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Abstract 
Motivation: The technology for analyzing single-cell multi-omics data has advanced rapidly and has provided comprehensive and 
accurate cellular information by exploring cell heterogeneity in genomics, transcriptomics, epigenomics, metabolomics and proteomics 
data. However, because of the high-dimensional and sparse characteristics of single-cell multi-omics data, as well as the limitations 
of various analysis algorithms, the clustering performance is generally poor. Matrix factorization is an unsupervised, dimensionality 
reduction-based method that can cluster individuals and discover related omics variables from different blocks. Here, we present a 
novel algorithm that performs joint dimensionality reduction learning and cell clustering analysis on single-cell multi-omics data 
using non-negative matrix factorization that we named scMNMF. We formulate the objective function of joint learning as a constrained 
optimization problem and derive the corresponding iterative formulas through alternating iterative algorithms. The major advantage of 
the scMNMF algorithm remains its capability to explore hidden related features among omics data. Additionally, the feature selection 
for dimensionality reduction and cell clustering mutually influence each other iteratively, leading to a more effective discovery of 
cell types. We validated the performance of the scMNMF algorithm using two simulated and five real datasets. The results show that 
scMNMF outperformed seven other state-of-the-art algorithms in various measurements. 
Availability and implementation: scMNMF code can be found at https://github.com/yushanqiu/scMNMF. 
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INTRODUCTION 
Cells, which are the basic components of all living things, per-
form vital biological functions that keep life running normally. 
Numerous unique cell types with varying roles make up mul-
ticellular organisms. The structure and function of tissues can 
be understood by classifying the different cell types [1]. How-
ever, because an exact and uniform description of cell types 
is still lacking, identifying cell types remains difficult. Further 
advancements in bioinformatics have enabled the analysis of 
transcriptome data of individual cells. Single-cell transcriptomic 
analysis technology dates back to 2009 [2] and has been used 
extensively to analyze single-cell RNA sequencing (scRNA-seq) 
data. The accumulation of scRNA-seq data offers the chance to 
investigate the characteristics and actions of diverse cell types, 
and scRNA-seq methods for cell classification have been devel-
oped based on transcriptomic similarity. However, the numer-
ous drawbacks of scRNA-seq make cell clustering very chal-
lenging [3]. In particular, sequencing technologies for single-cell 

transcriptome data pose certain dimensionality issues, because 
they disrupt the distinct expression profiles within an entire 
genome. Therefore, relying solely on intercellular similarity is 
one-sided, because the distance differences would have already 
changed. The analysis tools for single-cell multi-omics data have 
become increasingly mature and have provided significant impe-
tus for biological research. Single-cell studies differ from tradi-
tional bulk methods in that they can handle data heterogeneity. 
Clustering, as an unsupervised learning method [4], can group 
similar single cells into the same cluster, thereby detecting dif-
ferences and similarities among cells [5], and inferring biological 
information. In most single-cell studies, clustering analysis is a 
crucial and well-researched phase. Biological processes can be 
investigated by clustering data, which cannot be achieved by 
studying large datasets alone [6]. However, clustering analysis for 
single-cell multi-omics data remains a challenging problem. With 
the rapid development of various clustering analysis techniques, 
existing algorithms can be broadly classified as early fusion, late 
fusion and intermediate fusion algorithms.
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Early fusion is the simplest of the three methods, where all 
omics matrices are concatenated, and single-omics clustering 
algorithms are applied to the merged matrix [7, 8]. Representative 
methods of early fusion include ICluster [9], which concatenates 
multi-omics data and then uses probabilistic modeling to reduce 
the dimensionality of the data, and LRACluster [10], which 
builds a low-rank approximation model based on multi-omics 
data to identify their common subspace and subsequently 
perform clustering operations. However, early fusion methods 
have several drawbacks: (i) if not correctly standardized, 
they may give greater weight to omics that have greater 
characteristics, (ii) they ignore the various data distributions 
across various omics and (iii) in situations where the data 
dimensionality is already high, they further increase the data 
dimensionality, making it more difficult to differentiate between 
samples. 

