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Abstract 
FcRn, a receptor originally known for its involvement in IgG and albumin transcytosis and recycling, is also important in the establishment of 
the innate and adaptive immune response. Dysregulation of the immune response has been associated with variations in FcRn expression, 
as observed in cancer. Recently, a link between autophagy and FcRn expression has been demonstrated. Knowing that autophagy is strongly 
involved in the development of reperfusion injury in kidney transplantation and that albuminemia is transiently decreased in the first 2 weeks 
after transplantation, we investigated variations in FcRn expression after kidney transplantation. We monitored FcRn levels by flow cytometry 
in leukocytes from 25 renal transplant patients and considered parameters such as albumin concentrations, estimated glomerular filtration rate, 
serum creatinine, serum IgG levels, and ischaemia/reperfusion time. Two groups of patients could be distinguished according to their increased 
or non-increased FcRn expression levels between days 2 and 6 (d2–d6) post-transplantation. Leukocyte FcRn expression at d2–d6 was correl-
ated with albumin concentrations at d0–d2. These results suggest that albumin concentrations at d0–d2 influence FcRn expression at d2–d6, 
raising new questions about the mechanisms underlying these original observations.
Keywords: FcRn, albumin, kidney transplantation, flow cytometry

Introduction
FcRn, the neonatal Fc receptor for immunoglobulin G (IgG), 
was initially studied for its role in the feto-maternal transmis-
sion of IgG [1]. It is composed of an alpha heavy chain non-
covalently associated with beta-2-microglobulin, and belongs 
to the major histocompatibility complex class I family [2–4]. 
FcRn is ubiquitously expressed in the organism throughout 
life and is mainly located in intracellular endosomes in a 
wide number of cell types including epithelial, endothelial, or 
haematopoietic cells [5]. Its expression is regulated by DNA 
methylation of its FCGRT gene [6], FCGRT polymorphisms 
[7], miRNA [8], and transcription factors [9–11]. The latter 
are responsible for tumour necrosis factor (TNF)-α-induced 
FcRn upregulation via the NF-κB pathway, or interferon 
(IFN)-γ-dependent FcRn downregulation via JAK/STAT1 
signalling [9, 10].

IgG and albumin, the most abundant proteins in the cir-
culation, are the two major ligands of FcRn [12, 13]. FcRn 
is involved in their recycling and extension of their lifespan 
as well as their transcytosis across cellular barriers and their 
biodistribution in the organism [5, 14]. These processes 

require FcRn binding to its ligands in a pH-dependent manner, 
i.e. with high affinity at acidic pH (~6.5) and no binding at 
physiological pH [15]. FcRn participates in physiological 
processes such as feto-maternal passive transfer of immunity 
[1, 16], IgG transcytosis between the intestinal lumen and 
mucosa-associated lymphoid tissue [17]. FcRn is also in-
volved in renal reabsorption by proximal tubule epithelial 
cells of albumin and IgG which pass through the glomerular 
filter by transcytosis [18–21]. Finally, FcRn regulates innate 
and adaptive immunity through the processing and presenta-
tion of immune complexes [22, 23].

In pathology, the involvement of FcRn in cancer is now well 
recognized [24–26]. Its expression is downregulated in cancer 
cells as well as in the tumour microenvironment. Low level of 
FcRn has been associated with poor patient survival in non-
small cell lung cancer [27]. FcRn has also been implicated in 
autoimmunity [28], although many studies are still currently 
ongoing to clarify how it contributes to the dysregulation of 
the immune response [29–31]. We have recently described 
variations in FcRn expression levels within leukocytes in pa-
tients with systemic lupus erythematosus [32].
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Knowledge of the regulatory parameters of FcRn expression 
is increasing rapidly. Recently, a link between autophagy and 
FcRn expression has been demonstrated [33, 34]. Knowing 
that this phenomenon is strongly involved in the develop-
ment of reperfusion injury in kidney transplantation [35–38], 
and also that albuminemia transiently decreases in the first 2 
weeks after transplantation [39], we decided to evaluate vari-
ations in FcRn expression after kidney transplantation. To in-
vestigate this point, we monitored a cohort of renal transplant 
patients for FcRn expression levels in leukocytes during the 
first 2 weeks after transplantation, and considering param-
eters such as albumin concentrations, estimated glomerular 
filtration rate (eGFR), serum creatinine, serum IgG levels, and 
ischaemia/reperfusion time.

