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SUMMARY

The brain can generate actions, such as reaching to a target, using different movement strategies. 

We investigate how such strategies are learned in a task where perched head-fixed mice learn to 

reach to an invisible target area from a set start position using a joystick. This can be achieved 

by learning to move in a specific direction or to a specific endpoint location. As mice learn to 

reach the target, they refine their variable joystick trajectories into controlled reaches, which 

depend on the sensorimotor cortex. We show that individual mice learned strategies biased 

to either direction- or endpoint-based movements. This endpoint/direction bias correlates with 

spatial directional variability with which the workspace was explored during training. Model-

free reinforcement learning agents can generate both strategies with similar correlation between 

variability during training and learning bias. These results provide evidence that reinforcement of 

individual exploratory behavior during training biases the reaching strategies that mice learn.
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In brief

Mosberger et al. introduce a task where mice refine forelimb reaches to spatial targets through 

exploration and reinforcement. Variable-targeted reaches require the sensorimotor cortex. A probe 

test shows that individual mice have direction- or endpoint-learning biases, correlating with how 

they explore during training. Model-free reinforcement learning recapitulates this learning bias.

INTRODUCTION

To reach for our phones on the nightstand, shift gears, or play drums, we have to precisely 

reach a covert target in space. In such spatial reaching movements, different movement 

strategies can be used to get to the target. One strategy is to move in a certain direction 

for a set distance, as in a learned feedforward movement.1,2 Another is to move so 

that the hand ends up in the learned target location, using the limb’s sensory state3,4 

to move by feedback.5,6 The primary motor cortex is known to be crucial for targeted 

reaching movements across species.7–13 It has been found to generate activity tightly related 

to reaching direction14–19 and to integrate sensory feedback into motor commands.20,21 

Despite the importance of reaches, in which different strategies can achieve the same 

outcome,22 it is poorly understood what influences which strategy is learned and how they 

are controlled by the brain.

It has been proposed that what is learned about an action is determined by the nature 

of exploration during training,22 because credit is assigned to successful movements from 

the pool of explored movements.23,24 Specifically, repeated credit assignment allows the 

Mosberger et al. Page 2

Cell Rep. Author manuscript; available in PMC 2024 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain to gradually converge on what movement aspects were causal to success and reduce 

their variability in a process called refinement.23,25–29 When primates learn to reach to 

rewarded target locations, the path length and spatial variance of reach trajectories are 

refined.30,31 Thus, when different movement strategies can lead to the same outcome, the 

type of movements explored during training could determine what is assigned credit and bias 

which strategy is learned. How individual animals explore may depend on their previous 

experience,32–34 motivation, fatigue, or innate differences. Hence, individuals may learn to 

use different movement strategies based on what movements they explore during training.

Whereas past work has quantified refinement of relevant movement aspects during learning, 

this does not resolve what strategy was learned, as assigning credit to either strategy can 

reduce variability in similar ways. The content of what was learned needs to be specifically 

probed. One way is to devise a probe test as has been used in the field of learning theory. 

Probe tests can distinguish egocentric stimulus-response learning35 from allocentric place 

learning,36–38 for instance, by placing an animal at a new entry of a maze. Similarly, 

studies in humans and non-human primates have investigated whether reaching movements 

to visual targets are performed within an intrinsic (goal is a target posture) vs. extrinsic (goal 

is a target location) reference frame,39–42 by introducing novel start positions or posture 

changes.43–49

Here, we study reaching movements to an invisible target in space, for which it is poorly 

understood how different reach strategies are learned, and whether exploration influences 

what is learned. We developed a forelimb spatial target task (STT), where mice explore 

a workspace and learn to move a joystick into rewarded target locations, similar to 

previous experiments in humans.30,50 Mice provide untapped potential to dissect the role of 

specific circuits in reaching movements.51,52 We positioned mice in a perched posture that 

enhanced exploration of the workspace, which allowed us to measure refinement of forelimb 

trajectories, as mice discovered and learned different targets. Using stroke lesions, we show 

that spatial directional variability and direction control is dependent on the sensorimotor 

cortex contralateral to the moving limb. By changing the start position in a small number 

of probe trials, we show that animals displayed direction- or endpoint-learning biases, and 

that the spatial exploration during training correlated with strategy bias. Finally, we trained 

reinforcement learning models to perform the task and show that model-free agents have a 

direction/endpoint-bias that also correlated with the exploratory behavior during training.

RESULTS

Perched mice explore the workspace and learn reaches to covert spatial targets

We implemented the STT with a selective compliance articulated robot arm (SCARA) 

joystick, providing a homogeneous horizontal workspace,53–55 and used a vertical 

manipulandum52 that the mice moved unimanually (Figures 1A and 1B). Mice self-initiated 

movements from a set start position and explored the workspace with complex trajectories 

(attempts) that were rewarded when they entered the target (hit), or ended after a maximum 

time (7.5 s) or if the joystick was let go (miss) (Figure 1C). Training started with a short pre-

training period during which touching the joystick (phase 1), and then forward movements 

(phase 2) were rewarded. At the end of pre-training, we defined two target locations for each 
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animal: ±40° from the mean direction of rewarded forward movements (Figure 1D). One of 

the targets was rewarded for several days until high performance (target training) (Figure 

1E). No cues signaled where the target was.

Exploration of the workspace is crucial to discover the target and learn from reinforcement. 

In contrast to previous studies12,52,56–59 no shaping was used, such that only exploration 

would lead to target discovery. The movement was also not guided or hindered through 

force fields or haptic tunnels,59–61 and animals could move at any speed or pause mid-

trajectory. To encourage animals to explore the workspace, we tested whether head-fixing 

mice in a perched posture, as during food handling,62 would increase the forelimb range of 

motion compared with standard quadrupedal positioning in a horizontal tube.12,51,52,63–65 

We developed a cup-shaped holder (cup) that allowed animals to sit on their hindlimbs. 

Comparing animals trained on a target in the cup or standard tube (Figure 1A), we found 

that the achieved hit ratio was significantly higher in animals trained in the cup (Figure 1F, 

unpaired t test: t(8) = 2.42, p < 0.05, Figures S1A and S1B). This difference was not due to 

a difference in target locations between groups (Figures S1C and S1D). Both groups had a 

similar baseline chance of hitting the target from their attempts during pre-training (Figure 

1G, unpaired t test: t(8) = 0.98, p > 0.05).

To test whether cup animals were better able to explore the workspace, increasing their 

probability of discovering the target, we analyzed the area visited by all trajectories of a 

session (Figure 1H, example animals). Cup animals visited more unique spatial bins than 

tube animals when they had to discover the spatial target (Figure 1I, two-way ANOVA 

repeated measures, group: F(1,8) = 8.99, p < 0.05, day: F(1,8) = 32.57, p < 0.01, day × 

group effect: F(1,8) = 5.67, p < 0.05). On the last day of pre-training, when they only had 

to move the joystick forward, both groups visited a similar area (Figure 1I, Bonferroni 

correction, pre-training day: t(16) = 0.94, p > 0.05), and achieved the same hit ratio 

(Figure S1E) with the same number of attempts (Figure S1F). This suggests there was no 

difference in motivation or ability to learn the task contingency. However, only cup animals 

increased workspace exploration once the target had to be entered (Figure 1I, Bonferroni 

correction, cup group, day comparison: t(8) = 5.72, p < 0.01), visiting a larger area than 

tube animals (Figure 1I, Bonferroni correction, target day, group comparison: t(16) = 3.83, 

p < 0.01). These results indicate that cup mice were better able to explore the workspace 

because of their posture. We think it unlikely that there was a difference in motivation or 

perseverative behavior between groups because both groups received similar total rewards 

during pre-training (Figure S1G). To further test this, we switched three tube mice to the 

cup and they all increased the area visited (Figure S1H and S1I), their trajectories became 

significantly more variable (Figure S1J), and their hit trajectories entered the target from 

more variable directions (Figure S1K). Taken together, perched mice were able to display 

a wider, more variable, range of forelimb movements with the joystick, increased their 

exploration to discover the target, and achieved more target hits.

We used the cup for all other experiments and next tested whether animals could discover 

and learn different target locations, to allow repeated assessment of learning and refinement. 

We pre-trained eight mice and defined two target locations for each animal (Figures 1D and 

S2A), which we rewarded in alternating blocks such that each target was repeated twice 
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(Figure 1E). Each block lasted until the performance criterion was met and all animals 

progressed through each block within a maximum of 30 days (Figures S2B and S2C). We 

evaluated the performance on 5 equidistant days (from first to last) within each block, and 

found a steady increase in hit ratio in each block (first: 0.19 ± 0.07, last: 0.75 ± 0.03) (Figure 

1J, mixed-effects model, day in block: F(2.1,14.8) = 54.90, p < 0.01, block: F(2.0,13.8) = 

3.08, p > 0.05). In blocks 2–4, animals showed transient perseverative behavior, continuing 

to enter the previously rewarded target, which decreased as they explored and discovered the 

new target (Figure 1K, mixed-effects model, day in block: F(2.0,14.2) = 69.64, p < 0.01, 

block: F(1.5,10.2) = 1.81, p > 0.05). We are confident that animals learned to reach the target 

through reinforcement of exploratory reaches and did not use external cues, as the task was 

performed in the dark and performance was unaffected by whisker trimming (Figure S2D).

We next investigated how the target reach trajectories evolved throughout learning (Figure 

2A).

Mice explore the workspace with high spatial directional variability and tortuous 
trajectories

We first asked whether workspace exploration changed with learning by counting the spatial 

bins visited by all trajectories. We found that, early in each block, a large area of the 

workspace was explored, which reduced as more hits were performed (Figure 2B, one-way 

ANOVA, F(3.1,21.6) = 13.95, p < 0.01). However, this could indicate that animals merely 

stopped producing far-reaching miss trajectories and increased the number of confined hit 

trajectories. We thus measured the space explored by only hit trajectories subsampling them 

to the same number for all sessions. Hit trajectories alone occupied a larger area of the 

workspace at the beginning of the block than at the end, even when we only considered the 

path from the start to target entry (Figure 2C, one-way ANOVA, F(1.9,13.3) = 6.67, p < 

0.05), suggesting that exploratory trajectories that were rewarded at target entry (hits) were 

refined.

