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PURPOSE. To describe the clinical, electrophysiological and genetic spectrum of inherited
retinal diseases associated with variants in the PRPH2 gene.

METHODS. A total of 241 patients from 168 families across 15 sites in 9 countries with
pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed
for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus
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autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical
analyses were performed to determine genotype–phenotype correlations.

RESULTS. The median age at symptom onset was 40 years (range, 4–78 years). FAF pheno-
types included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy
(11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy
(41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmen-
tosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004).
The median visual acuity was 0.18 logMAR (interquartile range, 0–0.54 logMAR) and
0.18 logMAR (interquartile range 0–0.42 logMAR) in the right and left eyes, respectively.
ERG showed a significantly reduced amplitude across all components (P < 0.001) and a
peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001).
Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was
associated with 13 missense variants. The remaining variants showed marked phenotypic
variability.

CONCLUSIONS. We described six distinct FAF phenotypes associated with variants in the
PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a
discordance between structure and function. Given the vast spectrum of PRPH2 disease
our findings are useful for future clinical trials.

Keywords: pattern dystrophy, peripherinopathy, OCT, fundus autofluorescence, CACD

Received: February 10, 2024
Accepted: April 12, 2024
Published: May 14, 2024

Citation: Heath Jeffery RC,
Thompson JA, Lo J, et al. Retinal
dystrophies associated with
peripherin-2: genetic spectrum and
novel clinical observations in 241
patients. Invest Ophthalmol Vis Sci.
2024;65(5):22.
https://doi.org/10.1167/iovs.65.5.22

I nherited retinal diseases (IRDs) are the most common
cause of blindness in the working age group.1 Disease-

associated variants in the PRPH2 gene were the fourth most
common cause of IRD (5.2%) in the United Kingdom.2 To
date, 352 disease-causing variants in PRPH2 are listed in the
Human Gene Mutation Database with autosomal dominant,
and less commonly, recessive and digenic (with retinal outer
segment membrane protein 1, ROM1, OMIM*180721) inher-
itance.3 PRPH2 (OMIM *179605), encodes a photoreceptor-
specific tetraspanin, essential for the formation and mainte-
nance of rod and cone outer segments.4 Dominant variants
in PRPH2 lead to central areolar choroidal dystrophy (CACD,
OMIM #613105), retinitis pigmentosa (RP7, OMIM #608133),
pseudo-Stargardt pattern dystrophy (PSPD, OMIM #169150),
butterfly pattern dystrophy (BPD), and vitelliform macular
dystrophy (VMD, OMIM #608161). Disease-associated vari-
ants in the PRPH2 gene have been reported in pedigrees
with marked interfamilial and intrafamilial variability and
penetrance.4,5

To date, no clear genotype–phenotype correlations in
human PRPH2 disease have been firmly established.4,6–9

This may be attributable to the relatively small sample sizes
of previous clinical studies, variable penetrance, and no
standardized system for phenotype grading using multi-
modal imaging. Some variability may be due to genetic
modifiers in ROM1 and ABCA4.7,8 Poloschek et al.7 found
patients who carry the p.Arg172Trp variant in PRPH2
demonstrated an isolated MD, whereas those carrying addi-
tional variants in the ROM1 or ABCA4 gene exhibited a
more severe phenotype. However, Leroy et al.8 excluded
variants in ROM1 as a modifier for an RP phenotype in
PRPH2 disease. A recent case series of 19 PRPH2 patients
by Bianco et al.9 proposed that missense variants in the
D2 loop were associated with a cone–rod dystrophy (CRD).
To date, pathogenic missense variants at six codon posi-
tions (Arg142, Arg172, Arg195, Ile196, Arg203, and Gly208)
have been reported to cause CACD.9–17 In contrast, truncat-
ing variants (nonsense and frameshift) have been associated
with a range of phenotypes including VMD, BPD, PSPD, and
RP.

This study describes the clinical and genetic spectrum of
PRPH2-associated IRD, including 22 novel pathogenic vari-
ants. Herein we report genotype–phenotype correlations in

the largest multicenter case series of 241 patients harbouring
91 unique pathogenic or likely pathogenic PRPH2 variants.
Given the marked variability of disease, our findings will be
useful for defining cohorts for inclusion in future clinical
trials.

METHODS

Study Population

A retrospective cohort study of patients carrying a
pathogenic or likely pathogenic variant in the PRPH2
gene. Family members carrying the same variant were also
included where available. Patients were identified from the
Australian Inherited Retinal Diseases Registry and DNA
bank with phenotypic data acquired through the Western
Australia Retinal Degeneration Study, an extensive database
for IRDs that currently includes more than 900 patients
referred from 2017 to December 2023 at the Lions Eye
Institute (Perth, Australia). Additional data were collected
from the Centre for Eye Research Australia (Melbourne,
Australia), Save Sight Institute (Sydney, Australia), Royal
Brisbane and Women’s Hospital (Brisbane, Australia), New
Zealand National Eye Centre (Auckland, New Zealand),
IRCCS Fondazione Bietti (Rome, Italy), IRCCS San Raffaele
Scientific Institute (Milan, Italy), IRD-PT registry18 (Coimbra,
Portugal), Amsterdam University Medical Centers (Amster-
dam, the Netherlands), National Taiwan University Hospi-
tal, (Taipei, Taiwan), Singapore National Eye Centre (Singa-
pore, Singapore), The Hospital for Sick Children (Toronto,
Ontario, Canada), Shiley Eye Institute, University of Califor-
nia San Diego (San Diego, CA, USA), and Wills Eye Hospital
(Philadelphia, PA, USA).