Materials and methods
Blood collection
Venous blood collected on EDTA (ethylenediaminetetraacetic 
acid) was obtained from 20 healthy donors from the 
‘Etablissements Français du Sang’ (agreement N°CA-
REC-2019-188). Blood samples from renal transplant pa-
tients at the Tours Regional University Hospital Center 
were obtained from routine biological analyses (lymphocyte 
phenotyping or blood cell count), when a biological ana-
lysis was prescribed. Clinical and biological data of patients 
were included in the ASTRE database agreement number: 
DR-2012-518.

Flow cytometry assay
Three hundred microlitres of blood were washed twice with 
phosphate-buffered saline containing 2 mM EDTA and 
2% of foetal bovine serum by centrifugation. One hundred 
microlitres of cell pellet were stained with an anti-CD45 
(Krome Orange, Beckman Coulter), 15 min on ice. Then, 
2 mL of VersaLyse (Beckman Coulter) was added and in-
cubated for 15 min at room temperature. After centrifuga-
tion, two fixation steps were performed: one with 150 µL 
paraformaldehyde (PFA 4%), followed by a second one with 
150 µL of FlowX FoxP3/Transcription Factor Fixation (R&D 
System). FcRn staining was carried out with 50 µL of anti-
FcRn (clone #937508, FITC, R&D System) diluted 1:100 in 
permeabilization buffer (Perm Buffer, R&D System) or 50 µL 
isotype control in the same buffer, 30 min on ice in the dark.

Acquisition was performed using a Navios cytometer 
(Beckman Coulter) and the data were analysed with Kaluza 
version 2.1 software (Beckman Coulter). FcRn levels are ex-
pressed as the ratio of anti-FcRn to isotype mean fluorescence 
intensity (MFI).

Measurement of serum creatinine, albumin, and 
IgG
Serum creatinine, albumin, and IgG were determined on 
serum samples using the COBAS 6000 analyser® (Roche 
Diagnostics, Meylan, France). The estimated glomerular fil-
tration rate was determined using the CKD-EPI formula.

Statistical methods
Statistical analysis was performed with GraphPad PrismTM 
9.0 software. Comparisons between two groups of pa-
tients (increased FcRn expression vs. non-increased FcRn 
expression patients) were carried out with non-parametric 

Mann–Whitney test without matching due to the small 
number of patients in both groups. Comparisons of FcRn ex-
pression between the two groups of patients (increased FcRn 
expression vs. non-increased FcRn expression patients) were 
carried out with a repeated-measure ANOVA. Multiple com-
parison tests [Tukey’s HSD (honestly significant difference) 
test] were performed to evaluate the differences in FcRn ex-
pression between the two groups during the follow-up of the 
study. Correlations between FcRn expression and biological 
data were made with a Spearman’s test and linear regression. 
The relationship between slow graft function and FcRn ex-
pression was studied with a Fisher’s exact test due to the small 
number of patients. Comparison of serum IgG levels before 
and 1 month after transplantation in the two groups was per-
formed using a paired t-test. Differences in IgG serum level 
decrease were compared between the two groups with un-
paired t-test. Comparisons of the percentage of IgG decrease 
were made using the non-parametric Mann–Whitney test 
without adjustment due to non-normality of the data in the 
two groups.

Guidelines
The study was conducted in accordance with the Declaration 
of Helsinki and approved by the Ethics Committee of the 
Regional University Hospital Center of Tours (ASTRE data-
base, agreement number: DR-2012-518).

Informed consent statement: Informed consent was 
obtained from all subjects included in the study.