We next investigated how hit trajectories changed with learning and quantified how variable 

the movement direction was across the workspace (spatial directional variability). We 

generated a vector field from the hit trajectories per session and quantified the angular 

standard deviation in each spatial bin (Figures 2D and 2E). This analysis showed that the 

spatial directional variability was high early in each block and significantly decreased with 

learning (Figures 2E–2G, one-way ANOVA, F(2.4,16.6) = 7.91, p < 0.01). This decrease 

was specific to the rewarded segment of the hit trajectories, as the spatial directional 

variability of all full-length trajectories did not decrease with learning (Figure S2E). We 

then asked whether a single hit trajectory became less variable, which we quantified using 

tortuosity (Figure 2H, path length/distance). Hit trajectories were significantly more tortuous 

at the beginning of the block than at the end (Figure 2I, one-way ANOVA, F(2.7,18.6) = 

15.06, p < 0.01), with trajectories becoming straighter with learning.

Having found that target reaches became less variable, we then asked how similar they 

were to each other in shape and position across a block. We calculated the discrete Fréchet 

distance (FD)66 between pairwise trajectories (Figure 2H). Hit trajectories within a session 

became more similar to each other with learning (Figure 2J [diagonal] and Figure 2K, 
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one-way ANOVA, F(2.7,19.0) = 13.82, p < 0.01). Furthermore, hit trajectories on the first 

day of the block were dissimilar to hit trajectories on other days in the block, particularly to 

hits in the middle of the block (Figure 2J [top row], one-way ANOVA, F(3.0,21.2) = 5.28, p 

< 0.01), showing that the overall shape of the hits changed with learning.

Overall, we found that animals initially explored the workspace with hit trajectories that 

moved in variable directions across the workspace, were tortuous, and dissimilar to each 

other. These aspects were then refined, reducing variability, and producing straighter 

trajectories as animals received rewards for entering the target (Video S1). However, 

this refinement was not accompanied by an increase in movement speed, but rather the 

peak speed (Figure 2H) achieved per hit decreased with learning (Figure 2L, one-way 

ANOVA, F(2.1,14.8) = 5.73, p < 0.05), as did its variability (Figure S2F, one-way ANOVA, 

F(2.2,15.3) = 15.05, p < 0.01), suggesting an increase in control over the peak speed that 

would allow precise endpoint targeting.

The precision of initial movement direction and targeting accuracy increases with learning

As animals may learn different strategies to move the joystick into the target—moving in a 

certain direction for a certain distance or moving toward a specific endpoint location from 

any position—we specifically measured refinement in these aspects.

First, we measured refinement of movement direction by analyzing the direction of the 

initial segment of hit trajectories and comparing them with the optimal direction straight to 

the target (Figure 3A). As animals learned, their initial direction significantly approached 

the target direction (Figure 3B, one-way ANOVA, F(1.5,10.7) = 6.61, p < 0.05, last day 

α: 14.3° ± 3.9°). Importantly, they also significantly decreased the variability of their initial 

direction (Figure 3C, one-way ANOVA, F(2.2,15.7) = 8.96, p < 0.01).

To investigate targeting, we analyzed the final segment of the hit trajectory into the target 

and measured its direction in relation to the straight target direction (Figure 3D). We found 

that over learning the mean difference to the straight target direction reduced significantly 

(Figure 3E, one-way ANOVA, F(2.8,19.4) = 7.36, p < 0.01, last day α: 10.2° ± 4.4°), but 

animals did not decrease the variability of target entry direction, even at high performance 

(Figure 3F, one-way ANOVA, F(1.9,13.0) = 1.23, p > 0.05). However, with learning, they 

dwelled significantly longer in and around the target area after target entry (Figure 3G, 

one-way ANOVA, F(3.2,22.1) = 5.04, p < 0.01) and the trajectory path that overshot the 

target entry point (Figures 3H and 3I, one-way ANOVA, F(1.8,12.8) = 9.96, p < 0.01) as 

well as its variability (Figure 3J, one-way ANOVA, F(1.8,12.7) = 5.48, p < 0.05) decreased.

These findings provide evidence that animals refined their reach in a precise direction 

toward the target, but also show features of endpoint-based movements with variable entry 

directions into the target. Furthermore, the dwelling in the target location during reward 

consumption would allow for credit assignment to the target location in space. We next 

tested if any of these aspects of forelimb reaches were dependent on sensorimotor cortex in 

the mouse.
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A sensorimotor cortex stroke impairs movement direction and spatial directional 
variability

Learning and performance of forelimb reaching movements have been shown to be 

dependent on the sensorimotor cortex,8,11,67 but studies of rodents interacting with one-

dimensional levers have found no impairment of learned skills upon motor cortex lesion.68 

To test whether the mouse sensorimotor cortex controls distinct aspects of spatial forelimb 

reaches, we performed confined sensorimotor cortex photothrombotic stroke69 lesions in 

expert animals (target 1). We induced the lesion through a cranial window that had been 

implanted over the left caudal forelimb primary motor cortex before training. To confirm 

the lesion location, we registered coronal brain tissue sections into a 3D volume and 

aligned it to the Allen Reference Brain Atlas using BrainJ70 (Figures S3A and S3B). The 

unilateral lesions encompassed a total volume of 9.9 ± 3.4 mm3 (Figure 4A), with the largest 

proportion located in the primary (35% ± 6%) and the secondary (26% ± 5%) motor cortices 

(Figure 4B). The lateral 16% and 10% of stroke volume affected the primary somatosensory 

cortices of the forelimb and hindlimb, respectively (Figure 4B). These strokes unilaterally 

lesioned 59% ± 7% of the total primary motor cortex, 40% ± 19% of the secondary motor 

cortex, as well as large parts of the primary somatosensory cortices of the forelimb (82% ± 

11%) and hindlimb (77% ± 7%) (Figure 4C). Other sensory cortical areas were affected by 

the stroke to a lesser extent, and in two animals the lesion partially affected the subcortical 

white matter (Figures S3C and S3D).

Animals were given a day to recover from the non-invasive photothrombotic stroke and 

placed in the STT on days 2 through 6 post-stroke with the same target as before the lesion. 

The hit ratio after the stroke was strongly impaired with animals achieving almost no target 

hits (Figure 4D, one-way ANOVA, F(1.6,6.4) = 614.7, p < 0.01). This was not due to a 

lack of task engagement as animals readily performed movements with the joystick (Figures 

4E and S4A). We investigated how mice manipulated the joystick after the lesion using 

markerless pose estimation from videos tracking the joystick base and the wrist71 (Figures 

S4B and S4C; Video S2). As mice moved the joystick, their wrist to joystick distance did 

not change significantly post-stroke (Figures S4D and S4E), but it became more variable 

(Figures S4D and S4F). Despite this deficit, the total number of attempts was not affected 

(Figure S4G). However, as lesioned animals did not finish the session by reaching the 

maximum number of rewards, their sessions lasted longer and time between attempts (ITI) 

showed a tendency to be longer as well (Figure S4H).

Next, we investigated what aspects of the reach were impaired. Given the few hits achieved 

by post-stroke animals, we performed trajectory analyses using all attempts (hits and 

misses). Trajectories after the cortex lesion still reached a largely similar average peak 

speed (Figure 4F, one-way ANOVA, F(1.9,7.5) = 2.25, p > 0.05), and peak-speed variability 

(Figure 4G, one-way ANOVA, F(2.2,8.7) = 0.51, p > 0.05). However, the initial reach 

direction was significantly deviated after stroke (Figures 4E and 4H, one-way ANOVA, 

F(2.4,9.7) = 17.71, p < 0.01). Animals either moved too medial or too lateral (Figures S4A 

and S4I), seemingly unable to push the joystick accurately forward into the target, while the 

variability of the initial direction was not affected (Figure 4I, one-way ANOVA, F(1.8,7.3) = 

2.19, p > 0.05). To further investigate how similar the movements were before and after the 
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lesion, we again used the FD. To focus the analysis on the aimed movement into the target 

area, we only included the segment of the hits to the target entry and excluded movements 

made during reward consumption. This analysis showed that trajectories produced after 

the lesion were very dissimilar to those before the lesion (Figure 4J, one-way ANOVA, 

F(2.1,8.5) = 18.78, p < 0.01). However, trajectories post-stroke, while initially more 

widespread, did not consistently occupy a larger area of the workspace (Figure S4J), nor 

was their tortuosity significantly different (Figure S4K). Applying our vector field analysis 

on all full-length trajectories before and after stroke revealed a strong decrease in spatial 

directional variability, which persisted across all post-stroke days (Figures 4K–4M, one-way 

ANOVA, F(2.4,9.6) = 15.20, p < 0.01). Together, these results show that sensorimotor 

cortex lesions strongly impaired target reaches, causing reaches with less spatial directional 

variability, and an inability to reach accurately toward the target.

A probe test reveals that individual animals learned to reach the target using different 
strategies

To dissociate whether, and to what degree, animals had learned a strategy of moving in a 

specific direction, or guiding the hand to a specific endpoint location, we devised a probe 

experiment that challenged expert animals with new start positions. During this session, after 

a target 1 block, the joystick returned to novel start positions, left or right of the original start 

position, in a small number of probe trials (Figure 5A). During each probe trial, the animal 

performed attempts from the new start until the target was hit (or a maximum of 5 min), 

to limit learning from reinforcement during the probe trial. We confirmed that there was no 

significant learning during the probe session by analyzing the hit ratio across probe trials 

(Figure S5A, mixed-effects model, probe trial: F(18,126) = 1.31, p > 0.05).