Late fusion involves partitioning using different clustering 
methods on different omics datasets. The advantage of this 
method is that any clustering algorithm can be applied to each 
omics dataset [11, 12]. However, the disadvantage is that if 
the clustering results are obtained by integration, the weaker 
information in each omics dataset may be lost. Late fusion 
methods include SAME-clustering [11], which is based on graph 
partitioning for clustering integration, and KLIC [13], which 
integrates clustering through kernel learning. 

Intermediate fusion is distinct from the other two fusion meth-
ods and primarily has three categories. Methods in the first cate-
gory use similarity-based methods, where clustering is performed 
by constructing a similarity matrix between data points. CiteFuse 
[14] is one such method that calculates similarity matrices among 
different omics data, then merges the matrices using a fusion 
method and finally clusters the merged similarity matrix. Seurat 
[15] is another method in this category. Methods in the sec-
ond category are based on dimensionality reduction model algo-
rithms, which assume that there is an invariant low-dimensional 
structure between the data, and the low-dimensional structures 
correspond to the number of clusters. Methods in this category 
include CoupledNMF [16], MOFA+ [17] and  TotalVI [18]. The third 
category of methods is statistical algorithms based on data mod-
eling. The advantage of these models is that they can utilize bio-
logical information while determining the distribution functions. 
Representative methods in this category include BREM-SC [19] 
and Clonealign [20]. Similarity-based methods cannot explicitly 
consider dropout events and, for different omics data, they simply 
concatenate the data features or remember them directly, and 
therefore cannot fully exploit the information between different 
omics. Most statistical-based methods require data to have a 
specific distribution, but this may not necessarily be applicable 
in practical applications. 

Inspired by the problems associated with the methods 
described above, we developed a non-negative matrix factor-
ization (NMF)-based method that differs from the traditional 
approach of separate dimensionality reduction and clustering 
processes. The aim was to better analyze the intrinsic correlations 
between different omics data and investigate the mutual influ-
ences between joint dimensionality reduction and clustering. To 
extract the intrinsic correlations between different omics data, 
we used NMF to process the data and obtain their common 
feature matrix. Then, we employed joint dimensionality reduction 
to study the clustering results using different omics datasets. 
By integrating dimensionality reduction and clustering analysis, 
our algorithm demonstrates the advantage of iterative influence 
between feature selection in dimensionality reduction and cell 

clustering, leading to a significant improvement in clustering 
performance. 

MATERIALS AND METHODS 
Model description 
We take M matrices X1, . . .  XM as inputs, representing M omics 
datasets. Xk ∈ Rn×Jk , where  n represents the count of cells and Jk 

represents the count of features for block k. In  our  method, we  
offer a model built using methods for matrix factorization, i.e. 

Xk ≈ WHk, (1)  

where W ∈ Rn×p is a shared basis matrix that allows simultaneous 
clustering of cells across M omics blocks. Hk ∈ Rp×Jk is the 
coefficient matrix for block k. The quantity of latent variables 
in this model is denoted by the variable p. Here, we impose 
non-negativity and sparsity constraints on matrix W to ensure 
interpretability of the model. Hk is subject to a sparsity constraint 
to carry out variable selection concurrently with cell clustering. A 
deeper understanding of the factors influencing the cell cluster-
ing is ensured by sparsity. Then, the following is an extension of 
Equation (1): 

RW,H1,...,HM = 
M∑

k=1

‖Xk − WHk‖2 + λk ‖Hk‖1 + 
n∑

i=1 

μi ‖wi·‖1 

s.t. W � 0, 

(2) 

where wi· is the ith row, ‖ · ‖ is the Frobenius parametrization 
and ‖ · ‖1 is the l1-norm. Both λk and μi are sparse constraint  
parameters. B and F are both non-negative, and their product is 
used to further estimate the decomposition matrix W to gain the 
possible characteristics of every single cell. 

W ≈ BF, s.t.B � 0, F � 0, (3) 

where B ∈ Rn×k1 and F ∈ Rk1×p are the feature and basis matrix, 
and k1 is the number of cell types. Equation (3) can be solved by 
minimizing the approximation, i.e. 