This study was approved by the institutional
review boards of the University of Western Australia
(2021/ET000151), Sir Charles Gairdner Hospital (RGS04985,
1998-115), Royal Victorian Eye and Ear Hospital/Centre for
Eye Research Australia (19/1443H), New Zealand Ministry
of Health (NTX/08/12/123), Auckland District Health
Board (A+4290), the Save Sight Institute (2022/PID01932),
Sezione IFO/Fondazione Bietti (NEU_01-2014), Vita-Salute
San Raffaele University (MIRD2020), University of Coimbra
(CE-125/2019), Erasmus Medical Center (NL34152.078.10),
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National Taiwan University Hospital (IRB 201408082RINC),
Singapore ethics review board (2015/2766), University of
California San Diego (IRB 120516), Wills Eye Hospital
(IRB 2021-85), and the Hospital for Sick Children (REB-
1000017804). It adhered to the tenets of the Declaration
of Helsinki, and informed consent was obtained from all
participants or their legal guardians.

Clinical Data Collection

Data were collected for age at symptom onset, family history,
visual acuity (VA), electrophysiological testing, and clinical
imaging, including SD-OCT, fundus autofluorescence (FAF),
and colour imaging. Age at onset was defined as the year
in which the first symptoms were noted. VA was measured
on either a Snellen-style or a logMAR-style chart, such as
the Early Treatment Diabetic Retinopathy letter chart. Optos
ultrawide field FAF imaging (Optos PLC, Dunfermline, UK)
was used for phenotype grading where possible. Heidelberg
HRA+OCT (Heidelberg Engineering, Heidelberg, Germany)
55° or 30° blue wavelength FAF images were graded when
Optos images were not available. All SD-OCT scans were
obtained using Heidelberg Spectralis.

FAF grading was performed by two independent examin-
ers (FKC and RCHJ) and included the following phenotypes:
normal, VMD, BPD, CACD, PSPD, and RP. The CACD pheno-
type, as originally described by Hoyng et al.19 and Boon et
al.,20 had a well-defined oval region of stippled hyper and
hypoautofluorescence in the central macular with or without
a radial configuration of hyperautfluorescence at the border
and hypoautofluorescent patches within.19 As per Boon et
al.20 using color, FAF, and fluorescein angiography, CACD
may reach the temporal vascular arcade superiorly and infe-
riorly and encompass the optic nerve, nasally with no peri-
papillary sparing. We only included cases with stages 2 to 4
of the Hoyng et al.19 classification system, which was based
on color and fluorescein angiography. This was due to the
difficulty in distinguishing stage 1 CACD from VMD or BPD.
The PSPD phenotype included focal hyperautofluorscent or
fleck-like lesions, with or without stippled hypoautofluores-
cence spreading, centrifugally beyond the arcades resem-
bling Stargardt disease. The RP phenotype was character-
ized by peripheral hypoautofluorescence with or without a
central hyperautofluorscent ring. Any grading disagreements
were resolved by a third examiner (CJFB).

Electrophysiology was performed in accordance with the
International Clinical Electrophysiology of Vision Society
Standards.21–23 Full-field ERG traces were reviewed, and
component parameters were extracted and compared with
a control cohort at Sir Charles Gairdner Hospital, Perth,
Australia. A cone dystrophy (COD) was noted if the light-
adapted (LA) responses showed a-wave reduction and flicker
delay, whereas the dark-adapted (DA) responses were within
the normal range. CRD was defined by a more severe LA
than DA response component deficit. A rod–cone dystrophy
(RCD) was defined by a more severe DA than LA response
component deficit (typically with no signal detectable in the
DA 0.01 cd/m2 test). MD was defined by a reduced P50 on
the pattern ERG (PERG) or central response density loss on
multifocal ERG with the DA and LA response components
within the normal range.

Some of these cases have been published previously by
Heath Jeffery et al.24 (n = 12), Bianco et al.9 (n = 19), and
Antonelli et al.25 (n = 28).

Genetic Data Collection

Variants in the PRPH2 gene were identified using a range of
molecular strategies over time. All variants were confirmed
with Sanger sequencing or whole exome sequencing.
Genetic testing was performed with next-generation
sequencing. Pathogenicity of PRPH2 variants was assigned
based on the American College of Medical Genetics and
Genomics guidelines and associated literature.26,27 Previ-
ous disease associations were explored in the Human Gene
Mutation Database, Leiden Open Variation Database (http://
databases.lovd.nl/shared/genes/PRPH2), and ClinVar (https:
//www.ncbi.nlm.nih.gov/clinvar/). Potential pathogenicity
of variants was assessed in silico with different tools, includ-
ing functional pathogenicity and protein stability predic-
tors using PolyPhen2,28 SIFT,29 REVEL,30 and CADD31 for
missense variants, SIFT-Indel32,33 and VEST-434 for in-frame
amino acid alterations and frameshift variants, Mutation
Taster35 and ENTPRISE-X36 for nonsense and delins, and
Splice AI37 for splicing-altering variants.

Statistical Analyses

All analyses were performed in R software version 4.1.3
(The R Core Team, Vienna, Austria) and R Studio version
2022.07.1 (RStudio Team, Boston, MA, USA). Categori-
cal data was expressed as proportions, and continuous
data as means with standard deviations or a median
and interquartile range (IQR). For genotype–phenotype
correlations, genotypes were stratified into exon dele-
tions, missense, in-frame indels, frameshift, nonsense, splic-
ing, and start–loss. Clinical features considered for statis-
tical analysis were age at symptom onset, VA, FAF grad-
ing, and ERG parameters. Visual impairment was recorded
according to the World Health Organization: mild (VA,
<20/40 and ≥20/60), moderate (VA, <20/60 and ≥20/200),
severe (VA, <20/200 and ≥20/400), and blindness (VA,
<20/400). VA data measured on a Snellen-style chart
was converted to logMAR equivalent, and off-chart levels
of vision were assigned a logMAR value of 2.0 for
counting fingers, 2.3 for hand movements, and 2.6 for
light perception. A locally estimated scatterplot smooth-
ing curve was constructed using VA from the better-
seeing eye (lowest logMAR value) to illustrate the aver-
age evolution of VA with age across the cohort. Interocu-
lar symmetry in VA was determined by Bland-Altman anal-
ysis and Spearman rho. One-way ANOVA and Kruskal–
Wallis testing compared clinical variables across differ-
ent FAF phenotypes. Mann–Whitney U testing was used
to compare ERG parameters in the PRPH2 cohort with
controls. Bonferroni correction was applied, where appro-
priate, for post hoc comparisons and multiple testing.
Statistical significance was set at a P value of less
than 0.05.