The probe test revealed that indeed some animals moved the joystick toward the target 

from the new start positions, adjusting their reach direction (Figure 5B, example animal), 

while others moved in the same direction from all start positions (Figure 5C, example 

animal). To quantify the degree to which an animal had learned such an endpoint-based 

or a direction-based strategy, we calculated the mean initial trajectory direction from each 

start position (Figures 5D and 5E), and determined whether the mean initial direction from 

the probe start (αprobe) was closer to the mean direction from the original start (αori) or to 

the optimal target direction (αtar) (Figure S5B). This analysis also took into consideration 

how much the animal had to adjust its trained original direction to hit the target from the 

probe start by weighting a larger adjustment more (weights, Figures S5B and S5C). In brief, 

for each probestartposition we subtractedthe absolute difference between the initial reach 

direction and the target direction (δtar = abs(αtar − αprobe)) from the absolute difference between 

the initial reach direction and the original direction (δori = abs(αori − αprobe)) (Figure S5B) and 

multiplied it by the weight. This resulted in a signed angle beta (β = w∗(δtar − δori)) for each 

start, <0 if the reach direction was closer to the target direction, and >0 if it was closer to the 

original direction (Figures S5B and S5D). We calculated an endpoint-direction learner bias 

for each animal as average of both signed β values (rho (ρ), Figure S5B). From the 8 animals 

that underwent the probe test, we found ρ > 0 for 4, biasedtoward a direction, and ρ < 0 for 

the other 4, biased toward an endpoint strategy (Figure 5F).
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We further tested whether endpoint-biased animals significantly adjusted their reach 

direction away from the original direction toward the target direction. For each animal and 

start position, we bootstrapped the initial direction from all attempts to get a distribution 

of the mean direction (Figures S5E and S5F). Then we calculated the 95% confidence 

interval of the mean direction distribution from the original start and determined what 

part of the distributions from the probe starts was within the upper/lower bounds of that 

confidence interval, resulting in a p value for each new start position. The four animals 

classified as endpoint-biased by their ρ angle also had p values <0.05 for their more 

difficult start position (large weight) (Figure 5G), indicating that their probe reach direction 

was significantly different from the original direction. To provide additional evidence that 

movement adjustments were tailored to the probe start position, we calculated whether 

reaches from the probe start would have been less successful if they were performed from 

the original start. Translating trajectories from probe starts to the original start yielded 

significantly lower hit ratios than original start reaches, particularly in endpoint learners 

(Figure S5G, two-way ANOVA repeated measures, start position: F(2,12) = 22.49, p < 0.01, 

learner: F(1,6) = 12.68, p < 0.05, start × learner: F(2,12) = 6.95, p = 0.01). For the easier 

start, only endpoint learners adjusted the trajectories enough to lead to a significant hit ratio 

decrease.

We then focused our analysis on how animals adjusted their movements from the probe 

starts and measured the spatial directional variability. We again found a significant 

interaction between start position and learner bias, with endpoint learners showing a higher 

spatial directional variability from the difficult start than the easier start, whereas direction 

learners displayed the same variability from both (Figure 5H, two-way ANOVA repeated 

measures, start position: F(1,6) = 9.71, p < 0.05, learner: F(1,6) = 0.19, p > 0.05, start × 

learner: F(1,6) = 14.32, p < 0.01). These results suggest that reaches of endpoint learners 

were dependent on the location in space allowing them to increase spatial variability from 

the difficult start position. Taken together, our findings indicate that endpoint-biased animals 

had learned to move to the target position in space rather than a specific direction and could 

adjust their movement depending on difficulty.

Strategy bias is correlated with early spatial exploration

The endpoint and direction learning bias of different animals could be the result of 

reinforcement of different movements during training. We investigated whether animals 

that showed different strategies during the probe test had explored the workspace differently 

during training, biasing what they learned. We found that spatial directional variability 

across all attempts when target 1 was rewarded (blocks 1 and 3) was significantly higher in 

endpoint learners compared with direction learners (Figure 5I, two-way ANOVA repeated 

measures, day in block: F(4,24) = 3.00, p < 0.05, learner: F(1,6) = 11.06, p < 0.05). This 

difference did not reflect a difference in performance (Figure 5J, two-way ANOVA repeated 

measures, day in block: F(4,24) = 45.27, p < 0.01, learner: F(1,6) = 0.11, p > 0.05). 

Furthermore, endpoint-biased animals did not explore a larger area (Figure 5K, two-way 

ANOVA repeated measures, day in block: F(4,24) = 7.47, p < 0.01, learner: F(1,6) = 2.1, p > 

0.05), which would give them more experience with different positions in the space. Instead, 

the way they explored the space was more variable. Specifically, the spatial directional 
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variability early in learning (day 2 of the 5 selected days) significantly correlated with 

the degree to which animals were biased toward a direction or endpoint strategy (value 

of ρ) (Figure 5L, Spearman correlation, r = −0.88, p < 0.01). In addition, we found that 

animals that entered the target from more variable directions early in learning also showed 

a stronger bias of endpoint learning (Figure 5M, Spearman correlation r = −0.86, p < 0.05). 

When we performed the same correlation analysis on the area explored, where the largest 

difference between groups during learning was on a late day in the block (day 4), we found 

no significant correlation with endpoint learning bias (Figure 5N, Spearman correlation, r = 

−0.24, p > 0.05).

Taken together, animals that explored with more spatial directional variability and entered 

the target from variable directions, showed an endpoint bias in the probe test. This 

could indicate that the reinforcement of variable trajectories led to the learning of an 

endpoint state because the common feature between rewarded trajectories was not a specific 

movement direction but an endpoint location. Conversely, for direction learners, less variable 

trajectories could have allowed the reinforcement of a specific direction.

Exploration biases strategy in model-free reinforcement learning agents

To investigate whether reinforcement of different behavior during training is sufficient to 

bias what is learned, we trained model-free reinforcement learning agents in a similar STT, 

and confronted them with a probe test.

A point-mass agent was trained to move through a continuous space from a start position to 

a covert target area to obtain a reward (Figure 6A). The agent was trained such that, given its 

state at each timestep, an action was chosen that maximizes the sum of future rewards. The 

state consisted of the agent’s Cartesian position, velocity, and a “Go” signal, which modeled 

an internal signal to initiate movement. The learned action was a force which influenced 

the agent’s velocity. Over many trials, the agents increased their reward and decreased the 

number of timesteps to reach the target (Figure 6B), refining their trajectories from early 

variable trials to precise later trials (Figure 6C). Once agents were trained, we probed them 

for endpoint or direction learning bias by moving the start position and found that, as the 

mice, agents exhibited endpoint (Figure 6D) and direction learner (Figure 6E) behavior.

Next, we asked which model hyperparameters most strongly predict this bias. We randomly 

sampled the hyperparameters (learning rate, Go signal amplitude, exploratory action noise 

amplitude, and correlation time of exploratory action noise) for each agent. This led to a 

mix of direction learner ( ρ > 0) and endpoint learner ( ρ < 0) agents (Figure 6F). We then 

performed multivariate regression to predict ρ using the values of these hyperparameters. 

A regression model trained using all hyperparameters explained less than half of the total 

variance in ρ (Figure 6G). To quantify the unique contribution of each hyperparameter, 

we repeated the fit using models in which one regressor was left out. This revealed that 

the learning rate, Go signal amplitude, and exploratory noise amplitude all accounted for 

roughly equal and mutually independent contributions, whereas the timescale of noise 

correlations accounted for essentially none of the variance in ρ (Figure 6G). Hence, most 
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of the variance in ρ was not explained by the hyperparameters of the model and remained 

unaccounted for in these fits.

However, even agents with identical hyperparameters differed from one another in two 

respects: the randomly initialized weights (initial condition) and the random actions chosen 

at each timestep, which could affect strategy bias. We thus trained agents with identical 

hyperparameters to perform the task and found that the observed range of ρ across agents 

was similar to that across agents with heterogeneous hyperparameters (Figures 6H vs. 6F), 

confirming that these agents still showed different strategies. When we analyzed the spatial 

directional variability of their trajectories, we found that spatial directional variability during 

training correlated with endpoint-direction bias as in the mice (Figure 6H, n = 20, Spearman 

correlation, r = −0.75, p < 0.01). Together, these results provide evidence that model-free 

reinforcement learning models are sufficient to generate endpoint and direction-biased 

behavior, which is partially explained by spatial directional variability during training.

DISCUSSION

Our task shares features with previous tasks for mice51,52,56,58–61,63,72 that used SCARA 

joysticks52,59–61,72,73 or spatial reward zones,52,56,59,63 and expands on these studies in 

key aspects: (1) The perched posture in the cup allowed animals to increase workspace 

exploration. (2) Continuous movements with the joystick were not guided by motors or 

spring forces. (3) Reward contingency did not change within a block and movements refined 

without shaping. (4) Probe trials dissociated what had been learned by individual mice.

Here, we provide evidence that, in an ambiguous reaching task, spatial exploration during 

learning biases the reach strategy learned by individual animals. These observations 

are consistent with studies suggesting that exploration during training is related to 

performance.22,30,74 Our findings expand results from a human study where participants 

learned to move a virtual object to a target on a tablet and were then challenged with 

obstacles during transfer tests.75 The study found that exploration during practice correlated 

with performance on the transfer tests and allowed participants to generalize to a new 

task-space. As in our mice, the correlation was not with the overall area visited but the 

trial-to-trial pattern of search.75 Our modeling showed that purely model-free reinforcement 

learning agents trained in a simple target task show endpoint and direction learning biases as 

well. Even when we fixed the hyperparameters, agents still showed these biases, which 

also correlated with the spatial directional variability during training, suggesting that 

reinforcement of different actions during training affects what is learned.

Reinforcement of spatially variable trajectories, which entered the target from different 

directions, would have biased endpoint learner mice to assign credit to the target location 

in space and adopt a movement strategy that is more sensory feedback based (reducing 

error to a desired endpoint).43,76 In direction learners, reinforcement of less variable 

trajectories that entered the target from the same direction could have led to learning of 

feedforward movement, relying less on moment-to-moment feedback.2,6 As endpoint-biased 

mice learned the task, sensory error-based learning,77–80 which has been shown to exist 

in mice,51,72 may also have contributed to the refinement81,82 in addition to learning from 
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reinforcement. Endpoint learner animals may thus have improved error sensitivity as it has 

been reported that the movements made as corrections to sensory feedback errors can be 

a strong teaching signal that allows learning.83 Accordingly, in endpoint learner mice, the 

spatial directional variability was increased specifically in the more difficult probe start, 

suggesting that they increased variability to achieve the larger adjustment to the target.84,85

We considered that the bias of showing direction and not endpoint responses during the 

probe test could have been confounded by insensitivity to the new start positions, as detected 

through proprioception. However, mice have been shown to reliably discriminate passive 

forelimb deviations of only 2 mm,73 and our probe start positions were ~5.5 mm away 

from the original start. We are confident that animals rely on proprioception in our task 

because animals performed the task in the dark and performance was unchanged without 

whiskers. Furthermore, there were no olfactory cues that instructed where the target or start 

position was.11,86 Yet, we did see attempts by direction learners during which the movement 

direction was adjusted toward the target eventually, which could indicate that they used 

sensory feedback only once they were moving, and had learned not to rely on it for the 

initial reach direction.