QB,F = ‖W − BF‖2 , s.t.B � 0, F � 0. (4) 

Nevertheless, NMF is unable to unveil the intrinsic geometric 
arrangement of cells, such as manifold embeddings within high-
dimensional spaces. We expect B to preserve the inherent geo-
metric structure of matrix W [21]. In particular, if two cells, 
denoted as ‘ci’ and  ‘cj’, are close together in the initial space, their 
representations in the matching space, i.e. si and sj, should also 
exhibit proximity, and vice versa. We construct a Laplacian graph 
G to represent the close relationships between cells contained 
in matrix W. The vertices of graph G describe cells, while the 
edges represent the similarity between two vertices. Let Aij denote 
the weight matrix, and given that Up (ci) represents the p nearest 
neighbors of ci, we  have  

Aij = 

⎧⎨ 

⎩e−
∥∥∥ci−cj

∥∥∥2 

σ ,, ci ∈ Up
(
cj
)

or cj ∈ Up (ci) 
0, others . 

(5)
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We denote L = D − A as the Laplacian matrix of graph G, where  
Dii = ∑

j Aij is the diagonal matrix. Cai et al. [22] demonstrated 
that trace optimization can be used to define the local topological 
structure preservation, i.e. 

1 
2

∑
i,j 

aij||si − sj||2 = Tr
(
BLBT)

. (6)  

Thus, binding the representation of Equation (6), the objective 
function of clustering can be defined as 

QB,F = ‖W − BF‖2 + α Tr
(
BLBT)

, s.t.B � 0, F � 0. (7) 

and α decides the significance of the regularization. Finally, by 
combining Equations (2) and  (7), we obtain the final objective 
function of the joint analysis model as 

min O =RW,H1,···HM + QB,F 

= 
M∑

k=1

‖Xk − WHk‖2 + λk ‖Hk‖1 + 
n∑

i=1 

μi ‖wi‖1 

+ ‖W − BF‖2 + α Tr
(
BLB�)

s.t.W � 0, B � 0, F � 0. 

(8) 

The framework of the method we constructed is illustrated in 
Figure 1. 

Optimization of the algorithm 
Taking into account the non-convexity of the objective function, 
we employ an alternating iterative algorithm to optimize 
it, by fixing all other variables and making the optimiza-
tion problem of the remaining variable convex. The algo-
rithm continues to iterate until it converges or reaches a 
stopping condition. The update details of Equation (8) are  
provided in Supplementary Section 1 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/). The 
convergence analysis of the updating rule is provided in 
Supplementary Section 2 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/). 

Related parameters 
scMNMF has a total of five parameters. Parameter p is the 
count of features after dimensionality reduction, k1 is the count 
of cell clusters and λk, μi, and  α determine the importance 
of the corresponding sparsity constraint and regularization. 
The method for selecting these five parameters is detailed in 
Supplementary Section 3 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/). 

PERFORMANCE EVALUATION 
Accuracy 
ACC is a commonly used performance metric in machine learning 
and data analysis, which measures the percentage of correctly 
classified instances in a dataset. 

ACC = max 
m

∑k 
i=1 1

{
li = m (ui)

}
k 

, (9)  

where k represents the count of cells, li represents the true labels 
and m(·) denotes all possible one-to-one mappings between clus-
ter assignments and true labels. 

Adjusted rand index 
Adjusted rand index (ARI) is a metric used to measure the consis-
tency between clustering results and true labels, and its definition 
involves the matching of pairs of samples in the clustering results. 

ARI =

(
k 
2

)
(s + n) − [(s + t)(s + m) + (n + t)(n + m)]

(
k 
2

)
− [(s + t)(s + m) + (n + t)(n + m)] 

, (10)  

where k is the total number of cells, s is the number of cell pairs 
with the same cell label corresponding to the same cluster, t is 
the number of cell pairs with different cell labels corresponding 
to different clusters, m is the number of cell pairs with the cell 
labels corresponding to different clusters and n is the number 
of cell pairs with different cell labels corresponding to the same 
cluster. 