Results
Measurement of FcRn expression in healthy 
donors
Since FcRn is mainly located in the endosomes, the study 
of its expression in leukocytes by flow cytometry requires 
an intracellular staining. We have previously used an anti-
human FcRn monoclonal antibody on human leukocytes 
and on monocytes/macrophages from healthy donors by 
flow cytometry [32]. We have validated its specificity with 
another anti-FcRn antibody by Western blot analysis [34]. 
Non-specific labelling was evaluated with an isotype con-
trol antibody included in each flow cytometry experiment. 
We first established the reference values for FcRn expression 
in 20 healthy donors from the ‘Etablissements Français du 
Sang’. It was assessed in the total leukocyte population ac-
cording to the gating strategy shown in Fig. 1. Results are 
presented as the MFI ratio between anti-FcRn and isotype 
control staining, a ratio between 1.43 and 2.71 are con-
sidered as normal.

Monitoring of FcRn expression in kidney transplant 
patients
FcRn expression was then longitudinally analysed in 25 
kidney transplant patient leukocytes. The clinical data of pa-
tients are shown in Table 1. FcRn expression was monitored 
pre- and post-transplantation over a period of 70 days, with 
an intensive evaluation during the first week (Fig. 2). During 
the post-transplantation period, leukocyte FcRn expression 
was evaluated sometimes up to 4 times to assess the imme-
diate consequences of ischaemia-reperfusion, at the time of 
the onset of the first rejection phenomena and during the 
period when rejection may occur.
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FcRn monitoring allowed us to identify some patients with 
elevated leukocyte FcRn levels between days 2 and 6 post-
transplantation compared to normal levels, leading to the 
description of two groups of patients (Fig. 2A and B). Nine 
patients (36%) in the ‘increased FcRn expression’ group in red 
had a significantly higher leukocyte FcRn ratio at d2-d6 (Fig. 
2A) compared to the 16 patients (64%) in the ‘non-increased 

expression’ group in blue (P < 0.0001) (Fig. 2B). In the fol-
lowing results, the former group (red) will be referred to as 
‘increased expression’ and the latter (blue) as ‘non-increased 
expression’. This also allowed us to define four different time 
periods: before transplantation (d-1), between days 0 and 2 
post-transplantation (d0–d2), between days 2 and 6 post-
transplantation (d2–d6), and after day 6 post-transplantation 
(>d6). Leukocyte FcRn expression was measured at least once 
during each period. No difference was noticed between the 
two groups at d-1, d0–d2, and >d6. Variations in FcRn expres-
sion within each group were evaluated during the follow-up 
of the study. In the ‘non-increased expression’ group, FcRn 
expression decreased significantly at d2–d6 compared to d-1 
(P = 0.0035) and to d0–d2 (P = 0.0032). In the ‘increased ex-
pression’ group, FcRn expression increased at d2–d6 com-
pared to >d6 (P = 0.034).

Albumin and FcRn expression
To further analyse the parameters associated with the differ-
ential leukocyte FcRn expression at d2–d6, we compared al-
bumin concentrations between the two groups, at d-1, d0–d2, 
d2–d6, and >d6 (Table 2).

While no difference was depicted before kidney trans-
plantation, a significant decrease in albumin concentrations 
was noticed in the ‘non-increased FcRn expression’ group 
compared to the ‘increased FcRn expression’ group of pa-
tients after transplantation (P = 0.0032) (Fig. 3A). We then 

Figure 1. Analysis of FcRn expression in leukocyte populations by flow cytometry. (A) Gating strategy. a: Gating on singlets from FSC/SSC gate. b: 
Leukocyte gating based on structure (SSC) and CD45 expression. c: Anti-FcRn antibody staining in total leukocyte population. (B) Representative 
fluorescence intensity of anti-FcRn antibody (dark grey) and isotype control (light grey) for a healthy donor.