Variability of the joystick trajectories during training may have other causes than 

exploration.74,87,88 Variability can be due to noise in the sensorimotor system,89 and can 

impair learning.90 The remaining variability in joystick trajectories at high performance 

could be due to noise. However, we saw an increase in variability of several movement 

aspects when animals had to discover a target at the beginning of the block, indicating that 

variability was increased to explore. Similarly, the workspace area visited only increased 

once perched mice had to search for the rewarded target.

Our results showed that spatial target reaches, particularly their spatial directional variability, 

depends on the sensorimotor cortex in mice. The sensorimotor cortex has been well 

established as a crucial structure for learning of forelimb movements in rodents,91–93 

particularly reach and grasp movements.8,11,13,94 But its role in the performance of forelimb 

movements has been challenged after a study in rats reported no effect of motor cortex 

lesions on a forelimb skill that required high temporal but less spatial precision.68 Beside 

an increase in variability of the prehension of the joystick manipulandum post-stroke, in 

line with an impairment of digit control, we found specific deficits in spatial directional 

variability and initial direction of reaches, whereas movement speed was not affected. These 

findings suggest a role for the motor cortex in spatial target reaches7,10 but not in temporal 

control of movements,68,95 as has been reported in primates.96

In summary, our findings suggest that, in a spatial forelimb task in which a target location 

is reinforced, the spatial directional exploration of the task-space during learning affects 

what is assigned with credit and what strategy is learned. This behavior in mice provides a 

research opportunity to dissect the neural circuit mechanisms underlying exploration and the 

learning of directions or endpoints in forelimb reaches.
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Limitations of the study

Head fixation allowed us to investigate reach strategies by maintaining a stable reference 

frame, but imposes constraints on the animal’s interaction with the joystick compared with 

freely moving tasks,56 which may be a disadvantage for certain research questions. All 

animals moved the joystick with their right hand, and their handedness may have affected 

their behavior. In other cohorts of mice, we have assessed handedness in a cylinder test 

and found no significant relationship between handedness and learner bias. To make the 

task equally difficult for different animals, we defined targets individually based on baseline 

reach direction.

The task design (small target size, high performance criterion, several blocks) required 

several weeks of training but ensured that skill learning was required in each block, allowing 

to measure the gradual refinement of reaches across days. This difficulty level can be 

reduced by changing various task parameters to suit other studies.

We assessed the role of the sensorimotor cortex by inducing stroke lesions because of its 

clinical relevance, but these lesions also affect fibers of passage. As our stroke lesions 

affected sensorimotor areas similarly in all animals, including cortical layers, we cannot 

draw any conclusions about the role of specific cortical areas, or layers, in the reaching 

movements.

Although we classified animals into endpoint and direction learners, we view these strategies 

as existing on a gradient, with animals biased toward one or the other strategy to different 

degrees. We restrict our conclusions to the average response, or bias, of an individual, but 

note that an animal may show direction or endpoint behavior in single attempts or even 

switch strategies within an attempt in some cases. Similarly, in humans, reaches to visible 

targets use direction-based control to quickly move close to the target and slow down to 

home in on it with endpoint-based control.76,97

Finally, our reinforcement learning models were purposefully kept simple to test whether 

model-free agents show endpoint- and direction-learning biases. More complex models and 

models using model-based reinforcement learning may be able to capture more aspects of 

the mouse behavior. And models using biomechanical actuators instead of a point mass in 

space may produce trajectories more like those of mice.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Alice C. Mosberger 

(acm2246@columbia.edu).

Materials availability—This study did not generate new unique reagents.

Headbar design for head-fixation will be made available upon request. TeenScience 

control board design is available on github. com/Columbia-University-ZMBBI-AIC/
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Teenscience and has been deposited at https://doi.org/10.5281/zenodo.10685557. SCARA 

joystick hardware design and 3D printing design of the head-fixation cup (https://

innovation.columbia.edu/technologies/CU21353) have been deposited at https://doi.org/

10.5281/zenodo.10685557. All DOIs are listed in the key resources table.

Data and code availability

• Histological raw data of coronal brain sections and processed ‘BrainJ’ output 

data will be shared by the lead contact upon request. Raw video and tracked key 

point data will be shared by the lead contact upon request. Metadata, behavior 

data, and data used to produce figures have been deposited at https://doi.org/

10.5281/zenodo.10685557.

• Original task code has been deposited at https://doi.org/10.5281/

zenodo.10685557. Code implementing reinforcement learning models has 

been deposited at https://github.com/murray-lab/RL_Reacher and https://doi.org/

10.5281/zenodo.10685557. Original data analysis code has been deposited at 

https://doi.org/10.5281/zenodo.10685557.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments and procedures were performed as approved by the Institutional Animal 

Care and Use Committee of Columbia University. Data of 21 male C57BL/6J wild type 

mice is shown. All animals were 3–4.5 months old at the beginning of behavior training and 

maximum 8 months old at the conclusion of the experiment. All animals were single-housed 

after headbar implantation surgery and during the whole period of the behavior training. 

10 animals were used to compare performance in the cup or tube (n = 5 per group). 8 

animals were used in the main target training experiment with 6 animals being trained in 

4 blocks, and 2 animals in 3 blocks. Cortex stroke lesions were performed in 5 of those 

animals. Data from an additional 3 animals is shown where we compare the performance 

before and after whisker trimming. These animals and the 8 animals used in the main target 

training experiment were also injected with retrograde adeno-associated virus (AAV) and 

implanted with cranial windows over the left forelimb motor cortex for use in a 2-photon 

imaging study. However, the main 8 animals were not used for 2-photon imaging because 

of insufficient viral expression or bone regrowth under the window and were instead used 

for behavior experiments according to 3R Animal Use Alternatives guidelines (USDA) to 

reduce the number of animals used in research. No difference in task performance was found 

between animals that were injected in different areas (Figures S6A and S6B). As only male 

mice were used, we cannot draw any conclusions on the effect of sex on the results, which is 

a limitation of the study.

METHOD DETAILS

General surgical procedures and headbar implantation—Surgeries were 

performed under aseptic conditions. All tools were autoclaved and sterile surgical gloves 

were used during all procedures. Animals were anesthetized with Isoflurane (2% in oxygen). 
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Buprenorphine SR was administered (1 mg/kg) before the surgery subcutaneously. The scalp 

was shaved using clippers and animals placed in a stereotaxic frame with cheek bars. Eye 

cream was applied and the skin cleaned with ethanol and Iodine ointment (BetadineⓇ) 

swabs. The scalp was removed using spring scissors and the skull cleaned and dried by 

applying 3% hydrogen peroxide and scraped with a scalpel blade. Dental cement (C&B 

Metabond Quick Adhesive) was applied to the exposed skull to build a cement cap and the 

metal headbar was implanted securely into the dental cement. Once the cement was dry 

the mouse was removed from the stereotaxic frame and placed into a clean cage on a heat 

mat and monitored until fully ambulating. A custom headbar design was used with small 

U-shaped ends on either side of the straight bar that allowed easy securing of the mouse’s 

head in the head-fixation holders by tightening a screw through the U-shaped ends. The 

headbar implantation was combined with the cranial window surgery for animals that had 

windows implanted.

AAV INJECTIONS

Animals were injected with AAVretro(SL1)_Syn_GCamp6f98 (1.3e13 GC/ml, Janelia) 

or AAVretro_Syn_GCamp7f99 (1.0e13 GC/ml, lot #21720; 1.2e12 GC/ml, lot #v52598, 

Addgene 104488-AAVrg) in the right dorsolateral striatum (DLS) (0.75 mm anterior, 2.55 

mm lateral, 3.2 mm ventral of bregma, 100 nL), or the right cervical spinal cord (segments 

C4-C7/8, 0.5 mm lateral of central blood vessel, −0.9 to −0.5 ventral of surface, 60–75 nL 

per segment) (Table S1). All injections were made in a stereotaxic surgery through blunt 

glass pipettes mounted to a Nanoject (Nanoject III, Drummond). Injections in the DLS 

were made through a small craniotomy at the time of the cranial window implantation 

and the craniotomy sealed using superglue (Loctite Superglue Gel) and accelerant (Zip 

Kicker). Injections in the cervical spinal cord were performed in a separate surgery one 

week before the cranial window implantation. The animal was placed in a stereotaxic frame. 

A 1.5 cm skin incision was made from the back of the skull to the shoulder blades using 

a spring scissors. The acromiotrapezius muscle was cut sagittally along the midline for a 

few millimeters and the muscle retracted. The spinalis muscles were blunt dissected to gain 

access to the cervical vertebrae and the T2 thoracic process which was clamped to stabilize 

the spinal cord. The ligaments between the laminae were removed using forceps and the 

spinal segments injected through the intra-laminar space. The acromiotrapezius muscle was 

sutured using absorbable sutures (5/0) and the skin sutured with silk (5/0) sutures.

Cranial window implantation—A 3 mm diameter biopsy puncher was used to mark 

a circle centered on 1.5 mm lateral/0.6 mm anterior of bregma over the left hemisphere. 

The circle was carefully drilled and the bone removed using forceps. The craniotomy was 

cleaned with sterile saline and a glass window (2 circular coverslips 5 mm and 3 mm radius 

glued together using optical glue (Norland Optical Adhesive 63, Lot 201) was placed over 

the craniotomy and glued to the skull using superglue and accelerator. Dexamethasone (1 

mg/kg) was administered after the surgery to prevent brain swelling.

Sensorimotor cortex photothrombotic lesion—Rose bengal (Sigma Aldrich 

(330000)) was freshly diluted in sterile saline (10 mg/mL) and kept on ice and in the dark. 

Animals were anesthetized with Isoflurane and placed in a stereotaxic frame using cheek 
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bars. The cranial window was cleaned with water and ethanol using q-tips and an opaque 

foil template with a circular hole of 3 mm diameter was placed over the cranial window. A 

cool light source (Schott KL 1600 LED) was attached to the arm of the stereotaxic frame 

and lowered on top of the cranial window. An intraperitoneal injection of 35 mg/kg Rose 

Bengal was performed and 6 min later the light source was turned on for 2–3 min at 3 Watt 

at 400 nm. After the light exposure the animal was removed from the stereotaxic frame and 

placed in a fresh cage. Rose bengal bioavailability was confirmed by inspecting the animals’ 

feces for a red tint the next day.