RESULTS

Clinical Presentation and Visual Function

A total of 241 patients from 168 presumably unrelated fami-
lies with a PRPH2-associated IRD were recruited at a median
age of 56 years (range, 7–89 years). Age at symptom onset
was available for 189 patients and 20 were asymptomatic
at their last review. The median age at symptom onset was
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TABLE 1. Clinical Characteristics of PRPH2 Patients

Characteristics PRPH2 Cohort (n = 241)

Age at imaging (y) (n = 241)
Mean ± SD 54.8 ± 15.5
Median (IQR) 55.8 (Q1, 44.9; Q3, 66.9)
Range 7–89

Sex (M:F) 118:123
Age at symptom onset (n = 189)
Median (IQR) 40 (Q1, 30; Q3, 50)
Range 4–78

Last available VA in the right eye (n = 241)
Median VA, in logMAR (IQR) 0.18 (Q1, 0; Q3, 0.54)
Median VA, in Snellen equivalent

(IQR)
20/30 (Q1, 20/20; Q3, 20/80)

Last available VA in the left eye (n = 241)
Median VA, in logMAR (IQR) 0.18 (Q1, 0; Q3, 0.42)
Median VA, in Snellen equivalent

(IQR)
20/30 (Q1, 20/20; Q3, 20/60)

FAF, n/total (%)
Normal 13/241 (5%)
BPD/VMD 27/241 (11%)
CACD 68/241 (28%)
PSPD 98/241 (41%)
RP 35/241 (15%)

ERG, no/total (%)
Normal ffERG and PERG 8/100 (8%)
MD 21/100 (21%)
COD 16/100 (16%)
Cone-rod dystrophy 17/100 (17%)
Rod-cone dystrophy 38/100 (38%)

ffERG, full-field ERG.

40 years (IQR, 30–50 years; range, 4–78 years) (Table 1). The
20 asymptomatic patients were last reviewed at a median
age of 39 years (range, 10–65 years). VA for the right and
left eye was available for 241 patients. Median VA was 0.18
logMAR (IQR, 0–0.54 logMAR), or 20/30 Snellen equivalent
(IQR, 20/20–20/80 Snellen equivalent) for the right eye, and
0.18 logMAR (IQR, 0–0.42 logMAR) or 20/30 Snellen equiv-
alent (IQR, 20/20–20/60 Snellen equivalent) for the left eye.

Although some interocular differences were large (−2.20 to
+2.50), the mean VA between right and left eye was not
significantly different (paired t test, P = 0.11).

Overall, VA showed stability until the fifth decade with a
decline thereafter (Fig. 1). The proportion of patients with
normal vision in their better seeing eye also declined with
age (Fig. 1). Of 241 patients, 55 (22.8%) showed interocular
asymmetry in VA greater than 0.3 logMAR. The 95% limits of
agreements were −0.97 to +1.07 logMAR (Supplementary
Material S1).

Fundus Autofluorescence

Of 241 PRPH2 disease-associated variant carriers FAF was
normal in 13 (5%), at a median age of 33 years (range,
7–71 years); of these 13 patients, 10 (77%) were asymp-
tomatic (Fig. 2). Twenty-seven patients (11%) demonstrated
a BPD (n = 21) or VMD (n = 6) FAF phenotype (Fig. 3),
of which 3 (11%) were asymptomatic and the remain-
ing 24 had a median age at symptom onset of 44 years
(range, 26–70 years). The CACD FAF phenotype (Fig. 4)
was observed in 68 patients (28%), with a median age
at symptom onset of 40 years (range, 14–70 years) in 55
patients; 3 patients were asymptomatic (age, 13–55 years).
PSPD (Fig. 5) was seen in 98 patients (41%) with a median
age at symptom onset of 40 years (range, 7–78 years) in
73 patients; 4 patients were asymptomatic (range, 30–55
years). RP (Fig. 6) was observed in 35 patients (15%) with
a median age at symptom onset of 33 years (range, 4–
63 years) in 34 patients. Table 2 summarises the clinical
features of each FAF phenotype. There were no significant
difference in the sex distribution (P = 0.751). A younger
age at imaging was observed in the normal FAF group
(P < 0.001), which was likely a result of familial screen-
ing. Age at symptom onset was lower in the RP group as
compared with BPD/VMD (P = 0.048) or PSPD (P = 0.015).
VA in the better seeing eye was worse in the CACD group
as compared with BPD/VMD (P = 0.035). An age-related
decline in VA from the sixth decade was observed across
all CACD, PSPD, and RP phenotype groups (Supplementary
Material S2).