Table 1. Clinical data of kidney transplant patients

Patients n = 25

Age (mean ± standard deviation) 53 ± 15
Men 17 (68%)
Women 8 (32%)
Living donors 12 (48%)
Living related donors (brother, sister, children, and father) 6 (24%)
Living unrelated donors 6 (24%)
Non-living donors 13 (52%)
Anti-thymocyte globulin treatment 8 (32%)
Basiliximab induction 17 (68%)
Rank of kidney transplant for each patient
  First transplant 19 (76%)
  Second transplant 5 (20%)
  Third transplant 1 (4%)
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Figure 2. Monitoring of leukocyte FcRn expression in renal transplant patients. Data are expressed as MFI ratio between FcRn staining and isotype 
control. Each line represents one patient. Horizontal dotted line and grey area represent mean and range of normal FcRn values (1.43–2.71) obtained 
from 20 healthy donors. FcRn expression in the ‘increased FcRn expression’ group of patients (in red, n = 9, A) and ‘non-increased FcRn expression’ (in 
blue, n = 16, B) during the follow-up of the study. (C) Monitoring of FcRn expression in the ‘non-increased FcRn expression’ (blue) or ‘increased FcRn 
expression’ (red) group of patients at d-1, d0–d2, d2–d6, >d6. Results are presented as mean ± SD. P-values were calculated with repeated measures 
ANOVA between groups or with Tukey’s HSD test within each group.
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compared albumin concentrations between the two groups 
during the three post-transplantation periods (d0–d2, d2–d6, 
and >d6). A significant decrease in albumin concentration 
was observed in the d0–d2 period between the ‘non-increased 
FcRn expression’ and the ‘increased FcRn expression’ groups 
of patients (P = 0.025) (Fig. 3B), whereas no significant differ-
ence was observed at d2–d6 and >d6 periods.

Albumin concentration differences at d0–d2 are likely re-
lated to leukocyte FcRn expression differences at d2–d6, as 
suggested by a correlation (P = 0.02) between the two param-
eters in the whole cohort (Fig. 4) and confirmed by linear 
regression (P = 0.0030).

IgG and FcRn expression
IgG concentrations were not available during the first week 
after transplantation but were analysed 1 month after 
transplantation in comparison to pre-transplant values. A 
significant decrease in IgG concentrations (27.9%) was ob-
served in the entire cohort (−2.97 g/L, P < 0.0001), found 
both in the ‘non-increased FcRn expression’ group (30.6%, 
P < 0.0001) and in the ‘increased FcRn expression’ group 
(22.8%, P = 0.0036) (Fig. 5). The difference of decrease 
between the two groups is not significant (−3.4 g/L vs. 
−2.1 g/L, P = 0.06).

Graft function recovery, creatinine rate, eGFR, and 
FcRn expression
Only one patient had severe delayed graft function requiring 
dialysis in the first week after transplantation. We analysed 
the slow recovery of graft function, defined as creatinine 
above 250 µmol/L on day 5 after transplantation. No differ-
ences were observed between the groups (‘increased FcRn ex-
pression’: 2/9 (22%), ‘non-increased FcRn expression’: 5/16 
(31%); P = 1).

We then evaluated whether creatinine and eGFR, which 
are two biological parameters used to appreciate transplant 
efficiency, were associated with FcRn variations. Creatinine 
concentrations were analysed from d1 to d7 (Fig. 6A) post-
transplant and eGFR at 1, 2, and 3 months post-transplant 
(Fig. 6B). There was no difference between the two groups 
in creatinine concentration at 1 week post-transplant or in 
eGFR at 3 months post-transplant (Fig. 6).

Warm and cold ischaemia time, donor type, 
immunosuppressive regimen, and FcRn expression
We evaluated warm and cold ischaemia time in ‘in-
creased FcRn expression’ and ‘non-increased FcRn expres-
sion’ patients. These parameters are known to influence 

ischaemia-reperfusion injury, which in turn can activate 
autophagy. Warm and cold ischaemia times were compared 
between the two groups. A statistical trend in cold ischaemia 
time (P = 0.09) was observed in ‘increased FcRn expression’ 
patients compared to ‘non-increased FcRn expression’ pa-
tients, with a shorter time in the former (Fig. 7A). No dif-
ference in warm ischaemia time (P = 0.65) was observed 
between the groups after transplantation (Fig. 7B).