Normalized mutual information 
Mutual Information (MI) is defined as follows:  

MI =
∑

s

∑
t 

f (s, t) log 
f (s, t) 

f (s)f (t) 
, (11)  

where f (s, t) is the joint distribution of random variables S and T, 
and f (s) and f (t) are the marginal distributions of S and T. NMI  is  
defined as 

NMI = 
2MI 

h(P) + h(Q) 
, (12)  

where h(P) and h(Q) represent the entropy of the clustering result, 
denoted as P, and the true labels, denoted as Q, respectively. 

Adjusted mutual information 
Adjusted mutual information (AMI) measures the similarity 
between cluster assignments and true labels, defined as 

AMI = MI − E[MI] 
max(h(P), h(Q)) − E[MI] 

, (13)  

where MI is defined as above, where E[MI] is its mathematical 
expectation, and h(P) and h(Q) are the entropies of the predicted 
labels and true labels, respectively. 

EXPERIMENTAL RESULTS 
Datasets 
We used two simulated and five real datasets to evaluate the per-
formance of the scMNMF method. We preprocessed all datasets, 
and specific steps can be found in Supplementary Section 4 (see 
Supplementary Data available online at http://bib.oxfordjournals. 
org/). Detailed information about these datasets is provided in 
Table 1. 

• Simulated datasets 
We generated two single-cell multi-omics datasets (Sim1 and 
Sim2), each comprising gene expression omics and epigenet-
ics omics data [23]. Sim1 contained 530 cells with 3 cell types, 
and Sim2 contained 250 cells with 5 cell types. 

• 10X_10K peripheral blood mononuclear cell (PBMC) dataset 
The PBMC dataset was obtained from the 10x Genomics 
website. Each cell in this dataset has matched scRNA-seq 
and antibody-derived tags (ADT) data. The cell types for 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
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Figure 1. Overview of the scMNMF model. This is a joint analysis model that differs from the traditional approach of separately conducting 
dimensionality reduction and clustering. 

each sample were determined from biological information of 
protein and gene markers. The dataset includes 6661 cells 
representing 7 different cell clusters. 

• PBMC Specter dataset 
The Specter dataset consists of 3762 cells, divided into 
16 cell types. The true labels in this dataset are from 
Specter [24]. The dataset can be obtained from GitHub 
(https://github.com/canzarlab/Specter). 

• Spleen & Lymph nodes (SLN111) dataset 
Specific information about the spleen dataset and cell type 
labels can be found in the TotalVI method [18]. 

• SMAGE dataset 
The SMAGE dataset consists of 11 020 cells, divided into 12 
cell types. It includes two types of omics data. The scRNA-seq 
data can be used directly for subsequent analysis, whereas 
the ATAC gene counts were obtained using tools from Lin et al. 
[25]. 

• Human bone marrow mononuclear cell (BMNC) dataset 
The BMNC dataset contains of cells from eight donors and 
was curated by the Human Cell Atlas. The cell type labels for 
this dataset can be obtained using Seurat software [15]. 

Table 1: Summary of the two simulated datasets and five real 
datasets 
Dataset Cell RNA ADT ATAC Type 

Sim1 530 2000 5000 3 
Sim2 250 2500 5000 5 
Specter 3762 33 538 49 16 
10X_10K 6661 33 538 17 7 
SMAGE 11 020 36 611 20 010 12 
Spleen 16 828 13 553 112 35 
BMNC 30 672 17 009 25 12 

Type, number of cell types. 

Methods used for performance comparisons 
We compared our scMNMF method with seven advanced 
methods. 

• SCMDC 
SCMDC [25] is a deep learning model that processes different 
omics datasets in an end-to-end manner and then conducts 
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Figure 2. Clustering performance of different methods on two simulated datasets and five real datasets. (A) Performance measured by AMI. (B) 
Performance measured by ARI. 

clustering analysis for the next step based on jointly learned 
latent deep embedding features. 

