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Abstract
Objective. Deep learning reconstruction (DLR) algorithms exhibit object-dependent resolution and
noise performance. Thus, traditional geometric CTphantoms cannot fully capture the clinical
imaging performance ofDLR. This study uses a patient-derived 3D-printed PixelPrint lung phantom
to evaluate a commercial DLR algorithm across awide range of radiation dose levels.Method. The lung
phantomused in this study is based on a patient chest CT scan containing ground glass opacities and
was fabricated using PixelPrint 3D-printing technology. The phantomwas placed inside two different
size extension rings tomimic a small- andmedium-sized patient andwas scanned on a conventional
CT scanner at exposures between 0.5 and 20mGy. Each scanwas reconstructed using filtered back
projection (FBP), iterative reconstruction, andDLR atfive levels of denoising. Image noise, contrast to
noise ratio (CNR), rootmean squared error, structural similarity index (SSIM), andmulti-scale SSIM
(MSSSIM)were calculated for each image.Results.DLRdemonstrated superior performance
compared to FBP and iterative reconstruction for allmeasuredmetrics in both phantom sizes, with
better performance formore aggressive denoising levels. DLRwas estimated to reduce dose by 25%–

83% in the small phantom and by 50%–83% in themediumphantomwithout decreasing image
quality for any of themetricsmeasured in this study. These dose reduction estimates aremore
conservative compared to the estimates obtainedwhen only considering noise andCNR.Conclusion.
DLRhas the capability of producing diagnostic image quality at up to 83% lower radiation dose, which
can improve the clinical utility and viability of lower doseCT scans. Furthermore, the PixelPrint
phantomused in this study offers an improved testing environmentwithmore realistic tissue
structures compared to traditional CT phantoms, allowing for structure-based image quality
evaluation beyond noise and contrast-based assessments.

1. Introduction

Over the last few years, there has been substantial interest in the development and clinical use of deep learning
reconstruction (DLR) algorithms for improving computed tomography (CT) image quality and reducing
radiation dose (Koetzier et al 2023). For decades, filtered back projection (FBP)was the dominant
reconstruction algorithmdue to its numerical stability and fast computation time (Willemink andNoël 2019).
However, at lower doses, FBP image quality drops and image noise increases dramatically (Koetzier et al 2023).
With continued interest in dose reduction (Brenner andHall 2007), especially in pediatric populations
(Miglioretti et al 2013,Nagayama et al 2021, Sun et al 2021, Son et al 2022), clinical CT imaging has begun
moving away fromFBP toward newer solutions such as iterative reconstruction (IR)which preserves image
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quality at lower doses. Various forms of IR have demonstrated significant potential tominimize noise and thus
to reduce dose compared to FBP (Willemink et al 2013). However, limitations in IR including unnatural noise
texture (Willemink et al 2013, PhilipsHealthcare 2024) and extended reconstruction time (Willemink et al 2013,
Koetzier et al 2023) have resulted in a push for further innovation in reconstruction solutions.

DLR forCThas emerged as a novel solution for improving image quality and reconstruction timewhile
preserving FBP-like noise textures. These algorithms utilize artificial neural networks such as convolutional
neural networks (CNNs) (Kang et al 2017, Chen et al 2017) or generative adversarial networks (GANs)
(Wolterink et al 2017)which are trained to produce optimized output images from lower dose input data. DLR
frameworks can be broadly categorized as either indirect, where a deep learning network is used alongside FBP
or IR, or direct, inwhich the network directly converts sinogramdata to image data without FBP or IR (Koetzier
et al 2023).Many different implementations ofDLRhave been proposed in academic research (Wu et al 2017,
Yang et al 2018, Bao et al 2019) aswell as introduced clinically byCT vendors (Hsieh et al 2019, Boedeker 2021,
PhilipsHealthcare 2024).

With the rise of commercially availableDLR algorithms, there has been an increase in studies evaluating
DLR.Multiple patient and phantom studies have demonstrated thatDLR can improve image quality at low
doses through enhanced lesion detectability and reduced noise (Akagi et al 2019, Nakamura et al 2019,
Nagayama et al 2021, Sun et al 2021, Greffier et al 2022a,Miyata et al 2022, Park et al 2022, Greffier et al 2022b,
Mikayama et al 2022, Son et al 2022, Greffier et al 2023a). These studies utilize quantitativemetrics such as
signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise, detectability index (d’), and noise power
spectrum (NPS). In addition, qualitative scores for various aspects of subjective image quality have been
obtained via reader studies by experienced radiologists. The literature has shown that various implementations
ofDLR can reduce dose by about 30%–71% compared to hybrid iterative reconstruction (HIR)methodswhile
preserving diagnostic image quality (Koetzier et al 2023).

