAERS FDA’s adverse event 
reporting system

http://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/
Surveillance/AdverseDrugEffects/default.htm

MetaADEDB A comprehensive computer-
available adverse drug events 
database

3060 chemicals; 
13,256 side effects; 
527,216 drug-ADEs 
associations

http://lmmd.ecust.edu.cn/online_services/
metaadedb/

(38)

JAPIC Side effects http://www.japic.or.jp/

Large screening programs and data repositories

PubChem BioAssay A public repository for 
bioactivity data of small 
molecules and RNAi 
reagents against thousands of 
molecular targets

1.2 million bioassays; 
3 million tested 
substances (2 million 
compounds); 250 
million bioactivities; 
10,000 protein targets

https://ncbi.nlm.nih.gov/pcassay/ (8) 
(9) 
(10)

NCI/DTP The Developmental 
Therapeutics Program of the 
National Cancer Institute

https://dtp.cancer.gov/ (26)

ChemBank A public, web-based 
informatics environment 
for data derived from 
small molecules and small-
molecule screens

http://chembank.broadinstitute.org/ (35)

Connectivity Map 
(CMap)

A catalog of gene expression 
data collected from human 
cells treated with chemical 
compounds and genetic 
reagents

6100 gene expression 
profiles; 13,469 human 
genes; 1309 bioactive 
small compounds

https://www.broadinstitute.org/connectivity-
map-cmap

(36)
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