Table 2.
LOD accommodation | Moderate correlation () | High correlation () | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Scenario 1 | ||||||||||
Complete case | -0.34 (0.33) | -0.03 (0.10) | -0.04 (0.10) | 0.02 (0.06) | 0.73 | -0.03 (0.33) | -0.02 (0.13) | 0.01 (0.13) | 0.01 (0.10) | 0.87 |
LOD/ | 0.15 (0.22) | -0.02 (0.06) | 0.00 (0.08) | 0.01 (0.05) | 0.86 | 0.01 (0.26) | 0.00 (0.13) | -0.02 (0.11) | 0.00 (0.10) | 0.92 |
MI | -0.06 (0.18) | 0.03 (0.06) | -0.05 (0.06) | 0.00 (0.04) | 0.79 | 0.01 (0.24) | 0.00 (0.13) | 0.00 (0.11) | 0.00 (0.09) | 0.93 |
Truncated MI | 0.00 (0.18) | 0.00 (0.06) | 0.00 (0.07) | 0.00 (0.04) | 0.84 | 0.01 (0.24) | 0.00 (0.13) | 0.00 (0.11) | 0.00 (0.10) | 0.93 |
F-AFT | -0.01 (0.18) | 0.00 (0.06) | 0.00 (0.07) | 0.00 (0.04) | 0.85 | -0.01 (0.24) | 0.00 (0.13) | -0.01 (0.11) | 0.00 (0.10) | 0.93 |
Scenario 2A | ||||||||||
Complete case | -0.49 (0.29) | 0.08 (0.12) | 0.05 (0.08) | 0.54 | -0.05 (0.30) | 0.02 (0.14) | 0.03 (0.11) | 0.83 | ||
LOD/ | -0.17 (0.19) | 0.08 (0.07) | 0.05 (0.07) | 0.65 | -0.01 (0.25) | 0.03 (0.14) | 0.02 (0.11) | 0.88 | ||
MI | -0.28 (0.17) | 0.11 (0.07) | 0.02 (0.05) | 0.63 | -0.01 (0.23) | 0.03 (0.14) | 0.02 (0.10) | 0.90 | ||
Truncated MI | -0.28 (0.17) | 0.12 (0.07) | 0.03 (0.05) | 0.63 | -0.01 (0.23) | 0.04 (0.14) | 0.02 (0.11) | 0.90 | ||
F-AFT | -0.28 (0.17) | 0.11 (0.07) | 0.04 (0.06) | 0.65 | -0.02 (0.23) | 0.04 (0.14) | 0.02 (0.12) | 0.90 | ||
Scenario 2B | ||||||||||
Complete case | -0.33 (0.34) | -0.14 (0.04) | -0.20 (0.05) | 0.04 (0.07) | 0.45 | -0.01 (0.34) | -0.06 (0.04) | -0.06 (0.08) | 0.01 (0.10) | 0.82 |
LOD/ | 0.09 (0.22) | -0.11 (0.04) | -0.22 (0.03) | 0.04 (0.06) | 0.57 | 0.04 (0.29) | -0.06 (0.05) | -0.07 (0.07) | 0.01 (0.11) | 0.88 |
MI | -0.10 (0.19) | -0.15 (0.02) | -0.21 (0.03) | 0.01 (0.04) | 0.50 | 0.03 (0.25) | -0.08 (0.01) | -0.07 (0.07) | 0.01 (0.09) | 0.89 |
Truncated MI | -0.12 (0.19) | -0.15 (0.02) | -0.21 (0.03) | 0.02 (0.05) | 0.50 | 0.03 (0.26) | -0.08 (0.01) | -0.07 (0.07) | 0.01 (0.10) | 0.89 |
F-AFT | -0.12 (0.19) | -0.16 (0.02) | -0.21 (0.03) | 0.03 (0.05) | 0.52 | 0.01 (0.26) | -0.08 (0.01) | -0.07 (0.08) | 0.01 (0.10) | 0.89 |
Scenario 3 | ||||||||||
Complete case | -0.46 (0.35) | 0.00 (0.10) | -0.11 (0.10) | 0.03 (0.06) | 0.69 | -0.54 (0.44) | -0.03 (0.11) | -0.12 (0.11) | 0.04 (0.07) | 0.66 |
LOD/ | 0.16 (0.23) | -0.01 (0.06) | -0.01 (0.08) | 0.01 (0.04) | 0.85 | 0.20 (0.24) | -0.02 (0.06) | 0.01 (0.07) | 0.01 (0.04) | 0.86 |
MI | -0.14 (0.20) | 0.05 (0.07) | -0.10 (0.07) | 0.01 (0.04) | 0.75 | -0.14 (0.21) | 0.05 (0.07) | -0.10 (0.07) | 0.01 (0.04) | 0.74 |
Truncated MI | 0.03 (0.19) | -0.01 (0.06) | 0.01 (0.07) | 0.00 (0.04) | 0.83 | 0.05 (0.19) | -0.01 (0.06) | 0.02 (0.07) | 0.00 (0.04) | 0.83 |
F-AFT | 0.01 (0.20) | 0.00 (0.06) | 0.00 (0.07) | 0.00 (0.04) | 0.84 | 0.01 (0.20) | 0.00 (0.06) | 0.00 (0.07) | 0.00 (0.04) | 0.84 |
Scenario 4 | ||||||||||
Complete case | -0.35 (0.34) | -0.02 (0.11) | -0.06 (0.10) | 0.03 (0.06) | 0.72 | -0.45 (0.42) | -0.05 (0.11) | -0.08 (0.10) | 0.04 (0.07) | 0.69 |
LOD/ | 0.18 (0.22) | -0.02 (0.06) | 0.01 (0.08) | 0.01 (0.04) | 0.86 | 0.20 (0.22) | -0.03 (0.06) | 0.02 (0.08) | 0.01 (0.04) | 0.87 |
MI | -0.08 (0.18) | 0.03 (0.07) | -0.07 (0.07) | 0.00 (0.04) | 0.78 | -0.08 (0.18) | 0.04 (0.07) | -0.07 (0.06) | 0.00 (0.04) | 0.76 |
Truncated MI | 0.02 (0.17) | 0.00 (0.07) | 0.01 (0.07) | 0.00 (0.04) | 0.84 | 0.03 (0.18) | -0.01 (0.06) | 0.02 (0.07) | 0.00 (0.04) | 0.84 |
F-AFT | 0.00 (0.18) | 0.00 (0.07) | 0.00 (0.07) | 0.00 (0.04) | 0.85 | 0.00 (0.18) | 0.00 (0.07) | 0.00 (0.07) | 0.00 (0.04) | 0.85 |
Bias (SE) was reported for the total effect () and exposures in group 1 ( and ). All other results are provided in Table S2. All comparisons were made to the parameters with full datasets without LOD. was calculated by regression from each LOD accommodation on with the full dataset. In Scenario 2A, was not estimated because was not included in the analysis
Abbreviations: Imputation by LOD/ (LOD/), MI Conventional multiple imputation, Truncated MI Truncated multiple imputation, F-AFT Imputation by estimates using the AFT model