While there aremany promising results regardingDLRperformance, there are several limitations to current
studies. First, due to the nonlinear nature ofDLR, images reconstructedwithDLRdemonstrate object-
dependent resolution and noise (Li et al 2022, Solomon et al 2020,Higaki et al 2020, Greffier et al 2023b).
Traditional CT phantoms used inDLR evaluation studies are often composed of simple geometric shapes which
are not designed to represent realistic tissue structures (Greffier et al 2022a, 2022b,Mikayama et al 2022). As a
result, general image qualitymetrics such as noise andCNRmeasured on traditional CT phantoms cannot fully
capture the clinical imaging performance of DLR (Samei et al 2019). Second, clinical imaging studies using
patient data are often limited by sample size and restricted by radiation dose exposure concerns (Akagi et al 2019,
Greffier et al 2023a, Lyu et al 2023), which limit the acceptable dose range as well as the number of times a patient
can be scanned. Furthermore, patient scans do not have reliable ground truth images for comparison and thus
cannot be used to assess the structural accuracy of a reconstructed image. A clinical scenario inwhich structural
accuracy is important is lungCT imagingwith ground glass opacity (GGO)findings. Subtle differences in shape
(round versus polygonal, with orwithout radial growths) and texture (presence or absence of solid densities) in a
GGOcan lead to differences in image interpretation and clinical decisionmaking (Infante et al 2009). Because of
this, the accurate reconstruction of such structures and details is critical to ensuring the highest quality of patient
care. Previous studies have investigated the general image quality and detectability of reconstructed structures
but have not directly addressed the question of reconstruction accuracy of complex structures and textures such
as those found inGGOs. Image reconstruction for clinical scenarios such as this require evaluation beyondwhat
is currently available with phantomand patient studies.

This study proposes to use a patient-derived PixelPrint (Mei et al 2022a, Shapira et al 2023, 2022)phantom as
a novel solution to address the current limitations in the evaluation ofDLRperformance. PixelPrint is a
technologywhich produces 3D-printed patient-based phantomswhich demonstrate highly detailed tissue
structures, realistic textures, and accurate attenuation profiles. PixelPrint software converts 3DCT images into
geometric code (g-code) instructions for fused filament fabrication (FFF) 3Dprinters by taking advantage of the
partial volume effect to produce desiredHounsfieldUnit (HU) values (Shapira et al 2022). Previous studies have
demonstrated a high degree ofHU and geometric similarity between scans of PixelPrint phantoms and their
reference patient scans (Mei et al 2022b). Furthermore, reader studies demonstrated that therewas no clinically
significant difference in image quality assessment between reading a phantom lung image and reading a patient
lung image (Shapira et al 2023). Compared to standard geometric CT imaging phantoms, PixelPrint phantoms
demonstrate realistic tissuemorphology and thus canmore fully capture the clinical imaging performance of
DLR. Compared to patient data, PixelPrint phantoms allow formore flexibility in radiation dose usage and have
more accurate ground truth imageswithwhich to assess the structural precision ofDLR images.

This study utilized a 3D-printed PixelPrint lung phantom to evaluate the clinical imaging performance of a
commercial DLR algorithm, precise Image (PI) (PhilipsHealthcare, Cleveland,OH,USA) (Philips
Healthcare 2024) compared to FBP and IR,with particular focus on the question of structural accuracy of
reconstructed anatomy. PI is an example of a direct DLR algorithm andutilizes simulated low dose sinogram
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data for CNN training (Koetzier et al 2023, PhilipsHealthcare 2024). The PixelPrint phantomwas scannedwith
a large range of radiation doses to investigate the dose reduction potential of each algorithm. As image quality is
affected by patient size (i.e. CT images of large patients tend to have higher noise and reduced image quality
compared to smaller patients), two different phantom sizes were included in the performance assessment to
examine the generalizability of results to different patient sizes.