We also assessed FcRn expression in living and non-living 
donors at each of the previously described time points (d-1, 
d0–d2, d2–d6, and >d6). FcRn expression was compared be-
tween the two groups (Fig. 7C). No difference in FcRn expres-
sion was observed at any time after transplantation. Similarly, 
the immunosuppressive regimens given to the patients had no 
effect on FcRn expression during the post-transplant period 
(Fig. 7D).

Discussion
Although kidney transplantation represents a complex situ-
ation combining ischaemia-reperfusion injury, graft immune 
recognition and renal dysfunction, it is an excellent scenario 
to unmask a possible FcRn dysregulation. We are currently 
identifying a subgroup of patients with increased FcRn ex-
pression between d2 and d6 post-transplant. Albumin first 
attracted our attention as it is one of the two FcRn ligands, 
along with IgG. We observed a significant positive correl-
ation between leukocyte FcRn expression at d2–d6 and al-
bumin concentrations at d0–d2 with a statistical trend at 
d2–d6 and >d6. A transient decrease in albumin concentra-
tion has been observed in the first weeks after transplant-
ation [39] and has been associated with acute inflammation 
[40]. Although TNF-α upregulates FcRn [9, 10], IFN-γ is 
known to downregulate it [9, 10]. A common inflammatory 
pathway could contribute to lowering both FcRn expression 
and consequently albumin concentrations. However, the re-
verse kinetics (albumin decreases on d0–d2 before FcRn in-
creases on d2–d6) do not support such a common origin. 
Furthermore, no correlation was found between FcRn ex-
pression and C-reactive protein concentrations (data not 
shown), making this hypothesis rather unlikely. As albumin 
is a ligand of FcRn, we can hypothesize that a regulatory 
loop of FcRn levels could be exerted by its ligand, i.e. the 
higher albumin rates at d0–d2 would increase FcRn levels 
during the following period d2–d6. This would suggest that 
in response to variations in albumin concentration induced 
by kidney transplantation, albumin could regulate FcRn 
levels, which in turn could help albumin reabsorption in 

Table 2. Median albumin concentrations in ‘increased FcRn expression’ and in ‘non-increased FcRn expression’ groups during the monitoring of patients

Increased FcRn expression Non-increased FcRn expression P*

n Albumin (g/L) IQR n Albumin (g/L) IQR

Before kidney transplantation (d-1) 9 43.0 4.5 16 43.0 2.8 0.85
d0–d2 9 39.0 2.7 16 36.4 5.1 0.025
d2–d6 9 35.5 5.1 16 34.1 4.8 0.14
>d6 9 41.0 9.5 16 36.5 7.5 0.13

*Significant P-value are in bold (Mann–Whitney test).
n: number of values, IQR: interquartile range.
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the proximal tubules. This loop could be either direct or 
indirect via other molecules such as cytokines or albumin-
bound proteins that could influence FcRn levels. Further in 
vitro experiments will be performed in order to validate our 
hypothesis. However, it must be assumed that the variations 
measured in blood cells are also observed in podocytes or 
renal tubules.

The role of FcRn in albumin and IgG handling has been 
studied at the renal level in mice with podocytes knock-out 
for FcRn [41]. An increase in IgG intraglomerular accumu-
lation was observed, but no change in albumin accumulation 
was detected, suggesting that the FcRn-mediated trafficking 
of these proteins is different [41]. This result may be explained 
by the fact that albumin binds to other molecules such as the 

