
710  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2024;13:710–728.www.psp-journal.com

Received: 18 August 2023  |  Revised: 15 January 2024  |  Accepted: 5 February 2024

DOI: 10.1002/psp4.13115  

R E V I E W

Covariate modeling in pharmacometrics: General points for 
consideration

Kinjal Sanghavi1,*  |   Jakob Ribbing2,*  |   James A. Rogers3,*   |   Mariam A. Ahmed4,*   |   
Mats O. Karlsson5   |   Nick Holford6   |   Estelle Chasseloup5  |   Malidi Ahamadi7  |   
Kenneth G. Kowalski8  |   Susan Cole9  |   Essam Kerwash9   |    
Janet R. Wade10  |   Chao Liu11  |   Yaning Wang12  |   Mirjam N. Trame13  |   Hao Zhu14  |    
Justin J. Wilkins10   |   for the ISoP Standards & Best Practices Committee

1Clinical Pharmacology, Genmab US, Inc., Princeton, New Jersey, USA
2Pharmetheus AB, Uppsala, Sweden
3Metrum Research Group, Tariffville, Connecticut, USA
4Quantitative Clinical Pharmacology, Takeda Pharmaceutical, Cambridge, Massachusetts, USA
5Department of Pharmacy, Uppsala University, Uppsala, Sweden
6Department of Pharmacology & Clinical Pharmacology, University of Auckland, Auckland, New Zealand
7Modeling and Simulation, Sanofi, Bridgewater, Sanofi, USA
8PMetrics Consulting, Northville, Michigan, USA
9Medical and Healthcare product Regulatory Agency (MHRA), London, UK
10Occams, Amstelveen, The Netherlands
11Applied Innovation Quantitative Solutions, BeiGene, Washington, DC, USA
12Createrna Science and Technology, Clarksburg, Maryland, USA
13Integrated Drug Development Northeast Regional Lead, Certara, Massachusetts, USA
14Division of Pharmacometrics, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver 
Springs, Maryland, USA

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

*These authors should be considered co-first authors. 

Correspondence
Kinjal Sanghavi, Building 2, 777 
Scudders Mill Road, Princeton, NJ 
08536, USA.
Email: sankinjal@gmail.com

Abstract
Modeling the relationships between covariates and pharmacometric model 
parameters is a central feature of pharmacometric analyses. The information 
obtained from covariate modeling may be used for dose selection, dose individu-
alization, or the planning of clinical studies in different population subgroups. 
The pharmacometric literature has amassed a diverse, complex, and evolving col-
lection of methodologies and interpretive guidance related to covariate modeling. 
With the number and complexity of technologies increasing, a need for an over-
view of the state of the art has emerged. In this article the International Society 
of Pharmacometrics (ISoP) Standards and Best Practices Committee presents 
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BACKGROUND

Covariates, or predictor variables, are commonly used 
in pharmacometric models to identify and describe pre-
dictable sources of variability and thereby improve the 
model fit and/or model-based predictions. Both intrin-
sic and extrinsic patient variables are typically used as 
covariates to understand between-subject variability in 
model parameters, such as clearance (CL) and volume 
of distribution (V) in pharmacokinetic (PK) models, 
and occasionally within-subject and residual variabil-
ity.1 The presence of a parameter-covariate association 
by itself does not necessarily imply a causal relationship 
between the covariates and the parameters, but such 
associations may be used to generate causal hypotheses 
and may corroborate or refute prior causal hypotheses. 
External knowledge is typically required to determine 
the extent to which a relationship can be assigned a 
causal2,3 or mechanistic interpretation.

Depending on the domain of application, certain well-
established covariates merit routine consideration. In PK 
applications, common predictors include body size and 
composition,4,5 maturation of organ function,6,7 markers 
of hepatic8 and renal function,9 and differences in meta-
bolic pathways related to genotype and concomitant med-
ication.10,11 Table  1 provides a list of covariates that are 

commonly relevant in assessing the need for dose adjust-
ment in humans.

In some cases, specific covariates may be particularly 
important within a particular therapeutic area. In oncol-
ogy, for example, higher clearance of therapeutic mono-
clonal antibodies has been found to be associated with 
markers of disease severity, such as poor performance sta-
tus at baseline and lower baseline albumin, and the rever-
sal of disease severity by an effective treatment has been 
shown to be associated with a decrease in clearance over 
time.12–14 In regard to pharmacodynamic (PD) parame-
ters, covariate relationships are frequently associated with 
particular parameters of a sigmoid exposure-response 
curve, such as maximum effect (Emax) and concentration 
at 50% maximal effect (C50),15,16 and the specific choice of 
covariates to consider as predictors of these parameters 
depends on the therapeutic area, mechanism of action, 
and the outcome to be modeled.

For the purposes of this article, covariate predictors 
may be classified as being continuous or categorical. 
Continuous variables (including durations of time) are 
numeric and can take a theoretically infinite number of 
values between upper and lower bounds. Examples of 
continuous covariates commonly of interest in PK anal-
yses include weight, age, albumin concentration, and 
creatinine clearance (CLcr; time is another, but it is a 

perspectives on best practices for planning, executing, reporting, and interpret-
ing covariate analyses to guide pharmacometrics decision making in academic, 
industry, and regulatory settings.