Stroke histology and reconstruction—Animals were anesthetized deeply with 

Isoflurane and transcardially perfused with 0.1M PBS and 4% Paraformaldehyde (PFA). 

Brains were extracted and post-fixed for 24 h in 4% PFA and then cut in coronal sections 

of 75 μm thickness on a vibratome. Sections were counterstained on slide using NeuroTrace 

640 (ThermoFisher Scientific (N21483)) according to the manufacturer’s protocol, and then 

coverslipped in Mowiol. Brain sections were imaged on a Nikon AZ100 Multizoom slide 

scanner (Zuckerman Institute’s Cellular Imaging platform) at 1 μm/pixel resolution using 

a 4x objective. Images of full brain sections from the slide scanner were registered and 

transformed into a 3D volume which was aligned to the Allen Reference Brain Atlas (ABA) 

using BrainJ.70 This maps the histological sections onto the ABA. The aligned sections were 

imported to Imaris 9 (Oxford Instruments) and the green autofluorescence, that was acquired 

at 488/515 nm excitation/emission, was used to manually delineate the lesioned area and 

render the total lesion volume. The lesion volume was mapped back to the ABA and custom 

MATLAB (R2020a, Mathworks, Inc.) code was used to calculate the proportion of the areas 

of the ABA affected by the lesions.

Video analysis of hand/joystick interactions after stroke—Videos of animals 

before and after the cortex stroke lesion were used to train a pose estimation model 

(lightning pose71) to track 2 key points: the base of the joystick, and the wrist of the 

mouse’s right hand. The joystick key point was chosen at the bottom left corner of the 

joystick spacer which had good contrast for high-fidelity tracking. We labeled 1132 frames 

(1077 frames from prior cohorts and 55 frames from experiments reported here) across 51 

sessions (44 sessions from 10 animals in prior cohorts and 7 sessions from 5 animals that 

received strokes in experiments reported here) using a custom labeler tool through amazon 

web service via Neuroscience Cloud Analysis As a Service (NeuroCAAS100), and trained a 

supervised model on Grid.ai.

Key point coordinates were analyzed by first removing all low-fidelity points with a 

likelihood of less than 0.99. Periods of active joystick movements in the x-dimension of 

the video frame were analyzed and the distance in x between the wrist and the joystick key 

points calculated for each animal and session. The pixel dimension was converted to mm 

for each video using a known distance in the frame close to the mouse’s hand (the front 

dimension of the cup). The calibrated average distance between the wrist and the joystick 

and its standard deviation was calculated for all animals and sessions. Since the wrist 

coordinate was subtracted from the joystick coordinate, positive distance values indicate that 
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the wrist was located behind the joystick (closer to the mouse’s body), and negative values 

indicate the wrist was located in front of the joystick (further away from the mouse’s body).

Joystick hardware and spatial target task controls—The SCARA (Selective 

Compliance Articulated Robot Arm) joystick setup was built from commercial Thorlabs 

parts and custommade acrylic or 3D printed pieces. Animals were head-fixed in either 

an acrylic tube (40 mm diameter, with a 45° angled opening at the front) or in a custom-

designed 3D printed cup (copyright IR CU21353), and their headbar was positioned 23 

mm above the tip of the joystick, offset slightly to the left and back for comfortable 

interaction of the right limb with the joystick. A metal screw was placed horizontally to 

the left of the joystick to be used as arm rest for the left limb. A lick spout (16 Gauge 

blunt needle) was placed in front of the mouth of the animal, connected through tubing to 

a solenoid (The Lee Company, LFVA1220310H) to dispense the reward. The solenoid also 

made an audible click sound upon opening acting as a reward signal. Animals were filmed 

from the right side at 30 Hz under infra-red light (USB Camera, 2.0 Megapixel, with a 

Xenocam 3.6mm, 1/2.7″ lens). The SCARA joystick arms were 3D printed (Formlabs Form 

2 resin) and manually assembled with shielded stainless steel ball bearings (McMaster-Carr, 

7804K119) and shafts. The arms were linked at the front through a threaded shaft to which 

a metal M2 screw was mounted using a female spacer. The head of the screw served as the 

manipulandum for the mouse to hold and move the joystick with its hand. The 3D printed 

SCARA arms were attached to custom designed metal hinges that were mounted onto the 

shaft of the DC-motors which had integrated encoders (DC-MAX26S GB KL 24V, ENX16 

EASY 1024IMP, MAXON Motors, Inc.). The motors were mounted on an acrylic platform 

which was positioned on a Thorlabs breadboard using Thorlabs parts. Dimensions of the 

SCARA arms were as follows: back arm length = 50 mm, front arm length = 35 mm, 

distance between motor shafts = 60 mm.

Static friction and effective mass at the end-effector (joystick) were measured under 

end-effector control at 5000 Hz. End-effector position and force were saved at 1000 Hz 

for offline analysis. Velocity was calculated offline using a Butterworth Filter with a cut-

off frequency of 20 Hz. For static friction, brief force pulses (500 msec) of increasing 

magnitude (0.25–10 g, 0.25 g increments) were generated at the end-effector across 8 

equally-spaced directions, with 10 repeats for each force magnitude and direction. Before 

each measurement, the end-effector was returned to the start position (within a radius of 

1 mm, as in the main experiments). Static friction for each direction was measured as 

the force magnitude at which the end-effector velocity exceeded 10 mm/s. The values for 

each direction were then averaged across the 10 repeats. For effective end-effector mass, 

the SCARA was mounted vertically so that gravity acted downwards on the components 

of the arm. A stiff spring (10 g/mm) was simulated to hold the end-effector in the start 

position. Measurements of force were taken across 8 different directions and with 5 values 

of added weight (0, 5, 13, 22, 35 g). End-effector static friction and effective mass were 

measured for 4 of the SCARA used in the experiments and for each measure and each 

SCARA ellipses were fit to the force vectors obtained from the 8 directions (example 

SCARA, Figures S6C and S6D). Across all directions and the 4 SCARA, the static friction 

was 4.75 ± 0.43 g and the effective end-effector mass was 14.43 ± 0.43 g. As expected, 
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both measures exhibited a degree of anisotropy. This was relatively low for static friction, 

as shown by the ratio of the major and minor axes of the ellipses (1.19 ± 0.05) and the 

small difference in static friction between orthogonal directions (1.20 ± 0.54 g). In contrast, 

end-effector mass exhibited higher anisotropy (major/minor axes ratio 1.88 ± 0.08), resulting 

in a larger difference between orthogonal directions (8.94 ± 0.76 g). The method used to 

measure end-effector mass (with increasing weight added to the end-effector) also allowed 

us to verify the calibration of force using linear regression (mean gains of 1.10 ± 0.02, R2 

values from 0.98 to 1.00, across directions and SCARA).

A capacitive touch sensor was connected to the bottom of the joystick shaft and to the 

cannula of the lick spout to allow detection of joystick touch and licking. The STT was 

controlled through a microcontroller board (Teensy 3.6, Arduino) and custom breakout 

board (TeenScience, github.com/Columbia-University-ZMBBI-AIC/Teenscience). All task 

designs were written using the Arduino IDE. Touch sensors were read at 40 Hz. The main 

task loop (2 kHz) recorded the encoder positions, calculated the Cartesian coordinates of 

the joystick through forward kinematics, and triggered task states depending on the joystick 

position and touch sensor inputs. Angular positions were measured from the encoders with 

a resolution of 0.09°. This gave a resolution of 0.06 ± 0.02 mm for joystick position across 

the workspace (Figure S6E). The joystick was actively moved to the start position and 

maintained at the start position by a proportional integral derivative (PID) algorithm running 

via interrupt functions and also operating at 2 kHz. Briefly, to move the joystick to the 

start position, the angular position of both encoders was compared with the start position 

(in angle space). Differential values were calculated to produce a driving pulse width 

modulation signal which was sent to the motors via the H-Bridge power amplifiers included 

on the TeenScience board. This control signal was calculated and recorded in torque space. 

To implement an inter-trial-interval (ITI, see below), a maximum force threshold was set in 

torque space resulting in joystick end-effector force thresholds between 7 and 11g (Figures 

S6F, S6M and S6N). The mice were required to remain below the force threshold for 

100 msec before starting a new attempt. The motors were disengaged and no forces were 

generated during the active exploration of the workspace by the mice. The joystick position 

and all task events were recorded via serial output commands through Bonsai (OpenEphys). 

With all the closed-loop control being performed on the Teensy microcontroller, 4 setups 

were run on a single standard computer (ASUS, Intel i7 CPU, 16 GB RAM). A total of 13 

setups were used across all experiments.

Spatial target task design—Starting on the day before behavior training began, animals 

were food restricted overnight and then given an individualized amount of chow food after 

each training session to maintain their body weight at 80% of pre-training baseline. Each 

session lasted until a maximum number of rewards were achieved. But a maximum time of 

150 min was allowed and sessions were ended earlier if the animal stopped making attempts 

or didn’t consume the reward for an extended period of time, which happened mostly during 

pre-training. The average duration of a pre-training session was 21 min, and a target training 

session 33 min. The reward delivered from the lick spout was a 10 μL drop of 7.5% sucrose 

(D-Sucrose, Fisher Scientific, BP220-1) in water.
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Pre-training: Pre-training consisted of 4 days of Phase 1, and 5 or more days of Phase 2 

(Figure 1E). For both pre-training and target training, animals could perform movements 

with the joystick in a self-paced uncued manner. The joystick was initialized at the 

beginning of the session at a fixed start position (0/65 mm from the motor axis, 1 mm 

radius). Once head-fixed, the animal could move the joystick out of the start position and 

explore the workspace without any force generated by the motors for 7.5 s per attempt. In 

Phase 1 of pre-training, a reward was given independent of the joystick position, upon initial 

touching of the joystick (with a delay of 500 msec on days 1 and 2 and 1000 msec on days 

3 and 4) and at random intervals between 5 and 15 s for continuous touching of the joystick. 

The session ended after 100 rewards were delivered.