FIGURE 1. Locally estimated scatterplot smoothing (LOESS) curve using VA from the better-seeing eye illustrating the average evolution of
VA with age across the entire cohort (A). Proportion (%) of PRPH2 patients with normal, mild (VA, <20/40 and ≥20/60), moderate (VA,
<20/60 and ≥20/200), severe visual impairment (VA, <20/200 and ≥20/400) and blindness (VA, <20/400) by age at imaging (B).
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FIGURE 2. Optos pseudocolor, FAF, and SD-OCT imaging of a 40-year-old woman (A, B, C), a 39-year-old woman (D, E, F), and a 40 year-old-
man (G, H, I) harboring the p.(Asp207_Val209del), p.(Try204Ter), and p.(Ser198Arg) PRPH2 variants respectively. All three patients show
normal pseudocolor and FAF imaging with thickening of band 2 on SD-OCT.

Electrophysiology

Full-field, pattern, and multifocal ERG (mfERG) data were
available for 100 patients and this was performed at a
median age of 52 years (range, 9–81 years). Of these patients,
29 (29%) had no generalized cone or rod dysfunction on
full-field ERG. Of those remaining, 16 patients (16%) had
isolated COD, 17 (17%) had CRD, and 38 (38%) had RCD
(Table 2). Of the 29 patients with a normal full-field ERG,
26 had a PERG and 16 had a mfERG. Of those with a
PERG, 8 (31%) were subnormal, whereas all 16 mfERG
(100%) showed reduced response densities indicating macu-
lar dysfunction. Combining our PERG and mfERG data, 21
of 29 without generalized retinal dysfunction had evidence
of localized macular dysfunction. Of the 12 with electroocu-
logram (EOG) and no generalized dysfunction on full-field
ERG, 2 (16.7%) had a reduced Arden ratio (<1.7).38 Of the
87 patients with detectable a- and b-waves with the DA3.0
response, 7 (8%) had a reduced b:a ratio (<1.2) in one or
both eyes. In contrast, 31 patients (31%) had a reduced b:a
ratio (<3.0) with the LA3.0 response in one or both eyes.
Thus, this reduced b:a ratio was more frequently observed
with the LA3.0 response as compared with DA3.0 (Supple-
mentary Material S3). A cohort of controls (female:male ratio
of 20:24) with a mean age of 54 years (range, 19–77 years)

were enrolled from one site and tested with the RETIport
3.2 (Roland Consult, Brandenburg, Germany). Comparisons
were made between the controls and the entire PRPH2
cohort (Fig. 7). Information regarding the regression lines
featured in Figures 7 and 8 is provided in Supplementary
Material S3. Further comparisons were performed against
a subset of PRPH2 patients who were tested under the
same conditions and at the same institution as the controls
(Table 3, Supplementary Material S3).

Our PRPH2 cohort showed a steeper decline in amplitude
with age for both the DA0.01 and LA30 Hz when compared
with controls (Fig. 7). The peak time was delayed in the
LA30 Hz indicating cone system dysfunction. The a-wave in
the DA3.0 and LA3.0 showed a greater age-related decline
in the PRPH2 group as compared with controls (Fig. 8). A
delayed peak time was observed in the LA3.0 b-wave. A
subanalysis at one Australian site between the PRPH2 cohort
and controls showed a significant difference in all DA and
LA amplitude parameters (P < 0.001) with significant delays
in the LA30 Hz and LA3.0 b-wave implicit times (P < 0.001)
(Table 3). Of those exhibiting a normal or BPD/VMD FAF
phenotype, most had a normal ERG or isolated macular
dysfunction, whereas those with a PSPD or RP phenotype
typically showed generalized rod and cone abnormalities
(Table 2). Conversely, those with CACD had a varied elec-
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FIGURE 3. Optos FAF imaging of six PRPH2 patients exhibiting focal central macula hyperautofluorescence defined as a BPD or VMD. An
88-year-old woman with a VA of 20/25 harboring exon 3 deletion (A), a 49-year-old woman with a VA of 20/20 harboring p.(Met1TyrfsTer2)
(B), a 47-year-old woman with a VA of 20/16 harboring p.(Asp237_His238delinsThr) (C), a 66-year-old man with a VA of 20/25 harboring
p.(Gly167Ser) (D), a 57-year-old woman with a VA of 20/20 harboring p.(Tyr204Ter) (E), and a 66-year-old woman with a VA of 20/25
harboring c.828+1G>A (F).

trophysiological phenotype ranging from a normal full-field
and PERG (n = 4), MD (n = 9), COD (n = 7), to CRD (n =
2) (Supplementary Material S3).

Genetic Characteristics

Ninety-one unique variants were identified consisting of 46
missense, 5 inframe deletions, 21 frameshift, 12 nonsense,
2 exon deletions, 4 splice-site, and 1 start–loss. All variants
were likely pathogenic or pathogenic based on American
College of Medical Genetics criteria (Tables 4 and 5, Supple-
mentary Material S4). Among the 46 missense variants at 36
codon positions, 5 amino acid substitutions at 5 codon posi-
tions and 1 inframe deletion–insertion were novel (Fig. 9,
Supplementary Material S4). Sixteen of the 40 truncating or
start–loss variants were also novel.

Of the 51 variants that altered protein sequence, 45
were localized to the D2 loop, whereas 1 resided in the N-
terminal, 2 were in the transmembrane domain 1 (TMD1),
and 3 were in the C-terminal (Fig. 9). The most common
missense variants were at codon positions Arg172 (n =
35), Gly208 (n = 16), Gly167 (n = 12), and Glu178 (n =
10). There were 33 frameshift or nonsense variants occur-
ring within exon 1 (n = 20), exon 2 (n = 7), and exon

3 (n = 6) that elicited a premature stop codon. The most
common truncating variants occurred at positions Trp97Ter
(n = 9), Tyr204Ter (n = 8), and Arg46Ter (n = 7) and
at nucleotides c.394del p.(Gln132LysfsTer7) (n = 6) and
c.259_266del p.(Asp87GlnfsTer87) (n = 6).