2.Methods

2.1. Patient CT scan selection
The institutional review board (IRB) at theUniversity of Pennsylvania approved this retrospective study (IRB
Protocol#853697). A single patient chest CT scan containingmultiple subsolidGGOs representingmetastatic
lesionswas retrospectively selected as themodel for the 3D-printed phantom in this study (figure 1). The image
was taken from theHospital of theUniversity of Pennsylvania PACS system and anonymized. GGO lesions are
an example of highly detailed lung structures inwhich accurate reconstruction of textures and shapes is clinically
important. The scan and reconstruction parameters of the patient CT scan are listed in table 1.

Figure 1. (A) Image of the left lung from the patient chest CT scanwhichwas used to generate the phantom. (B)CT scan of the printed
phantom, scanned at 20 mGy and 120 kVp and reconstructed using PI-Sharp.WL:−500,WW: 1100HU.

Table 1. Scan and reconstruction parameters of the
patient CT image.

Scannermodel Philips spectral CT 7500

Scanmode Helical

Tube voltage 120 kVp

Tube current 173mA

Rotation time 0.4 s

Helical pitch 1.15

Exposure 60mAs

CTDIvol 4.7mGy

Collimation 128× 0.625mm

Slice thickness 1mm

Slice increment 1mm

Reconstruction filter YA

Reconstructed field of view 368× 368mm2

Matrix size 512× 512 pixel2

Pixel spacing 0.7188mm
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2.2. Phantom fabrication
Thephantomwas fabricatedusingPixelPrint technology (Shapira et al2022, 2023) toproduce a realistic patient-
specific lungCTphantom.The entire phantomwas 3D-printed as onepiece usingpolylactic acid (PLA)filamenton
anFFFprinter (LulzbotTAZSidekickwithM175v2 tool head, FargoAdditiveManufacturingEquipment 3D, LLC
Fargo,ND,USA). Thephantomwasdesigned as a 20 cmdiameter cylinder containing the segmented left lung
positioned in the center of the cylinder.A4 cmscan length containing a large (4.5×3.2 cm2)GGOwas selected.The
left lungwas segmentedusing anopen-source automatedU-net lung segmentationmodel (Hofmanninger et al
2020). A 1 cmborder of tissue surrounding the lung includingparts of the ribs, thoracicmuscles, andmediastinum
was also included in thephantom.The regions inside of the segmented lung andborderwere printedusingPixelPrint
technology tomodulate density and accurately reproduce theHUprofiles of thepatient image,within theHUrange
attainablewithPLA (−867 to115HU) (Mei et al2022b). Regions of the cylinderoutside of the borderwere printed
with a constant infill ratio of 15% (corresponding to∼−800HU).

2.3. Image acquisition and reconstruction
The phantomwas scannedwith a default high resolution chest imaging protocol on a conventional CT scanner
(Incisive CT, PhilipsHealthcare, Cleveland,OH,USA).Multiple scanswere acquiredwith varying radiation
dose levels ranging from0.5 to 20 mGy. Scanswere repeated three times at each dose level and each scanwas
reconstructed using FBP, an iterative reconstruction algorithm (iDose (Miglioretti et al 2013)) at a single noise
level (Level 3), andDLR (PI) atfive levels with increasingly aggressive noise reduction (Sharper, Sharp, Standard,
Smooth, Smoother) (table 2). Additional scan and reconstructions parameters common to all scans are listed in
table 3.

Table 2.Varying radiation dose levels used for phantom scanning and the
differentmethods used for reconstruction.

Exposure

[mAs]
CTDIvol
[mGy] Reconstruction algorithms

250a 20a FBP, YCFiltera

235 19

185 15 iDose4 Level 3, YCfilter

148b 12b Precise Image (PI), LungDefini-
tion, Sharper/Sharp/Standard/

Smooth/Smoother

111c 9c

74 6

49 4

25d 2d

12 1

6 0.5

a Dose and reconstruction parameters used for ground truth image.
b Diagnostic reference level for a 29–33 cmwater-equivalent diameter

patient (Radiology ACo 2018).
c Achievable dose level for a 29–33 cmwater-equivalent diameter patient

(Radiology ACo 2018).
d Lung cancer screening level (Kazerooni et al 2014).

Table 3.CT scan and reconstruction parameters for
the phantom scans.