For both Phase 2 and the target training, animals had to move the joystick out of the start 

position and explore the workspace to receive a reward. If the exploration of the 2D space 

did not lead to a reward within 7.5 s or if the mouse let go of the joystick for > 200 msec, 

the attempt ended, the motors engaged, and moved the joystick back to start position (Figure 

1C, miss). If the criteria for a reward was met, a reward was delivered and after a 750 msec 

delay the motors engaged and moved the joystick back to the start position (Figure 1C, hit). 

In Phase 2 a reward was given for moving the joystick in a forward direction initially within 

a 100° then a 60° segment for at least 4 mm. The reward was delayed randomly between 15 

and 50 msec upon reaching the required radius. The session initially ended after 50 rewards 

and as performance improved after 100 rewards. The animal progressed to target training 

if it reached a rewarded attempt ratio of > 0.5 at the 60° segment. Using the rewarded 

trajectories on the last day of Phase 2, 2 target locations were defined for each animal as 

follows (Figure 1D). The mean initial direction of all rewarded trajectories was calculated 

and a target center defined 40° to the left and right of the mean direction at 8 mm distance 

from the start position. The target radius was set at 2.75 mm. The initial hit probability was 

not different between the two targets (Figures S6O).

Target training: During any given block in the target training, one of the 2 defined targets 

was rewarded. If a joystick movement entered the target circle a reward was instantaneously 

delivered. We did not delay the reward as we found it impaired learning in our mice in 

pilot experiments. In a similar task in humans, delaying the reward even by a few 100 

msec also severely impaired learning.103 Once the joystick was returned to the start at the 

end of a rewarded (hit) or unrewarded (miss) attempt, an inter-trial-intervaI (ITI) started 

during which the joystick was continuously held at the start position by the motors until the 

animal exerted less than 7–11 g (average 8.2 g) force against the joystick in any direction 

for a minimum of 100 msec (hold period) (Figures S6F, S6M and S6N). Animals were 

not required to touch the joystick during the hold period, but analysis of the touch sensor 

showed that they mostly did (Figures S6H, S6K and S6L). At the end of the hold period 

the motors disengaged and the animal was allowed to initiate a new attempt by moving 

the joystick out of the start position (post-hold period) (Figures S6G, S6H and S6J). No 

cue was given that the hold period had ended. The first 2 sessions in each block were 

completed after 50 target hits were achieved, the next 2 after 100 hits, and the rest after 

150 hits. Each movement of the joystick out of the start position was counted as an attempt 

and task performance was calculated as the number of attempts entering the target circle 
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(hits) divided by all attempts (hit ratio). When an animal reached a 3-day average hit ratio 

of > 0.65, and had received at least 900 rewards over a minimum of 8 sessions, the target 

was changed in the next session and a new block began (performance criterion). During the 

first block, target 1 (lateral to the animal’s body axis) was rewarded in all animals. For the 

comparison between animals positioned in the cup or the tube, we also defined a termination 

criterion. If an animal was trained for 10 days on a target without ever exceeding a 3-day 

average of 0.1 hit ratio, or if an animal did not reach the performance criterion within 21 

days, the block was ended. Three animals from the tube group reached the termination 

criterion and were consecutively switched to be trained in the cup for a within animal 

comparison (Figures S1H–S1K).

Start change probe test: The probe test was performed after performance criteria was 

reached on target 1 either in block 3 or in an additional shorter block 5. For each animal, two 

new start positions were defined by rotating the original start position (0/0 mm) 40° to the 

left (left start) and right (right start) around the target center, such that the distance between 

start and target was maintained but the direction to the target was changed. In the probe test 

session, the original start position was used for the first 10 hits to allow the animal to settle 

into the session. Then the joystick returned to either the left or right new start position to 

begin the first probe trial. During the probe trial, the animal could make multiple attempts to 

hit the target but to prevent learning from reinforcement, the probe trial ended after the target 

was hit from the new start position and the joystick returned to the original start position for 

5–10 hits before the next probe trial. The order of left and right start positions chosen for 

the probe trials was randomized. If no hit was achieved in a probe trial within 5 min, the 

probe trial was ended and the joystick returned to the original start position. The probe test 

was completed when the animal achieved 200 rewards. The number of probe trials across 

all animals was 14.5 ± 3.2 for the left start and 13.5 ± 2.7 for the right start (Figure S5H). 

In all probe trials animals performed an average of 32.5 ± 16.5 attempts from the left start 

and 52.8 ± 82.4 attempts from the right start (Figure S5I), with a median number of attempts 

from the right of 16.

Additional behavior tests—Three additional animals that were trained in the STT under 

a 2-photon microscope were used to test the requirement of whiskers for task performance. 

Animals were trained on a baseline day at expert level on target 1, after the training session 

animals were briefly anesthetized using Isoflurane and all their whiskers on both sides were 

cut to a length of about 2–3 mm using scissors. Animals were placed in their home cage to 

recover from the anesthesia and tested in the task again the next day.

Analysis of joystick data—For the main target training experiment, data of 5 selected 

days per block is shown. For each block that includes the first and the last day, and 3 

equidistant days in between to span the whole block. Data was analyzed for all blocks and 

a mixed-effects repeated measures model was used to determine if there was a significant 

effect of the day in the block (p < 0.05), but not of the block itself (Table S2). Only if 

there was no significant effect of the block itself (p > 0.05), the data was then combined 

by averaging the selected days across all blocks for each animal. Blocks of target 1 took 

more days to reach the criterion than blocks of target 2 (Figure S2C). However we found 
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no significant savings effect of target repetition (Mixed-effects model, block: F(1,7) = 

4.29/4.32, p > 0.05).

ITI force analysis: End-effector forces of the joystick were calculated from the value of two 

analog signals recorded from the TeenScience board. These analog voltages were linearly 

related to the absolute torque generated at each motor. Calibration of the analog Volts to 

motor torques was performed using a single axis version of the joystick (with a single 35 

mm link). The TeenScience board was programmed to simulate a simple un-damped spring, 

and the analog Volts associated with various weights were recorded (2, 5, 10, 13 g). The 

conversion factor from Volts to motor torque was obtained from a linear regression. Joystick 

forces for each data sample were then calculated from the calibrated motor torques using 

the forward dynamics of the SCARA. The ITI was divided into 3 periods: pre-hold (Figure 

S6I), hold, and post-hold (Figure S6J). During the pre-hold and hold periods, the joystick 

was maintained inside the start circle by the motors. The pre-hold period continued until 

the force was below the 7–11 g threshold. Only pre-hold periods of 10 msec duration or 

more were analyzed and the average force was calculated across this window (Figures S6F 

and S6M). If the force on the joystick was below the threshold when the ITI began, the 

hold period was entered immediately. The hold period was defined as a 100 msec window 

during which the force on the joystick remained below the threshold. The average force 

during the hold period was also calculated and was below 1 g on average (Figures S6F and 

S6N). The post-hold period followed the 100 msec hold period, during which the motors 

were disengaged. The post-hold period ended when the animal initiated a new attempt, 

moving the joystick outside the start position. The probability of touch during the ITI was 

calculated by determining for each time sample whether the touch sensor was active or not 

and averaging across the entire period (Figures S6H, S6K and S6L).

Preprocessing of trajectories: Trajectories sampled at 500 μsec intervals were 

downsampled to 6 msec intervals for ease of handling the data.

Trajectories used for quantification: For each attempt a joystick trajectory was recorded. 

To quantify aspects of refinement of the rewarded attempt, only trajectories that entered the 

target area (hits) were analyzed. Furthermore, of those hit trajectories, only the path from 

start to the point of target entry was used in the analysis, as movements performed during 

reward consummation and voluntary returning to the start position were not considered part 

of the reinforced movement. For all metrics of variability, 50 trajectories were subsampled 

for all sessions unless there were less than 50 trajectories available. Analyses on pre- and 

post-cortex stroke lesion sessions were performed on full length trajectories of all attempts, 

to assess the overall movement differences, and because the small number of hits post-stroke 

did not allow analysis of hits only. For trajectory similarity analysis pre- and post-stroke, hit 

trajectories from start to the point of target entry were used.

Area visited: For the quantification of the area explored, the workspace (40 × 40 mm 

centered around the start) was divided into 1 × 1 mm bins and for each trajectory the 

bins visited were calculated using the MATLAB ‘histcount2’ function. Bin counts for all 

trajectories were summed up and binarized to discount dwell time per bin and multiple visits 
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to each bin. The total number of visited bins is reported as the area visited. In the experiment 

comparing animals trained in the cup or tube, the analysis was limited to the workspace in 

the forward direction of the start position 40 × 23 mm as the workspace behind the start 

position was smaller for animals trained in the tube.

Mean trajectory variability: The full trajectories were downsampled to 200 points each 

and mean trajectory calculated by averaging along the 200 points across all trajectories. The 

standard deviation was calculated as the square root of the squared shortest distance to the 

mean trajectory of all trajectories at each point, divided by the number of trajectories. The 

average standard deviation along the 200 points was used as metric for the mean trajectory 

variability.

Tortuosity: For each trajectory the total path length was calculated and divided by the 

Euclidean distance between the first and the last point of the path. For each session the 

average tortuosity was calculated.

Vector field analysis: The workspace was divided into 1 × 1 mm bins. For each trajectory 

the vector going from one bin to the next along the trajectory path was recorded and 

assigned to the corresponding bin. If the same trajectory passed through a bin more than 

once, a separate vector was recorded for each pass-through. If the trajectory stopped inside 

the bin and then continued, the combined vector was recorded. For each bin, the vectors 

for all trajectories of a session were concatenated and bins with less than 3 vectors (or 2 

vectors for pre/post stroke data) were excluded. For the remaining bins, the vector angles 

were calculated using the ‘atan2’ MATLAB function. The mean vector angle and angular 

standard deviation (bounded between the interval [0, 2]) was calculated using the CircStat 

circular statistics toolbox101 functions ‘circ_mean’ and ‘circ_std’. Mean angles and angular 

standard deviations were used to plot vector field and heatmap figures. The size of the 

heatmap dots was scaled according to the number of visits to each bin. The bin-wise angular 

standard deviation was then weighted by the number of visits to that bin and the mean of 

these weighted values was calculated as an overall metric for spatial directional variability 

within a session.