• MoClust 
MoClust [26] is a newly proposed efficient clustering method 
for handling data. It introduces modality-specific autoen-
coders to describe multi-omics data and employs distribution 
alignment with contrastive learning to flexibly merge the 
omics blocks into omics-invariant representations. 

• Seurat 
After reducing the data to a lower-dimensional space, Seurat 
[15] constructs a weighted nearest neighbor graph and then 
uses the Leiden algorithm or other related algorithms to 
iteratively optimize and merge cells together. 

• Tscan 
Tscan [27] is a traditional clustering method that processes 
omics data by reducing dimensionality through principal 
component analysis and then applies a mixture model to the 
reduced data for further clustering analysis. 

• BREM-SC 
BREM-SC [19] is one of the earliest models proposed for 
clustering analysis of CITE-seq data, capable of characteriz-
ing different omics data. This method conducts clustering 
analysis by establishing Bayesian models for two blocks of 
omics data. 

• CiteFuse 
CiteFuse [14] independently calculates similarity matrices 
between two different omics datasets and then applies an 
efficient fusion algorithm to merge the matrices based on this 
similarity. Finally, the merged similarity matrix undergoes 
clustering analysis based on existing graph fusion algorithms. 

• TotalVI 
TotalVI [18] uses a variational autoencoder to process two 
different single-cell multi-omics datasets, then evenly dis-
tributes the learned modal encoder data and finally uses 
algorithms for subsequent clustering analysis. 

Clustering performance 
We used four popular performance metrics, ACC, ARI, AMI and 
NMI, to compare the clustering results. The clustering perfor-
mance of seven algorithms and scMNMF on the two simulated 
datasets and five real datasets measured by AMI and ARI is shown 
in Figure 2. The clustering performance measured by ACC and 
NMI is given in Supplementary Figure 1 (see Supplementary Data 
available online at http://bib.oxfordjournals.org/). 

Figure 2 shows that scMNMF outperformed the other seven 
competing methods on all the datasets, except the BMNC dataset. 

The alternating influence of feature selection in dimensionality 
reduction and cell clustering of the scMNMF algorithm signifi-
cantly improved its clustering performance. Tscan [27] produced  
the worst performance across the five real datasets, indicating 
that its traditional single-cell clustering method was unable to 
fully leverage the advantages of multi-omic data to enhance clus-
tering performance and was not suitable for multi-omics data. 
However, Tscan performed quite well on the simulated datasets, 
further indicating that traditional clustering methods, including 
the one implemented in Seurat [15], are still somewhat unstable 
when dealing with single-cell multi-omics data. Although BREM-
SC [19] is a mature clustering analysis algorithm, the results 
showed that it performed poorly on the seven datasets we ran. 
Its poor performance can be attributed to several limitations 
of the BREM-SC algorithm, particularly its inability to represent 
dropout events. SCMDC [25] and  TotalVI [18] produced better 
clustering metrics than the other methods on all seven datasets, 
indicating that deep learning algorithms have an advantage in 
handling high-dimensional data. Our scMNMF model did not per-
form well on the BMNC dataset, whereas CiteFuse [14] produced  
the best performance on this dataset. This difference in perfor-
mance may be because CiteFuse [14] is sensitive to high compu-
tational complexity, whereas scMNMF requires iterative optimiza-
tion for the optimal solution, resulting in suboptimal performance 
when dealing with large-scale datasets such as BMNC. For ACC, 
scMNMF performed better than the other seven algorithms on 
the two simulated datasets and all the real datasets, except 
the BMNC dataset (Supplementary Figure 1, see Supplementary 
Data available online at http://bib.oxfordjournals.org/). For NMI, 
the scMNMR model ranked in the top two for all the datasets, 
except the Specter dataset. Overall, scMNMF performed well on 
all the datasets compared the performances of the other methods 
tested. 