There were 71 patients with a CACD FAF phenotype
carrying 13 missense variants at 10 codon positions. One
of these missense variants p.(Ile196Asn) also manifested
PSPD in one case and two cases with p.(Gly208Asp) and
p.(Pro219Arg) had a normal FAF. In 85 patients with trun-
cating, splice or start–loss variants, FAF phenotypes included
PSPD (58%), BPD/VMD (21%), RP (16%), and normal
(5%). The three most common frameshift and nonsense
variants showed a similar FAF distribution (PSPD 57.5%,
BPD/VMD 22.5%, RP 17.5%, and normal 2.5%). Notably,
no truncating variants manifested a CACD phenotype.
The three most common missense variants: p.(Tyr141Cys),
p.(Gly167Ser) and p.(Glu178Arg) showed a similar FAF
phenotype distribution (PSPD 67.7%, RP 22.6%, BPD/VMD
6.5%, and normal 3.2%). In-frame deletions appeared to
be associated with a larger proportion of patients with
a normal FAF (33% vs. 5%) and a lower frequency of
PSPD as compared with truncating or null variants (33% vs.
58%).
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FIGURE 4. Optos FAF imaging of PRPH2 patients demonstrating the CACD phenotype. A 53-year-old woman with VA of 20/25 harbor-
ing p.(Arg142Trp) (A), a 45-year-old man with a VA of 20/60 harboring p.(Arg172Pro) (B), an 89-year-old woman with a VA of 20/250
harboring p.(Arg172Leu) (C), a 46-year-old woman with a VA of 20/20 harboring p.(Arg172Gln) (D), a 67-year-old woman with a VA
of 20/60 harboring p.(Arg172Trp) (E), a 33-year-old man with a VA of 20/20 harboring p.(Asp186Asn) (F), a 53-year-old man with a VA
of 20/60 harboring p.(Arg195Gln) (G), a 27-year-old man with a VA of 20/40 harboring p.(Ile196Asn) (H), a 48-year-old man with a VA of
counting fingers harboring p.(Val200Ala) (I), a 68-year-old man with a VA of 20/120 harboring p.(Gly208Asp) (J), a 61-year-old woman with
a VA of 20/30 harboring p.(Pro219Arg) (K), a 61-year-old man with a VA of 20/15 harboring p.(Thr228Ile), (L) and a 53-year-old woman
with a VA of 20/30 harboring p.(Ala232Val) (M).

FIGURE 5. Optos FAF imaging of PRPH2 patients demonstrating the PSPD phenotype. A 66-year-old woman with a VA of 20/200 harboring
an exon 3 deletion (A), a 55-year-old woman with a VA of 20/80 harboring p.(Gln132LysfsTer7) (B), a 59-year-old woman with a VA of
20/20 harboring p.(Lys154del) (C), a 61-year-old woman with a VA of 20/40 harboring p.(Ile196Asn) (D), a 51-year-old woman with a VA of
20/20 harboring p.(Tyr204Ter) (E), and a 67-year-old woman with a VA of 20/90 harboring c.828+3A>T (F).
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FIGURE 6. Optos FAF imaging of PRPH2 patients demonstrating the RP phenotype. A 48-year-old woman with VA of 20/40 harboring
p.(Gln132LysfsTer7) (A), a 55-year-old woman with a VA of 20/25 harboring p.(Asp237_His238delinsThr) (B), a 71-year-old woman with a
VA of 20/30 harboring p.(Gly167Ser) (C), and a 36-year-old woman with a VA of 20/25 harboring p.(Tyr204Ter) (D).

TABLE 2. Clinical Characteristics of Each Phenotype Group

Phenotype Group Normal BPD/VMD CACD PSPD RP P Value

No. of cases 13 27 68 98 35
Sex
Female:male 7:6 17:10 35:35 48:50 18:17 0.751a

Age at imaging
Mean ± SD 32 ± 17 56 ± 13 53 ± 16 60 ± 12 52 ± 15

< 0.001†,‡
Median (IQR) 33 (20–40) 56 (48–66) 54 (42–63) 61 (51–70) 52 (38–62)

Asymptomatic count/total (%) 10/13 (77%) 3/27 (11%) 3/58 (5%) 4/77 (5%) 0/34 (0%)
Age of symptom onset
Mean ± SD 31 ± 34 45 ± 12 41 ± 13 44 ± 14 34 ± 17

0.004†,§
Median (IQR) 20 (13–45) 44 (40–51) 40 (34–50) 40 (35–53) 33 (20–48)

Better eye VA (logMAR)
Median (IQR) 0 (0–0.1) 0.02 (0–0.1) 0.2 (0–0.7) 0.1 (0–0.3) 0.1 (0–0.2) 0.002‖ ,¶

Electrophysiology
Normal* 2 2 4 0 0
Macular dystrophy 0 3 9 9 0
Cone dystrophy 0 4 7 5 0
Cone-rod dystrophy 0 0 2 15 0
Rod-cone dystrophy 0 0 0 15 23

* Normal full-field and PERG.
a χ2 test.
† One-way ANOVA.
‡ The normal group was significantly lower than all other groups (all P < 0.001). The PSPD group was significantly higher than both the

CACD (P = 0.012) and RP (P = 0.017) groups.
§ The RP group was younger than both BPD/VMD (P = 0.048) and PSPD (P = 0.015)
‖ Kruskal–Wallis test.
¶ VA for the BPD/VMD group was significantly lower than the CACD croup (P = 0.035)

DISCUSSION

This large, international, multicenter study describes the
clinical and genetic spectrum of 241 patients with 91 unique
pathogenic or likely pathogenic PRPH2 variants. Although
the severity of PRPH2-associated IRD can vary consider-

ably, VA often remained relatively stable until the fifth
decade, with a constant decline thereafter. There was a range
of retinal presentations including five distinct FAF pheno-
types. Within each FAF phenotype group, there was often
a spectrum of electrophysiological changes. Importantly,
we observed 13 specific missense variants in the PRPH2
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FIGURE 7. Scatter plots for electrophysiologic parameters and age. The full-field ERG component amplitudes and peak times in PRPH2
patients (black circles) and unaffected controls (grey circles) are plotted against age. Data are shown for the DA 0.01 ERG (A and B), LA
30-Hz ERG (C and D). Regression lines are shown for the PRPH2-associated retinopathy (solid line) and control (grey broken line) data.

gene that were strongly associated with a CACD pheno-
type. Conversely truncating variants resulted in variable FAF
phenotypes.