Scannermodel Philips incisive CT

Scanmode Helical

Tube voltage 120 kVp

Rotation time 0.5 s

Helical pitch 1

Collimation 64× 0.625mm

Slice thickness 1mm

Slice increment 0.5mm

Reconstructed field of view 350× 350mm2

Matrix size 512× 512 pixel2

Pixel spacing 0.6836mm

4

Phys.Med. Biol. 69 (2024) 115009 J Y Im et al



2.4. Extension rings
Patient size has a significant impact on the noise and image quality of CT images and, thus, can affect the
performance ofDLR. Tomimic different patient sizes, the lung phantomwas placed inside two different size
extension rings during scanning (figure 2). A custom25× 25 cm2water-equivalent extension ringwith a 20 cm
cylindrical borewas 3Dprinted using PLAfilament. The lung phantomwas placed in this custom extension ring
to represent a small-sized patient (small phantom), resulting in a total water equivalent diameter (Dw) of about
19 cm. To represent amedium-sized patient, the lung phantomwas placed in the 20 cmbore of a 30× 40 cm2

multi-energy CTphantom (MECT) (SunNuclear,WI,USA) extension ring (mediumphantom). TheDw of the
phantomplusMECT extension ringwas about 30 cm. The small andmediumphantomDw’s are representative
of patientDw’s of an average pediatric (McCollough et al 2022) and adult (Kanal et al 2017) chest, respectively.
The scan and reconstruction parameters outlined in tables 2 and 3were repeated for each phantom size.

2.5. Image analysis
Image noise andCNRwere calculated for each reconstruction and dose combination. The image noise was
calculated for a 2× 2 cm2 region of interest (ROI) across 10 consecutive slices in a homogeneous region of the
phantombackground lung parenchyma. TheCNRwas calculated between theGGO lesion and the background
lung parenchymawhere theGGOROIwas a 2× 2 cm2ROI over 14 consecutive slices inside of theGGO lesion.
The equations used for noise andCNR calculations were:

s=Noise Background

m m

s
=

-
CNR ,

GGO Background

Background

where sBackground is the standard deviation ofHUvalues in the background lungROI, mGGO is themeanHU in
theGGOROI, and mBackground is themeanHU in the background lungROI.

In addition to these general image qualitymetrics, the structural accuracy of the reconstructed images was
evaluated using the image similaritymetrics: rootmean squared error (RMSE), structural similarity index
measure (SSIM) (Wang et al 2004), andmulti-scale SSIM (MSSSIM) (Wang et al 2003), using the highest dose
(20 mGy) FBP image as the ground truth image. RMSEprovides a direct intensity-based comparison between
the reconstructed image and the ground truth, while SSIM takes luminance, contrast, and structural features
into consideration.MS SSIM further expands on SSIMby generalizing the SSIM algorithm to incorporate image
information at a variety of different resolution scales. The use of several similaritymetrics helps ensure that the
results are robust to differentmethods of assessing how closely the reconstructed imagesmatch the ground
truth. All similaritymetrics weremeasured in a 13.5× 13.5 cm2ROI across 50 consecutive slices within the 3D
printed phantom. TheRMSE and SSIMwere calculated for each image using the open source Python package
skimage.metrics (van derWalt et al 2014), and theMS SSIMwas calculated using the open source python library
pytorch-msssim (Pytorch-msssim 2023). All ROIs used for these calculations are shown in figure 3, and the same
ROIswere used for each of the reconstructed images. Since the 20 mGy scanswere used as the ground truth, they
were excluded from the sample for all imagemetric calculations.

Figure 2.The PixelPrint lung phantom (A) placed inside a 25× 25 cm2 3Dprinted extension ring (B) to represent a small-sized patient
and placed inside of a 30× 40 cm2MECT extension ring (C) to represent amedium-sized patient.

5

Phys.Med. Biol. 69 (2024) 115009 J Y Im et al



2.6. Statistical analysis
The performance of each dose and reconstruction combinationwas evaluated in comparison to the
performance of the FBP images of scans taken at 12mGy, which is the diagnostic reference level for 29–33 cm
water equivalent diameter patients (Radiology ACo 2018). A two-sample, one-tailed t-test was performed for
each imagemetric using the open-source python package Scipy statistical functions (Virtanen et al 2020). Effects
were considered statistically significant where <p 0.05,which after applying the Bonferroni post hoc correction

results in < < <
#

p 0.01.0.05

metrics

0.05

5
The potential dose reduction of each reconstruction algorithmwas then

determined by finding the lowest dosemeasured at which therewas no statistically significant decrease in image
quality from the reference for anymeasuredmetric.