Figure 3. Albumin concentrations in the ‘increased FcRn expression’ (red) and the ‘non-increased FcRn expression’ (blue) groups of patients. (A) Before 
or after kidney transplantation and (B) detailed at d0–d2, d2–d6, >d6 in the serum of 25 patients (mean ± SD). The horizontal grey zone represents the 
range of normal albumin values [35–45 g/L]. P-values (0.0032 and 0.025) were calculated with a Mann–Whitney test.
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cubilin–megalin complex in clathrin-coated vesicles during 
the endocytosis phase thus being rescued from degradation 
[42, 43]. Interestingly, megalin has recently been described 
to orchestrate FcRn endocytosis and intracellular trafficking 
[44]. After transplantation, IgG concentrations decrease 
during the first 2 weeks and then remain slightly decreased 
[39]. In agreement, we found that IgG concentrations were 
significantly lower 1 month after transplantation compared 
to the period before transplantation. A marked decrease in 
IgG levels was observed in both groups but appeared more 
important in patients who did not display an increased ex-
pression of FcRn. Although the difference in IgG reduction 
between the two groups was not significant, it suggests that 
high FcRn expression in leukocytes may well reflect FcRn 
expression in the endothelium and recycling of IgG. Further 
studies should provide information on IgG variations during 
the first days after transplantation according to the expres-
sion of FcRn.

Creatinine and eGFR are two markers for estimating 
renal function, the former in the first days after transplant-
ation (acute variations) and the latter more than 1 month 
after transplantation. In this study, we followed the evolu-
tion of these parameters in relation to FcRn levels in the 
two groups of patients. No difference in creatinine levels 
(d1–d7) or in eGFR was observed between the two groups. 
We also evaluated the effect of immunosuppressive therapy, 
the induction therapy (basiliximab or thymoglobulin), the 
origin of the transplant (living donor or non-living donor) 
and sex or age of the recipients. There were no differences 
between the groups of patients. We evaluated delayed graft 
function and slow graft function in our cohort. There was 
no association between these two parameters and FcRn 
expression. However, the influence of these parameters 
cannot be completely excluded due to the small number 
of patients.

Recently, Uchida et al. [33] showed that FcRn colocalizes 
with ATG7 (autophagy-related 7), an autophagosome 
protein, in renal tubular epithelial cells. They showed 
that suppression of autophagy in the tubules impairs 
FcRn transport, thereby inhibiting albumin transcytosis. 
Autophagy has also been shown to be induced by hypoxia 
in proximal tubular cell culture or during renal ischaemia/
reperfusion injury [36]. It also attenuates inflammation by 
downregulating NRLP3 (nucleotide-binding and oligo-
merisation domain-like receptors) cytokine production 
[45]. These constitutive or induced mechanisms play a key 
role in maintaining podocyte integrity [46]. Interestingly, 
our group has shown that FcRn expression is regulated 
by autophagy during macrophage differentiation [34]. 
Therefore, we compared cold and warm ischaemia time, 
which could activate autophagy and modify FcRn expres-
sion according to our recent findings. A statistical trend 
of lower cold ischaemia time was observed in ‘increased 
FcRn expression’ patients compared to ‘non-increased 
FcRn expression’ patients, suggesting that this parameter 
could modify FcRn expression. However, a larger number 

Figure 4. Correlation between FcRn expression at d2–d6 and albumin 
concentrations at d0–d2 in the whole cohort (n = 25).

Figure 5. IgG serum levels at d-1 (pre-transplant) and M1 (1 month post-transplant) (A) in the whole cohort, (B) in the ‘non-increased FcRn expression’ 
(blue), and (C) in the ‘increased FcRn expression’ (red) groups of patients. P-values (<0.0001 and 0.0036) were calculated with paired t-test.



314 Boulard et al.

of patients need to be included to confirm this hypothesis. 
Taken together, these data suggest a link between FcRn ex-
pression, ischaemia/reperfusion, and autophagy. We could 
hypothesize that ischaemia/reperfusion during transplant-
ation induces autophagy, which could modulate FcRn ex-
pression and albuminemia.

In conclusion, we found that albumin concentrations meas-
ured early after transplantation at d0–d2 influence FcRn 

expression at d2–d6, raising new questions about the mech-
anisms underlying these original observations.
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