Trajectory similarity: The Fréchet distance (FD) was calculated as a scalar measure of 

similarity between trajectories. The Fréchet distance can be conceptualized as the shortest 

leash possible to allow a person to traverse one path while their dog traverses the other. Each 

can vary their speed but neither can move backwards, thus measuring similarity between 

the shape of their trajectories while disregarding differences in speed. For each animal, 

the trajectories for all selected sessions were concatenated and the discrete FD between all 

pairwise trajectories was calculated using the ‘DiscreteFrechetDist’ MATLAB function.66 

The FD is 0 for two trajectories that follow the same exact path even if their speed profile 

is different. For each animal and session the mean within session FD was calculated and 

compared across blocks. The FD of trajectories from different sessions within each block 

was also calculated and averaged across animals to show as heatmaps.

Peak speed: The speed of the downsampled (6 msec interval) trajectory was smoothed using 

a 30 msec moving average (‘smooth’ function in MATLAB). For analyzed hits, only the 
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trajectory from the start until entering the target was considered. The maximum value of the 

smoothed speed was calculated for each trajectory and averaged across all trajectories of a 

session (peak speed) and the standard deviation calculated as well (peak speed stdev).

Time spent at target: Time spent in and 1 mm around the target after the target was entered 

was measured for each hit and the median per session calculated.

Target overshoot: The target overshoot was calculated as the path length between the point 

of the trajectory entering the target and the end of the trajectory, when motors engaged 

(750 msec after entry). For each session the standard deviation of the target overshoot was 

calculated as a metric of targeting variability.

Initial vector direction: The initial trajectory vector was defined from the point at which 

the trajectory left the start circle (1 mm radius) to the point of it crossing a circle of 3.75 

mm radius from the start position center. The components of all vectors were averaged to 

calculate the mean vector per session. For each vector and the mean vector the angle was 

calculated using the ‘atan2’ MATLAB function, subtracted from the angle leading straight 

to the target center, and the absolute value reported (initial direction). The angular standard 

deviation across all vectors was calculated using the ‘circ_std’ function (see ‘Vector field 

analysis’).

Vector of target entry: The direction at which the target was entered was calculated by 

taking the vector from the point of the trajectory crossing a circle 1 mm bigger than the 

target itself to it crossing the target border. The angle of this vector was subtracted from 

the angle leading straight from the start position to the target center and the absolute was 

reported. The angular standard deviation was calculated as for the initial vector direction.

Quantification of endpoint-direction learner bias—To assess the degree to which 

animals moved toward the target or in their learned original direction from the probe start 

positions, we determined the mean initial vector direction from the original start position 

measured at 3.2 mm radius around the start center (original direction, αori). For the left and 

right probe start positions the angle of the vector pointing to the center of the target was also 

determined (target direction, αtar). Depending on the nature of an animal’s original direction, 

the difference between the αtar and αori(γ = abs(αtar – αori)) was not the same for the left and 

right probe start position, requiring different adjustments of the original direction to hit the 

target from the probe starts. To correct for this we calculated a weighting factor w for each 

probe start (wleft = γleft/(γleft + γright). For all attempts an animal made from a probe start during 

all probe trials combined, the mean initial vector direction was then determined (αprobe). 
Alphaprobe was subtracted from αori and from αtar to determine how close the reach direction 

during probe trials was to the original direction (δori = abs(αori – αprobe)) or the target direction 

(δtar = abs(αtar – αprobe)). These δs were then subtracted from each other and multiplied by the 

weighting factor, resulting in a final signed angle β for each probe start (βleft = wleft
∗(δtar – δori)). 

The sign of β indicates whether the probe reach direction was closer to the original or the 

target direction. The signed δs from both left and right probe start positions were averaged 

to calculate in a final angle ρ = (βleft + βright)/2. If ρ > 0, the attempts from the probe starts 
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were overall closer to the original direction than the target direction, which was considered 

a ‘direction’ bias. If ρ < 0, the attempts from the probe starts were overall closer to the 

target direction than the original direction, which was considered an ‘endpoint’ bias. The 

magnitude of ρ indicated the degree of the bias.

Bootstrapping and calculation of p value for endpoint-direction learner bias—
The initial direction angle was calculated for all reaches from each start position, sampled 

with replacement 10′000 times using MATLAB’s ‘bootstrp’ function, and the mean angle 

calculated using the ‘circ_mean’ function, resulting in 10′000 mean angles per start. The 

95% confidence interval (CI) of the mean angles from the original start position was 

calculated using the MATLAB function ‘bootci’. To determine whether the distribution of 

mean angles from the left or right probe start was significantly different from the distribution 

of mean angles from the original start, we calculated the ratio of the distribution of means 

that was smaller than the upper CI, or larger than the lower CI, respectively. This ratio was 

used as the p value.

Reinforcement-learning model—The reinforcement-learning model was implemented 

in custom Python code. The model consisted of an agent trained with reinforcement learning 

to map a 5-dimensional state representation onto actions that maximize reward. To create a 

more useful state representation for the agent, the first 4 components of the state vector (the 

agent’s position and velocity) were randomly projected via untrained weights onto a set of 

99 radial basis functions, and the last component of the state vector, which had amplitude 

AGo in the first timestep and was zero in subsequent timesteps, was concatenated onto this 

state representation. The radial basis functions had Gaussian kernels of width (in the spatial 

dimensions) 1/4 times the width of the arena, and (in the velocity dimensions) 1/16 times 

the width of the arena (where the timestep size relating position to velocity was Δt = 1). The 

2-dimensional action then consisted of a linear readout from this basis via trained weights, 

added together with exploratory noise ξ . The noise was correlated from one time-step to the 

next and was given by ξ (t) = 1 − 1
τξ

ξ(t − 1) + Aξ
η (t)
τξ

, where Aξ is the noise amplitude, τξ is 

the noise correlation time, and ηi(t) ∼ N(0, 1).

The action consisted of a force applied to the agent, which influenced the agent’s 

velocity according to Newtonian dynamics. Specifically, the agent’s position at each 

timestep was updated as x (t) = x (t − 1) + v (t), and the agent’s velocity was updated as 

v (t) = 0.9 v (t − 1) + 0.1 a (t). The arena boundaries were impenetrable, such that the agent 

could move along the boundary but not beyond it. The reward was −1/T  for each timestep 

that the target area was not reached, and 1 if the target area was reached. Each trial 

was completed when the target area was reached or, if the target area was not reached, 

after T = 100 timesteps. To prevent the trivial solution in which the agent produces a very 

large action to reach the target in a single timestep, the agent received a negative reward 

contribution ra = − ReLU( | a (t) | − 80).

The agent’s weights were trained using actor-critic learning with learning rate α to 

maximize the expected sum of future rewards, with temporal discount factor γ = 0.99. The 
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critic learned the value associated with each state via a separate linear readout from the 

radial basis function representation. To facilitate credit assignment over multiple timesteps, 

eligibility traces were used in both the actor and critic, with time constants τe = 10.

In cases where the hyperparameters were chosen randomly, they were sampled uniformly 

from the range log10α ∈ ( − 4, − 2), AGo ∈ (0, 10), log10Aξ ∈ ( − 1, 0.5), τξ ∈ (1, 10). In cases where 

the hyperparameters were fixed, they were set to α = 0.001, AGo = 10, Aξ = 2, and τξ = 3. Only 

agents that met a performance criterion of reaching the target in 90% of the last 25% of trials 

were used for subsequent analysis.

In the multivariate regression model, the four hyperparameters listed above were used 

as regressors in a leave-one-out ridge regression model using RidgeCV from the Python 

scikit-learn library. The model was fit on data from 80% of the trained agents and tested on 

the remaining 20%, and the results shown in Figure 6 illustrate the test performance across 

the k = 5 possible data splits.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data was analyzed using custom MATLAB code (MATLAB engine for python R2019b, 

Mathworks, Inc.) run from a Python analysis pipeline (Python 3.7.8) through a DataJoint 

database (datajoint 0.13.0)102. One-way ANOVA with repeated measures and Dunnett’s or 

Bonferroni’s correction for multiple comparison, mixed-effects repeated measures models, 

simple linear regression, Spearman correlation, and paired and unpaired t-tests were used for 

statistical analysis and performed in GraphPad Prism (9.5.1/10.1.0). Ridge regression was 

performed using RidgeCV from the Python scikit-learn library. A p value of less than 0.05 

was considered statistically significant, and p values are reported as > 0.05 (not significant, 

n.s.), < 0.05, and < 0.01. Statistical details of experiments can be found in the results section 

and figure legends, and in Table S2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice explore and refine forelimb reaches to hidden spatial targets

• The sensorimotor cortex is required for variable target reaching

• Probe trials showed that individual mice have direction or endpoint biases

• The degree of variability early in learning correlates with direction/endpoint 

bias
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Figure 1. Perched mice explore the workspace and learn reaches to covert spatial targets
(A) Schematic of head-fixed mice unimanually moving a SCARA joystick. Left: mouse 

perched in the “cup.” Right: mouse quadrupedal in a “tube.”

(B) Schematic of a top view of SCARA joystick.

(C) Schematic illustrating attempts beginning by moving out of the start position (green dot). 

Hit trajectory: attempt enters target area, a reward is dispensed (dark blue circle), after 750 

ms motors move joystick back to the start. Miss trajectory: target not entered within 7.5 s or 

joystick is let go, motors move joystick back to the start.

(D) Example trajectories from last pre-training session (hits in blue, misses in gray). Green 

dots, beginning of the trajectory leaving start position; blue and gray dots, end of hit and 

miss trajectories, respectively; dark blue circles, position at reward delivery. Targets defined 

40° to right and left of mean hit direction.
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(E) Experimental design. Pre-training phase 1: touching the joystick rewarded (4 days); 

phase 2: forward pushes rewarded. Target training: targets rewarded in consecutive blocks of 

8 days minimum.

(F) Hit ratio on last session of block 1 for animals in cup and tube.

(G) Baseline probability of entering future target from attempts made on last day of pre-

training.

(H) Example heatmaps of visits to 1 mm2 binned workspace for an animal in the cup or tube 

on first day of target training (green circle, start position; black circle, target).

(I) Total area visited on last day of pre-training and first day of target training for animals in 

cup or tube.

(J) Hit ratio on 5 equidistant days within each block from first to last day (selected days).