3. Results

3.1. Comparison of reconstruction algorithms
PI demonstrates superior performance compared to both FBP and iterative reconstruction for allmeasured
metrics in both phantom sizes. The image quality of FBP images is noticeably degraded by noise at lower doses
while low dose scans reconstructedwith iDose (Miglioretti et al 2013) and PI have image quality whichmore
closely resemble the highest dose FBP image. This effect is demonstrated visually infigure 4 and confirmed
quantitatively by themeasuredmetrics. The results of eachmetric are represented infigures 5 and 6, and tables
A1–A10 show the t-test statistics.

Allmetrics show that iDose4 is capable of dose reduction compared to FBP and that PI shows further dose
reduction compared to iDose4. Furthermore,more aggressive noise reduction, i.e. smoother levels of PI, showed
improved performance over less aggressive noise reduction, i.e. sharper levels of PI.When only considering
noise andCNR, the different levels of PI achieved dose reduction capabilities between 67%–96% for the small
phantomand between 50%–96% for themediumphantom, respectively (figure 5). However, the results of the
image similaritymetrics RMSE, SSIM, andMSSIM showmore conservative dose reduction estimates compared
to the estimates obtained fromnoise andCNR alone.When considering the image similaritymetric results, PI
demonstrated lower dose reduction capabilities of 25%–83% in the small phantom and 50%–83% in the
mediumphantom (figure 6). Thus, these image similaritymetrics provide additional information about the
structural accuracy of the reconstructed images that is not captured by general image qualitymetrics like noise
andCNR.

Figure 3.CT scan of the phantomplaced inside of themedium size extension ringwithmarkedROIs used for image qualitymetric
measurements. The yellowbox encompasses the background lungROI used for image noise andCNR calculations, the red box shows
theGGOROI used to calculate CNR, and the cyan box represents the ROI used for RMSE, SSIM, andMS SSIMmeasurements.WL:
−450,WW: 1100HU.
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3.2. Phantom size effects
The image quality of the small phantom reconstructions showed an average of approximately 40%
improvement across allmetrics compared to thematched doses and reconstructions of themediumphantom.
Analysis of noise andCNR suggest that there is a slight increase in dose reduction capabilities of PI in the small
phantom (67%–96%) compared to themediumphantom (50%–96%). However, the image similaritymetrics
show the opposite trend, with slightly lower dose reduction capabilities in the small phantom (25%–83%)
comparedwith themediumphantom (50%–83%). Overall, the results from the two phantom sizes showed
similar trends in dose reduction.

3.3. Summarized potential dose reduction capabilities
The overall dose reduction of each reconstruction algorithm compared to FBPwas determined using the
minimumdose at which allmetricsmatched or exceeded the reference performance. Theseminimumdoses are
summarized infigure 7with corresponding dose reduction percentages indicated on the right axis. For both the
small phantomandmediumphantom, PI demonstrated dose reduction capabilities up to 83% for the highest
level of denoising (PI-Smoother).

Figure 4. Images of theGGO lesion taken from the small phantom (top) andmediumphantom (bottom) at several dose and
reconstruction combinations. Figures A1 andA2 in the appendix show theGGO lesion images from all the dose levels collected.WL:
−500,WW: 1000HU.
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4.Discussion

This study examined the clinical imaging performance of aDLR algorithm, PI, compared to FBP and IR by
utilizing a custom-made patient derived PixelPrint lung phantom. The results show that PI is capable of dose
reduction for this clinical scenario between 25%and 83%compared to FBPdepending on the denoising level of
the algorithm and phantom size. This suggests that in some cases PI can produce diagnostic level image quality
even for CT scans acquired at lung cancer screening doses of<3 mGy (Kazerooni et al 2014). This couldmean
more effective lung cancer screening and/or reduced radiation burden. Furthermore, these dose reductions are
achievedwithmore natural noise textures compared to IR. The unnatural or ‘plastic’ looking textures in IR
images are often attributed to a leftward shift of theNPS curve (Ehman et al 2014, Szczykutowicz et al 2022). DLR
algorithms have been reported to offer varying degrees of improvement in noise texture depending on the
specific algorithm assessed and the denoising level used (Szczykutowicz et al 2022). A study byGreffier et al that
looked specifically at theNPS of Standard through Smoother levels of PI showed that the average spatial
frequency and peak spatial frequencies of PI were closer to those of FBP compared to iDose4, suggestingmore
favorable noise textures (Greffier et al 2023b). These results are complementary to the results presented in the
current study.