In previous PRPH2 cohorts, clinical and electrophys-
iological terms have often been used without a clear
distinction between their structural and functional associ-
ations.9,25,39 Some studies classified patients as having a
pattern dystrophy based on morphological features, includ-
ing macular pigmentary changes in combination with func-
tional features such as a normal or minimally abnor-
mal full-field ERG.9 In contrast, we classified patients into
normal, BPD, VMD, PSPD, CACD, and RP groups based
on their FAF pattern. We showed one FAF phenotype may
have multiple ERG phenotypes and vice versa (Table 2).
For example, PSPD was associated with MD (21%), COD
(11%), CRD (34%), and RCD (34%) ERG phenotypes. Our
observation of concurrent cone and rod dysfunction (68%)
was like that reported by Boon et al. where one-half of

the 17 patients with PSPD had cone and rod dysfunc-
tion.40 Conversely, a COD was observed across the BPD,
CACD, and PSPD FAF phenotypes groups. We observed
a reduced b:a ratio in 8% and 31% of the rod and cone
responses, respectively. This may be attributable to addi-
tional inner retinal dysfunction as previously described
by Ba-Abbad et al.41 The reduced b:a ratio in the DA3.0
response may also represent a predominance of DA cone
responses with markedly reduced rods (manifesting as a
photopic hill phenomenon in the dark). Thus, future studies
need to incorporate the red DA3.0 and DA10.0 responses
to look for DA cone responses and the photopic hill
phenomenon, respectively.42 This discordance between FAF
and ERG phenotyping supports our proposal that clinicians
should incorporate both standardized FAF and ERG grad-
ing systems. Because three ERG groups have been proposed
in ABCA4-associated retinopathy,43 future longitudinal stud-
ies should investigate the prognostic value of ERG grad-
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FIGURE 8. Scatter plots for electrophysiologic parameters and age. The major full-field ERG component amplitudes and peak times in PRPH2
patients (black circles) and unaffected controls (grey circles) are plotted against age. Data are shown for the DA3.0 ERG a-wave (A, B) and
b-wave (C, D), LA 3.0 ERG a-wave (E, F) and b-wave (G, H). Regression lines are shown for the PRPH2-associated retinopathy (solid line)
and control (grey broken line) data.

TABLE 3. Amplitudes and Peak Times of the Full-Field ERG Components in a Control Group Compared With PRPH2 at a Single Center

Stimulus Component Parameter

PRPH2
n = 25

Median (5th, 95th)

Control
n = 44

Median (5th, 95th) P Value*

DA 0.01 b-wave Amplitude peak time 81 (0, 349) 162 (97, 253) <0.001
94 (75, 110) 93 (85, 101) 1.000

DA 3.0 a-wave Amplitude peak time 72 (0, 271) 163 (127, 235) <0.001
22 (13, 26) 22 (21, 23) 1.000

b-wave Amplitude peak time 137 (13, 466) 280 (211, 372) <0.001
50 (37, 62) 50 (48, 55) 1.000

LA 30-Hz flicker Amplitude peak time 39 (4, 123) 81 (53, 126) <0.001
30 (26, 42) 27 (25, 28) <0.001

LA 3.0 a-wave Amplitude peak time 15 (0, 56) 23 (16, 38) 0.003
16 (13, 20) 15 (14, 17) 0.214

b-wave Amplitude peak time 52 (4, 168) 107 (77, 166) <0.001
33 (29, 41) 30 (28, 32) <0.001

DA, dark adapted; LA, light adapted.
Amplitudes are in microvolts and peak times are in milliseconds. Statistical significance was established using the Mann–Whitney U test.
* Statistically significant after Bonferroni correction.

ing for predicting visual outcomes in PRPH2-asssociated
IRD.

Of 91 different PRPH2 variants, there were 21 frameshift,
12 nonsense, 2 exon deletions, 4 splice-site, and 1 start–
loss, of which most were expected to result in loss of func-
tion or haploinsufficiency. Animal studies44,45 suggest that
haploinsufficiency affects rods more than cones, leading
to RP. However, clinical case series have shown conflict-
ing genotype–phenotype correlations. In a case series of
40 Japanese patients harboring 17 PRPH2 variants, Oishi
et al.46 found no clear genotype–phenotype correlations.
Reeves et al.47 found an association of exon 1 variants with
CRD, PSPD, and RP, whereas a pattern dystrophy was asso-
ciated with variants in exon 2. Bianco et al.9 observed that
loss-of-function variants were associated with a mild pattern

dystrophy and the addition of ABCA4 variants resulted in a
more severe phenotype. Peeters et al.39 listed the missense
variants exclusively associated with RP or a pattern dystro-
phy. In contrast with animal studies, we demonstrated a
predominance of PSPD in more than one-half of these
patients. This result was replicated in a subanalysis of 40
patients carrying the three most common truncating vari-
ants. Variable FAF phenotypes were observed in 73 patients
with missense variants that were not associated with a
CACD phenotype. The similar FAF phenotypic spectrum of
these missense variants to truncating variants suggests these
specific amino acid substitutions may lead to haploinsuffi-
ciency through retention or mislocalization of the PRPH2
protein to the photoreceptor inner segment.48,49 Our obser-
vation that none of the 81 patients with truncating vari-
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TABLE 5. Truncating and Start–Loss Variant List With Phenotype