To further validate the feasibility of our model on five real 
datasets, we generated box plots based on the clustering results, 
to showcase the overall clustering effect of scMNMF and the 
other comparative methods. We calculated the lower quartile, 
maximum value, minimum value, median and upper quartile of 
the clustering metric scores for each method across different 
datasets. Then, we visualized the obtained values in a box 
plot to compare the overall performance of the methods. The 
height of the box indicates the interquartile range (IQR). A 
small IQR indicates concentrated and stable clustering results, 
whereas a large IQR indicates unstable clustering results, 
implying the method is unstable. The results for AMI and ARI 
are shown in Figure 3, and the results for ACC and NMI are in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
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Figure 3. Boxplot of scMNMF and other related algorithms on five real datasets. (A) Performance measured by AMI. (B) Performance measured by ARI. 

Figure 4. Sankey plots for two of the real datasets. (A) The 10X_10K dataset. (B) The Specter dataset. The numbers on the left of the plots indicate the 
true label categories, and the numbers on the right of the plots indicate the predicted label categories. 

Supplementary Figure 2 (see Supplementary Data available online 
at http://bib.oxfordjournals.org/). The plots show that scMNMF 
produced relatively concentrated performances across all 
datasets, indicating that its overall performance was better than 
those of the other methods tested. We created Sankey diagrams 
to illustrate the cluster assignments (Figure 4, the diagrams for 
the other datasets are given in Supplementary Figure 3, see  
Supplementary Data available online at http://bib.oxfordjournals.org/). 
When the number of labels was small, the clustering results 
were more pronounced. However, when the dataset contains a 
larger number of cell types, including some sparsely represented 
cells, there may be a certain degree of misalignment, resulting 
in suboptimal classification results. Nevertheless, overall, our 
scMNMF model produced a relatively advantageous clustering 
performance across different datasets. 

We further investigated whether Laplacian regularization 
improved the clustering performance. Because Laplacian regu-
larization affected the iterative formulation of the feature matrix 
B, we modified the iterative formula and conducted clustering 
performance comparison experiments on the five real datasets. 
The results indicate that when the Laplacian regularization term 
was added, the clustering performance of the scMNMF algorithm 
significantly improved compared with its performance without 
the Laplacian regularization term (Figure 5). This result suggests 
that Laplacian regularization effectively preserved the intrinsic 
geometric structure of the feature matrix, thereby enhancing 
clustering performance. 

We used UMAP [28] to visualize the clustering performance. 
Taking the 10X_10K dataset as an example (Figure 6), the 
results show that cells were intertwined in the original data, 
and after processing with scMNMF, the cells were effectively 
separated. Similar effects were observed for the other datasets 

(Supplementary Figure 4, see Supplementary Data available 
online at http://bib.oxfordjournals.org/). Thus, we demonstrated 
that our scMNMF model can indeed help to improve the cell 
clustering. 

Downstream analysis 
We performed some downstream analysis of the scMNMF results, 
including gene ontology (GO) [29] and survival analysis. Gene 
expression is closely related to the characteristics and morphol-
ogy of cells, so identifying the relevant informative genes is impor-
tant. The specific steps that we used to select informative genes 
are provided in Supplementary Section 5 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/). We iden-
tified 28 informative genes from the 10X_10K dataset that were 
differentially expressed. Details of the 28 genes are listed in 
Supplementary Table 1 (see Supplementary Data available online 
at http://bib.oxfordjournals.org/). 

To evaluate the biological significance of the 28 genes, we per-
formed GO and KEGG pathway enrichment analysis as described 
previously [30]. Briefly, we considered all the genes in the genome 
as enrichment references. GO terms with P-values ¡0.01, minimum 
count of 3 and enrichment factor ¿1.5 were grouped based on 
the similarity of their members. The results of GO analysis are 
shown in Figure 7A. Carbohydrate derivative biosynthetic process, 
protein N-linked glycosylation via asparagine, mitotic spindle 
assembly, lymphocyte mediated immunity, in utero embryonic 
development, cell activation, wound healing, regulation of post-
translational protein modification and angiogenesis were sig-
nificantly enriched. Among the enriched GO terms, lymphocyte 
mediated immunity, wound healing and regulation of angiogene-
sis play pivotal roles in tumor invasion and metastasis. Protein– 
protein interaction (PPI) enrichment analyses were carried out

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
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Figure 5. Clustering performance of scMNMF with and without Laplace regularization on five real datasets. scMNMF, with Laplace regularization; 
scMNMF_WL, without Laplace regularization. 