Despite the differences in study design, this study demonstrated similar trends in noise reduction, image
quality improvement, and dose reduction capabilities of PI with previous literature evaluating PI. Greffier et al
investigated the use of PI for evaluating livermetastases in a patient study (Greffier et al 2023a)which
demonstrated thatmore aggressive levels of denoising for PI (Smooth and Smoother) resulted in better

Figure 5.Heatmaps displaying results of the imagemetric calculations forNoise (left) andCNR (right) fromboth the small phantom
(top) andmediumphantom (bottom). Awhite star is used to designate the dose and reconstruction combination used as the reference
for statistical comparison for eachmetric. The value for this reference group is indicated on the color bars by a black line. The black
lines on the heatmaps separate values that are statistically better than or equivalent to the reference (above the line) from those that are
statistically worse than the reference (below the line).
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performance in the lowest dose scans, as shown in this study. In a separate study examining the use of PI in chest
imaging, Greffier et al reported dose reductions of 58% and 83%compared to iDose4 Level 4 for PI-Smooth and
PI-Smoother respectively, based on task-based image quality assessment of simulated ground glass
opacifications in a standard, geometric phantom (Greffier et al 2022a). Similarly, our study results show that for
amedium-sized phantom, if the results fromMSSSIM are excluded, PI-Smooth and PI-Smoother have a 58%
and 88%dose reduction potential respectively compared to iDose4 level 3.However, whenMS SSIM is included
the dose reduction potential becomesmore conservative. The correlation between our results and previously
published literature help to validate the use of PixelPrint phantoms in the evaluation ofDLR.

Studies evaluating otherDLRalgorithmshave alsodemonstrated reducednoise and improved lesiondetectability
inDLRcompared to IRor FBP (Son et al2022,Miyata et al2022, Park et al2022,Greffier et al2022b,Koetzier et al
2023). The exact percentage of dose reduction reportedwasheavily dependentuponmany factors including the
clinical scenario, the referencedose, reference reconstruction algorithm,DLRalgorithmanddenoising strength, and
specificmetrics evaluated.Overall, the results fromstudies of several other reconstruction algorithms included awide
rangeof dose reduction estimates between30%and85%,which is similar to the results forPI.

Furthermore, this study demonstrates the additional informationwhich evaluations using PixelPrint
phantoms can provide compared to patients and standard phantoms. Unlike in patient studies, an evaluation
using PixelPrint phantoms allows for the comparison of awide range of doses beyond the dose range typically
acceptable in clinical practice. Thus, ground truth data can be obtained by acquiring a higher than standard
radiation dose. Additionally, the dose reduction capability ofDLR can be probedmore precisely by repeatedly
acquiring increasingly lower dose data and comparing the resultant images directly. The ability to acquire images
without any patientmotion between scans facilitates comparison between images via similaritymetrics such
as RMSE.

Compared to traditional CTphantoms, the presence of clinically relevant structures and details in PixelPrint
phantoms is advantageous because it enables comparison of reconstruction accuracy for complex structures.
Reconstruction accuracy can be evaluated by using image similaritymetrics such as SSIM to compare a
reconstructed image to the selected ground truth. The inclusion of these image similaritymetrics resulted in
more conservative dose reduction estimates compared to the results obtained using only general image quality
metrics such as noise andCNR. Thismay be because although theDLR algorithm can essentially tune noise
levels to almost any desired amount, some information fromdetailed structuresmay not be recoverable. As a
result, analyzes on non-clinical structures such as those found in traditional CT phantoms cannot adequately
capture these algorithms’ diagnostic imaging performance. PixelPrint phantoms can also provide additional

Figure 6.Heatmaps displaying results of the imagemetric calculations for RMSE (left), SSIM (middle), andMS SSIM (right) from
both the small phantom (top) andmediumphantom (bottom). Thewhite stars and black lines in thisfigure have the same function as
in figure 5.
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information about patient size dependency inDLRdose reduction. A previous patient study using general image
qualitymetrics showed that iDose4 achieved higher dose reduction in smaller patients versus larger patients
(Arapakis et al 2014). In the present study, only considering the noise andCNRmeasurements results in the
same trendwhile the inclusion of image similaritymetrics results in a reversal of the trend such that the small
phantom size has slightly reduced dose reduction potential. Finally, it has been reported that a possible concern
withDLR is that if certain lesions are not well represented in training sets, these lesionsmay not be reconstructed
accurately inDLR images (Nagayama et al 2021). This is not something that can be testedwith standard
geometric phantoms but can be easily investigated using different PixelPrint phantomswith various lesions and
known ground truth images. These findings suggest that the use of PixelPrint phantoms in conjunctionwith
image similaritymetrics provides valuable informationwhich is not available from standard phantoms or
patient studies alone for determining dose reduction capability.