Codon Nucleotide Change
Protein

Consequence Mutation Type Exon
Protein
Domain Phenotype

ACMG
Class References

c.1A>T p.Met1? Start loss 1 N/A PSPD 5 Peeters et al.39

c.(828+1_829-1)_(*1_?)del Exon 3 deletion Exon deletion 3 N/A BPD; PSPD 4 Novel
deletion of exon 1 Exon 1 deletion Exon deletion 1 N/A N; PSPD 5 Novel

c.582-1G>A p.(?) Splicing intron 1 N/A PSPD 5 Reeves et al.47; Bianco et al.9

c.828+1G>A p.(?) Splicing intron 2 N/A BPD 5 Peeters et al.39

c.828+2T>C p.(?) Splicing intron 2 N/A PSPD 5 Peeters et al.39

c.828+3A>T p.(?) Splicing intron 2 N/A PSPD 5 Peeters et al.39; Sullivan et al.94

46 c.136C>T p.Arg46Ter Nonsense 1 D1 BPD; PSPD;
RP

5 Bianco et al.9

97 c.290G>A p.Trp97Ter Nonsense 1 C BPD; VMD;
PSPD; RP

5 Bianco et al.9

97 c.291G>A p.Trp97Ter Nonsense 1 3rd TM N 4 Novel
126 c.372_381de

linsAAGCTGA
p.Leu126Ter Nonsense 1 D2 N 4 LOVD

179 c.536G>A p.Trp179Ter Nonsense 1 D2 RP 4 LOVD
191 c.571G>T p.Glu191Ter Nonsense 1 D2 PSPD; RP 5 Birtel et al.58; Duncker et al.95;

Peeters et al.39

195 c.583C>T p.Arg195Ter Nonsense 2 D2 PSPD 5 Peeters et al.39; Alapati et al.51

197 c.589A>T p.Lys197Ter Nonsense 2 D2 PSPD 4 Novel
204 c.612C>G p.Tyr204Ter Nonsense 2 D2 N; BPD;

PSPD; RP
5 Birtel et al.58; Peeters et al.39

236 c.708C>A p.Tyr236Ter Nonsense 2 D2 PSPD 5 Novel
257 c.771_772delinsGA p.Tyr257Ter Nonsense 2 D2 PSPD 4 Bianco et al.9

300 c.897dup p.Glu300Ter Nonsense 3 COOH BPD 4 Novel
1 c.1_7del p.Met1TyrfsTer2 Frameshift 1 NH2 BPD; PSPD;

RP
4 Novel

12 c.33del p.Lys12SerfsTer12 Frameshift 1 1st TM BPD 5 Novel
23 c.68del p.Met23ArgfsTer15 Frameshift 1 1st TM VMD; PSPD 4 Bianco et al.9

25 c.73_74del p.Trp25ValfsTer19 Frameshift 1 1st TM VMD; PSPD 5 Kajiwara et al.87

38 c.113del p.Gly38AspfsTer4 Frameshift 1 1st TM BPD 5 Yang et al.88; Reeves et al.47

42 c.115delinsTTGTTCCT p.Lys42ValfsTer5 Frameshift 1 D1 PSPD 4 Novel
60 c.172_176dup p.Val60IlefsTer7 Frameshift 1 2nd TM PSPD 5 Novel
72 c.212_213insAT p.Cys72SerfsTer28 Frameshift 1 C RP 4 Novel
87 c.259_266del p.Asp87GlnfsTer87 Frameshift 1 D2 PSPD 5 Reeves et al.47; Carss et al.78

132 c.394del p.Gln132LysfsTer7 Frameshift 1 D2 VMD; PSPD;
RP

5 Boon et al.40

147 c.440del p.Pro147LeufsTer6 Frameshift 1 D2 PSPD 4 Novel
148 c.441del p.Gly148AlafsTer5 Frameshift 1 D2 PSPD 5 Kajiwara et al.87; Boon et al.40;

Birtel et al.58

156 c.468_481delinsG p.Ile156MetfsTer96 Frameshift 1 D2 PSPD 4 Novel
193 c.578_579del p.Lys193ArgfsTer24 Frameshift 1 D2 BPD 5 Birtel et al.58

216 c.646_649delinsGG p.Pro216GlyfsTer84 Frameshift 2 COOH PSPD 5 Reeves et al.47

236 c.702_706dup p.Tyr236SerfsTer22 Frameshift 2 D2 PSPD 4 Bianco et al.9

246 c.734dup p.Trp246ValfsTer55 Frameshift 3 COOH PSPD 4 Sodi et al.89

301 c.903del p.Ser301ArgfsTer23 Frameshift 3 COOH RP 4 Novel
304 c.910_911insG p.Gln304ArgfsTer88 Frameshift+Elong 3 COOH RP 4 Novel
315 c.943dup p.Thr315AsnfsTer77 Frameshift+Elong 3 COOH RP 4 Novel
322 c.964_965del p.Ser322CysfsTer69 Frameshift+Elong 3 COOH PSPD 4 Reeves et al.47

154 c.461_463del p.Lys154del Inframe deletion 1 D2 PSPD 5 Weleber et al.90

169 c.505_507del p.Asn169del Inframe deletion 1 D2 PSPD 5 van Lith-Verhoeven et al.91

207 c.618_626del p.Asp207_Val209del Inframe deletion 2 D2 N; RP 5 Kalyanasundaram et al.92

237 c.709_714delinsACA p.Asp237_His238
delinsThr

Inframe deletion 2 D2 N: VMD: RP 4 Novel

271 c.811_813del p.Leu271del Inframe deletion 2 D2 N; PSPD; RP 5 Jin et al.93

ACMG, American College of Medical Genetics; COOH, carboxyl terminus; D2, D2 loop; NH2, amine terminus; TM, transmembrane.

ants demonstrated a CACD FAF phenotype warrants further
consideration.