(K) Ratio of attempts that entered the previously rewarded target on selected days of blocks 

2–4. (F, G, and I) n = 5 animals per group. (J and K) n = 8 animals. Mean ± SD and single 

animals. *p < 0.05, **p < 0.01; ns, p > 0.05. See also Figure S1/2/6 and Table S1.
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Figure 2. Mice explore the workspace with high spatial directional variability and tortuous 
trajectories
(A) Example miss (gray) and hit (blue) trajectories of first and last days of a target 1 and 

target 2 block. Top: all attempts. Bottom: 50 subsampled hit trajectories.

(B) Total area explored by all full-length trajectories.

(C) Total area explored by 50 subsampled hit trajectories before target entry.

(D) Schematic of vector field and spatial directional variability.

(E) Example vector fields showing mean vector of all trajectories in a spatial bin (black 

arrows) and heatmap of directional variability in that bin on first and last day of a target 2 

block. Dot size represents number of visits/bin.

(F) Same data as (E), histogram of directional variability weighted by number of visits/bin 

(dashed line, mean across bins).

(G) Mean spatial directional variability.

(H) Schematics of path length and Euclidean distance from start to target (tortuosity, path 

length/distance), pairwise Fréchet distance (FD), and peak speed.

(I) Average tortuosity of hits.
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(J) Average FD between hit trajectories within and across sessions. Similarity within later 

sessions is bigger than within the first session (diagonal, black asterisks). Hits in early and 

middle sessions are dissimilar to those in the first session (top row, white asterisks).

(K) Same as diagonal in (J) showing all animals.

(L) Average peak speed of hits. Data from 5 selected days per block, averaged across all 

blocks. Green, all full-length trajectories; blue, hit trajectories from start to target entry. 

One-way ANOVA with repeated measures, Dunnett’s multiple comparisons between the first 

day and all other days, *p < 0.05. Mean ± SD and single animals (n = 8). See also Figure S2 

and Table S2.
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Figure 3. The precision of initial movement direction and targeting accuracy increases with 
learning
(A) Left: schematic of initial direction. Right: example polar histogram of initial hit 

direction on first and last day of a block (probability).

(B) Mean absolute initial direction difference to straight target direction (0°).

(C) Variability of initial direction.

(D) Left: schematic of target entry direction. Right: example polar histogram of target entry 

direction on first and last day of a block (probability).

(E) Mean absolute target entry direction difference to straight target direction (0°).

(F) Variability of target entry direction.

(G) Time spent in and closely around target after target entry until end of attempt (max. 750 

ms, dashed line).

(H) Schematic of target overshoot length.

(I) Mean target overshoot.
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(J) Overshoot variability. Hit trajectories on 5 selected days, averaged across all blocks. 

One-way ANOVA with repeated measures, Dunnett’s multiple comparisons between the first 

day and all other days, *p < 0.05, **p < 0.01. Mean ± SD and single animals (n = 8).
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Figure 4. A sensorimotor cortex stroke impairs movement direction and spatial directional 
variability
(A) Left: stroke lesion volume. Right: example histological coronal section showing lesion 

in auto-fluorescence. Scale bar, 1,000 μm.

(B) Share of lesion volume affecting ABA areas (sensorimotor cortex and striatum).

(C) Proportion of ABA areas affected by lesion.

(D) Hit ratio before and after cortex stroke.

(E) Example animal trajectories before and 2 days post-stroke.

(F) Mean peak speed before and after stroke.

(G) Variability of peak speed.

(H) Mean absolute initial direction difference to target direction (0°).

(I) Variability of initial direction.

(J) Post-stroke FD to pre-stroke trajectories.
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(K) Example vector fields showing mean direction of all trajectories per spatial bin (black 

arrows) and heatmap of the spatial directional variability in that bin, pre-stroke, 2, and 6 

days post-stroke. Dot size, number of visits/bin.

(L) Histogram of data in (K), directional variability weighted by number of visits/bin 

(dashed line, mean across bins).

(M) Mean spatial directional variability before and after stroke. Trajectories from all 

attempts used. One-way ANOVA with repeated measures, Dunnett’s multiple comparisons 

between the pre-stroke day and post-stroke days, *p < 0.05, **p < 0.01. Mean ± SD 

and single animals (n = 5). (B and C) ABA, Allen Reference Brain Atlas; M1, primary 

motor cortex; M2, secondary motor cortex; S1-fl, primary sensory cortex – forelimb; 

S1-hl, primary sensory cortex – hindlimb; S1-undef, primary sensory cortex – undefined; 

S1-“others”, primary sensory cortex – other body parts. See also Figures S3 and S4.
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Figure 5. A probe test reveals that individual animals learned to reach the target using different 
strategies
(A) Schematic of probe test showing new start positions to the left and right of original start 

position.

(B) Example endpoint-biased animal. All trajectories from new start positions and 40 

subsampled trajectories from original start position. Hits shown from the start to target 

entry.

(C) Same as (B) but for direction-biased animal.

(D) Mean initial direction vectors for animal in (B).

(E) Mean initial direction vectors for animal in (C).

(F) ρ angle for all animals. Positive ρ, mean initial direction closer to original direction 

(direction learner, green); negative ρ, mean initial direction closer to target direction 

(endpoint learner, maroon).
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(G) p values from bootstrapped distributions of mean directions from probe starts, split by 

weight (p < 0.05, significantly different from mean original direction distribution).

(H) Spatial directional variability during probe trials, split by weight.

(I) Spatial directional variability of endpoint and direction learners during target training 

(average of blocks 1 and 3, target 1).

(J) Hit ratio of endpoint and direction learners during same blocks.

(K) Total area visited by endpoint and direction learners during same blocks.

(L) Same as (I) showing variability in early sessions (selected day 2) and correlation to ρ.

(M) Variability of target entry direction of early sessions (selected day 2) and correlation to 

ρ.

(N) Same as (K) showing area visited in late sessions (selected day 4) and correlation 

to ρ. Trajectories from all attempts. Two-way ANOVA with repeated measures or t tests. 

Dunnett’s or Bonferroni’s multiple comparisons, *p < 0.05. Mean ± SD and single animals 

(n = 8 or n = 4). See also Figure S5.
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Figure 6. Exploration biases strategy in model-free reinforcement learning agents
(A) Schematic of single-layer network trained to produce forces that move a point-mass to a 

target.

(B) Reward per trial (top) and number of steps to reach target (bottom) for an example agent 

throughout training.

(C) Trajectories for same example agent, early (top) and late (bottom) in training.

(D) Trajectories and mean initial direction during probe test of example agent that produced 

endpoint learner behavior.

(E) Same as (D) but for agent that produced direction learner behavior.

(F) Distribution of ρ in an ensemble of agents trained with randomly chosen 

hyperparameters.

(G) Fraction of variance in ρ explained by a multivariate ridge regression model including 

all randomly chosen hyperparameters as regressors (full model), as well as reduction in 
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variance explained when leaving each of the hyperparameters out of the model (mean ± 

SEM; points, different cross-validation splits of the data).

(H) Weighted spatial directional variability over training of n = 20 agents trained with 

identical hyperparameters but distinct initializations correlated to ρ value.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAVretro(SL1)_Syn_GCamp6f Janelia, custom prep AAVrg (Chen et 
al.)98

Addgene Cat# 100837 plasmid; 
RRID:Addgene_100837

AAVretro_Syn_GCamp7f (Dana et al.)99 Addgene Cat#104488-AAVrg; 
RRID:Addgene_104488

Chemicals, peptides, and recombinant proteins

NeuroTrace™ 640/660 Deep-Red Fluorescent Nissl 
Stain

ThermoFisher Scientific Cat#N21483

Rose Bengal Sigma Aldrich 330000; CAS: 632-69-9

D-Sucrose Fisher Scientific BP220-1; CAS: 57-50-1

Dental Cement, C&B Metabond Quick Adhesive Parkell N/A

Super glue, Loctite Superglue Gel Loctiteproducts.com N/A

Accelerant, Zip Kicker Robart.com N/A

Optical glue, Norland Optical Adhesive 63 Norlandprod.com N/A

Deposited data

Data used to produce figures, behavior data, and 
metadata

This paper zenodo: https://doi.org/10.5281/
zenodo.10685557

Experimental models: Organisms/strains

C57BL/6J mice The Jackson Laboratory RRID:IMSR_JAX:000664

Software and algorithms

Spatial Target Task code This paper zenodo: https://doi.org/10.5281/
zenodo.10685557

Analysis code This paper zenodo: https://doi.org/10.5281/
zenodo.10685557

Reinforcement learning model code This paper zenodo: https://doi.org/10.5281/
zenodo.10685557

BrainJ (Botta et al.)70 https://github.com/lahammond/BrainJ

Imaris 9 Oxford Instruments http://www.bitplane.com/imaris/imaris; 
RRID: SCR_007370

Lightning Pose (Biderman et al.)71 https://github.com/danbider/lightning-pose

NeuroCAAS (Abe et al.)100 https://www.neurocaas.org/

Grid.ai https://www.grid.ai/ N/A

Bonsai https://open-ephys.org/bonsai https://github.com/bonsai-rx/bonsai

MATLAB Mathworks, Inc. R2019b/R2020a

CircStat for MATLAB (Berens et al.)101 https://github.com/circstat/circstat-matlab

Python Python.org 3.7.8

Scikit-learn https://scikit-learn.org/stable/ N/A

Datajoint (Yatsenko et al.)102 0.13.0
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REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Prism www.graphpad.com 9.5.1/10.1.0

Other

Cup for head-fixation 3D printing file http://innovation.columbia.edu/
technologies/CU21353

zenodo: https://doi.org/10.5281/
zenodo.10685557

SCARA joystick 3D printing files and machining 
files

This paper zenodo: https://doi.org/10.5281/
zenodo.10685557

DC-motors/encoders Maxon Motors, Inc. DC-MAX26S GB KL 24V, ENX16 EASY 
1024IMP

TeenScience, Arduino Teensy 3.6 breakout board https://github.com/Columbia-University-
ZMBBI-AIC/Teenscience

zenodo: https://doi.org/10.5281/
zenodo.10685557

Teensy 3.6 https://www.pjrc.com/store/
teensy36.html

N/A

Solenoid The Lee Company LFVA1220310H

USB Camera, ELP USB Camera 1080p Webcamerausb.com N/A

Lens, Xenocam 3.6mm, 1/2.7″ lens Amazon.com N/A
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