The present study has a few limitations. First, PI was compared to only one denoising level of iDose4, the
default level for lung imaging. To form amore robust understanding of the improvement that PI affords over IR,
it would be valuable to compare PI tomore denoising levels of iDose (Miglioretti et al 2013). Similarly, the same
phantom could be used to evaluate and comparemultipleDLR algorithms including both commercial and
open-source algorithms. Second, this study only utilized one phantom and thus only one example of patient
anatomy. Future studies involvingmore phantoms fromdifferent patients could improve our insights into the
behavior of PI in different clinical scenarios and disease states. This could be especially useful in rarer ormore
unique clinical cases where patient data is limited. Third, this study does not include a reader studywith
subjective image quality scores. However, there are other existing studies that include a reader study (Greffier
et al 2022a, 2023b, PhilipsHealthcare 2024) and those results show good alignment with the results of the
present study. Fourth, theHU range of the phantomused in this study is limited to between−867 and 115 HU
for the PLAmaterial used.Other printingmaterials are being investigated in order to increase theHU range of
PixelPrint phantoms (Mei et al 2022a). Finally, the raw projection data corresponding to the patient images used
to create the PixelPrint phantomwas unavailable, preventing a direct comparison between PI performance on
phantomdata and its performance on the source patient data.

5. Conclusion

This study demonstrates the dose reduction capabilities of aDLR algorithm, Precise Image, in the context of
lung imagingwithGGOs. For this clinical scenario, PI has the capability of producing diagnostic image quality at
up to 83% lower radiation dose, even surpassing the dose reduction capabilities of iterative reconstruction.
These results are consistent with existing literature evaluatingDLR. Images reconstructed using PI demonstrate
not only improved noise and contrast compared to FBP and iterative reconstruction, but also improved

Figure 7.Theminimumdoses (left axis) required tomatch or exceed all image qualitymetrics of the reference images for each
reconstruction algorithm, alongwith the corresponding percent dose reduction (right axis).
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structural accuracy of lung features such asGGO lesions. The use of PI can improve the clinical utility and
viability of lower doseCT scans, ultimately improving patient care while reducing radiation exposure.

The PixelPrint phantomused in this study offers an improved testing environment withmore realistic tissue
structures and attenuation profiles compared to other CTphantoms. This is particularly important for the
evaluation of nonlinear reconstruction algorithms such asDLR. Thus, PixelPrint phantoms can elevate the
clinical relevance of phantom evaluations of new and emerging CT technologies, whichwill lead tomore rapid
translation of these technologies intomedical practice.
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Appendix

TablesA1–A10. t-values andp-values obtained fromthe two-sample, one-tailed student’s t-test for each image
metric calculated.The cells highlightedwith red indicatewhere the t-value signifiesworse performance (t<0 for
Noise andRMSE, t>0 forCNR, SSIM, andMSSSIM) than the reference (FBP, 12mGy). The cells highlighted in
blue indicatewhere thep-value suggests a statistically significant result (p<0.01). Cells above the thickblack linehave
performance that is better thanornot statistically different than the reference (t>0 and/orp>0.01). Cells below the
thick black linehaveperformance that is statisticallyworse than the reference (t<0 andp<0.01).

TableA1.Noise—small phantom.
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TableA3.RMSE—small phantom.

TableA4. SSIM—small phantom.

TableA2.CNR—small phantom.
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TableA6.Noise—mediumphantom.

TableA7.CNR—mediumphantom.

TableA5.MSSSIM—small phantom.
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TableA9. SSIM—mediumphantom.

TableA10.MSSSIM—mediumphantom.

TableA8.RMSE—mediumphantom.
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Figure A1. Images of theGGO lesion taken from the small phantom at each dose and reconstruction combination.WL:−500,WW:
1000HU. Images above the blue linematch or exceed the diagnostic reference level (12mGy) image quality for allmeasuredmetrics.
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Figure A2. Images of theGGO lesion taken from themediumphantomat each dose and reconstruction combination.WL:−500,
WW: 1000HU. Images above the blue linematch or exceed the diagnostic reference level (12mGy) image quality for allmeasured
metrics.
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