CACD was observed in 71 patients harboring 13 missense
variants at 10 codon positions. Nearly all of these variants
exhibited a CACD phenotype with the exception of
p.(Ile196Asn), which also manifested as a PSPD in one
patient. Before this paper the CACD phenotype had only
been associated with missense variants at five codon
positions. The p.(Pro219Arg) and p.(Thr228Ile) variants

have been reported with a macular and pattern dystro-
phy respectively, despite no FAF imaging.50,51 Similarly,
p.(Asp186Asn) was reported to manifest a CRD and RP
phenotype without supportive FAF imaging.13 Although
substitutions at Arg172 to Trp or Gln have been described,
p.(Arg172Pro) and p.(Arg172Leu) have not been reported
previously to cause CACD. Despite previous reports
suggesting truncating PRPH2 variants can cause CACD,
we propose CACD only presents with specific missense



Retinal Dystrophies Associated With Peripherin-2 (PRPH2) IOVS | May 2024 | Vol. 65 | No. 5 | Article 22 | 14

FIGURE 9. Position and type of PRPH2 truncating variants (nonsense, frameshift, start-loss, splice site) by exon location (A). Missense and
inframe deletion variants and their protein positions within our PRPH2 cohort (B).

variants. Antonelli et al.25 described a case of CACD with
p.(Trp246ValfsTer55). FAF imaging, however, was atypical,
demonstrating central macular hypoautofluorescence, and
hyperautofluorescence fleck-like deposits that extended
beyond the vascular arcades. Daftarian et al.52 described
p.(Gln239Ter) to be associated with CACD. Their FAF
imaging, however, was more suggestive of a PSPD. To
date, Boon et al.20 have published the largest case series
of CACD including 103 patients, most of whom carried
the p.(Arg142Trp) variant. Other PRPH2 variants, including
p.(Arg172Trp),53–55 p.(Arg172Gln),53,12 p.(Arg195Gln),17,51

p.(Arg195Leu),14,15,56 p.(Asp196Asn),9,39,47 p.(Arg203Pro),16

and p.(Gly208Asp)13,57,58 have also been associated
with CACD. Nonpenetrance has been associated with
p.(Arg172Trp) up to the age of 24.5 Full penetrance was
initially described with p.(Arg142Trp); however, Boon
et al.4 later described three families with evidence of
nonpenetrance. In our cohort, two cases with normal FAF
harbored the p.(Gly208Asp) and p.(Pro219Arg) variants;
the former was reported previously to have incomplete
penetrance.59 Both variants were also shown to exhibit a
CACD phenotype in this study. We found some carriers may
remain asymptomatic up to 69 years of age. Within our
cohort, nonpenetrance, defined as an absence of macular
abnormalities on fundus color or FAF imaging, was seen in
nearly 6% of patients (13/241) and observed up to 71 years
of age. In contrast, Boon et al.4 proposed nonpenetrance
may be up to 21% in CACD-specific variants; however, this
estimate may not be generalizable to our cohort. Finally,
a knock-in animal model of CACD due to p.(Arg195Leu)
demonstrated a progressive decrease in VA and ERG
amplitudes in both scotopic and photopic conditions.60

Our ERG data for CACD showed a similar trend toward
greater cone than rod involvement as reported previously
by Hoyng and Deutman.19 It is intriguing that these animals
exhibited evidence of disrupted communication between

photoreceptors, bipolar and horizontal cells, supporting the
observation of a reduced b:a ratio.

The current study is subject to the known limitations of
retrospective clinical data entry, such as missing data and
variable protocols, as well as devices used for VA, FAF, and
ERG acquisition. A prior study described discordance in
VA derived from a Snellen chart compared with a logMAR
chart.61 Thus, any observed trend in VA should be inter-
preted with caution. Future prospective studies using a stan-
dardized VA measurement will reduce this bias. An analysis
of age-related changes in VA, FAF and ERG was not possi-
ble owing to an absence of longitudinal data. Examination
of the ERG waveforms for the DA10.0 response would have
been useful to elucidate the presence of the photopic hill
phenomenon given the reduced b:a ratio we observed in the
DA3.0. In addition, we did not include juxtafoveal lesions
as part of the CACD spectrum, because these were often
difficult to differentiate from VMD and BPD FAF pheno-
types. Future prospective studies with structural and func-
tional parameters will enhance our current knowledge of
disease progression and provide more reliable and stan-
dardized biomarkers for tracking PRPH2 disease progres-
sion.62,63

This study found a large variability in VA, FAF, and
ERG phenotypes in patients with molecularly confirmed
pathogenic or likely pathogenic variants in the PRPH2
gene. We observed significant discordance between FAF
and ERG phenotypes. To our knowledge, this work repre-
sents the largest PRPH2 cohort with multimodal imaging.
We report a novel genotype–phenotype correlation whereby
patients harboring 13 missense variants at 10 codon posi-
tions predominately manifested a CACD phenotype. Addi-
tional studies, including cellular disease models of CACD-
specific variants and longitudinal evaluation with prospec-
tive data, are still required. The detailed clinical and genetic
information provided here will be useful for clinicians to
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aid their work-up of patients with a PRPH2-associated
IRD.
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