Figure 6. UMAP visualization of the clustering performance of scMNMF with the 10X_10K dataset. (A) Original 10X_10K dataset. (B) 10X_10K dataset 
after clustering by scMNMF. 

using STRING [ 31], BioGrid [32], OmniPath [33] and InWeb IM,  
and the results are shown in Figure 7B. The protein complex 
screened by the PPI analysis plays an important role in pro-
tein N-linked glycosylation, and N-linked glycosylation of PD-L1 
at N35, N192, N200 and N219 is required for PD-L1-dependent 
tumor metastasis, implying the involvement of the three genes 
in the complex (informative genes) in tumor progression and 
tumor immune escape. To analyze the correlation between the 
informative genes and the survival time of patients, we used the 
Kaplan–Meier tool (https://kmplot.com) to plot survival curves 
for the three informative genes, then analyzed their impact on 
survival. We found that out of the 28 selected informative genes, 
22 were correlated with patient survival time (Figure 7C and  
Supplementary Figure 5, see Supplementary Data available online 
at http://bib.oxfordjournals.org/). The molecular complex com-
posed of OSTC, RPN2 and DDOST is involved in protein N-linked 
glycosylation and regulates the survival of patients with breast 
cancer. OSTC and RPN2 promote patient survival, whereas DDOST 
shortens survival (Figure 7C). In summary, scMNMF can effec-
tively facilitate research on breast cancer progression and is a 
highly effective tool for biological predictions. 

CONCLUSION 
Cell clustering has become an important and rapidly develop-
ing direction in single-cell research in recent years. Clustering 
combines different types of single-cell data, such as gene expres-
sion, protein expression and chromatin states, to comprehen-
sively classify and cluster individual cells. This integrated anal-
ysis provides a comprehensive cell-type identification and func-
tional interpretation, which aids in the understanding of the 
complex biological characteristics of cells. Many new methods 
have emerged for clustering single-cell multi-omics data, but 
typically most of them independently perform dimensionality 
reduction and then apply the reduced features to the clustering 
step. This separate two-step approach can lead to suboptimal 
results. 

Here, we propose scMNMF to deal with this problem. scMNMF 
is an unsupervised method that jointly performs dimensionality 
reduction and clustering, thereby providing a more accurate 
and efficient algorithm for cell type discovery. The advantage 
of this approach is that the feature selection for dimension-
ality reduction and cell clustering mutually influence each 
other in an iterative manner, facilitating the discovery of cell

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae228#supplementary-data
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Figure 7. Downstream analysis of the scMNMF results. (A) Functional enrichment analysis of marker genes based on GO. (B) Protein–protein interactions 
of the marker genes. Molecular Complex Detection was used to identify a molecular complex (i.e., OSTC‘ RPN2 and DDOST). (C) Kaplan–Meier survival 
analysis for marker genes OSTC, RPN2 and DDOST. 

types. The results also show that the scMNMF algorithm is 
more accurate and robust than most algorithms on various 
datasets. 

In the future, the fundamental concepts of scMNMF can 
be further explored and improved. First, in the data pre-
processing step, we can consider operations for addressing 
dropout phenomena, which can impact clustering performance. 
Integrating preprocessing, dimensionality reduction and clus-
tering together may lead to improvement. Second, because of 
the heterogeneity between different omics data, the issue of 
contribution between different omics data can be considered 
by assigning them different weights. This will be helpful for 
our learning process and also one of the directions for further 
study. 

Key Points 
• The paper provided a novel joint model which intro-

duced dimension reduction, and clustering to the single-
cell multi-omics data. 

• The paper developed a novel method (scMNMF) and 
compared the state-of-the-art models of the cell cluster-
ing. Aiming at the shortcoming of their models, a novelty 
model was designed. 

• Biological analysis is also conducted to validate the bio-
logical significance of our method, including GO, and 
survival analysis. 
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• Experimental results have shown that scMNMF has 
excellent predictive and generalization ability. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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