T A B L E  1   Common covariates for prediction of dose in humans.

Covariate type Covariate distribution range
Fold change associated with 
covariate range (Parameter) Comment

Size5 0.5–250 kg total body weight 100 (clearance)
500 (volume)

Theory based allometric scaling of mass to 
allometric size

Maturation28 22 to 196 post menstrual weeks 
(up to 3 y post-natal age)

10 (clearance) Empirical sigmoid power function

Organ function9 10–150 mL/min (creatinine 
clearance)

10 (clearance) Only part of total clearance predicted by 
linear function of creatinine clearance

Genotype81 Homozygous recessive – 
homozygous dominant

10 (6-MP) Genotype effects usually much smaller (e.g., 
2-fold) than 6-MP example

Concomitant 
medications82

Without – with concomitant 
medication (sometimes dose 
and time related)

2 Amiodarone inhibition of warfarin 
clearance, rifampicin induction of 
clearance for many drugs

Note: The inclusion of covariates mentioned in this table account for a large part of interpatient variability. After accounting for the influence of the covariates 
the influence of other covariates, such as sex or race is negligible or nonexistent.
Abbreviation: 6-MP, 6-mercaptopurine.



712  |      SANGHAVI et al.

special case). Categorical variables, conversely, contain 
finite numbers of categories or distinct groups, with 
or without a logical order. Sex and race are common 
examples.

OBJECTIVES

Methodologies related to covariate selection, modeling, 
presentation, and interpretation continue to evolve. As 
the number and complexity of these methods increase, 
the need has emerged to summarize the state of the art 
and organize a clear set of points for consideration. The 
intent of this article is to provide such a summary, cov-
ering topics related to the planning, conducting, and in-
terpreting covariate analyses in pharmacometrics. This 
summary provides comparisons and contrasts necessary 
for modelers to make informed and context-aware deci-
sions with respect to methodologies, and to foster valid 
interpretations of results. These considerations of best 
practices are necessarily generic in nature, and it should 
be emphasized that for a specific analysis, prior knowl-
edge or mechanistic understanding should always be 
considered along with the research question at hand. 
Throughout the article, we present examples discussed 
in Supplementary Material S1 using the theophylline PD 
dataset investigated with several different software tools, 
to illustrate the concepts we discuss.17–19

PLANNING COVARIATE ANALYSES

Planning of covariate analyses serves at least two pur-
poses. Primarily, as with any activity, adequate planning 
increases the likelihood of proceeding rationally and ef-
ficiently towards one's objectives. Secondarily, the regula-
tory context that attends many pharmacometric analysis 
entails a need for transparency in decision making. It is 
acknowledged that a full prespecification may not be pos-
sible, however, the degree of prespecification is a crucial 
determinant in assessing the strength of evidence of a 
given finding and may serve as a surrogate for objectivity 
and guard against potential bias.

The following section describes the different aspects of 
planning covariate analysis and thereby offers guidance 
for the prespecification of covariate analyses.

Study design

Where possible, consideration should be given to ensur-
ing multiple design factors, such as adequate sample 

size, data collection time, and adequate dispersion of 
the covariates to detect and describe important covari-
ate effects when designing a clinical study. Sample size 
is particularly important as it can severely affect power 
to identify an effect, especially if it is subtle or variable.20 
Often, these design factors are governed by the phase 
of drug development, population studied, and inclusion 
and exclusion criteria of the study. For instance, to eval-
uate the effect of renal impairment on drug elimination, 
subjects covering the full dispersion of renal function in 
the population of interest should be enrolled in a study. 
In the context of evaluating drug–drug interactions, de-
sign factors, such as timing of co-administration and se-
lection of appropriate drug sample collection times, are 
essential in order to observe and quantify any effects.21 
Clinical trial simulation can be used to determine suffi-
cient sample sizes when complex outcomes and models 
are involved.22,23

Covariate scope

The term “covariate scope” is used in this paper to refer to 
the set of all candidate covariate-parameter relationships 
that are identified as being of interest at the planning stage. 
As such, scope may be formalized as a list of candidate co-
variates and functional forms to be considered on each type 
of model parameter. A large number of potential covariates 
may be available for analysis, and judicious narrowing of 
covariate scope is encouraged in order to avoid problems 
in parameter estimation (such as imprecise estimates of 
covariate parameters), implementation (such as excessive 
run times), statistical or mechanistic interpretation (such 
as large numbers of implausible covariate relationships 
leading to issues with statistical multiplicity and/or selec-
tion bias), and reporting (such as tabulation of covariate ef-
fect estimates that are not of primary interest, arguably an 
unnecessary distraction). Accordingly, we describe some of 
the key considerations that should be considered before the 
covariate analysis begins, as listed below:

•	 mechanistic plausibility of covariate relationships,
•	 inclusion/exclusion criteria and stratification factors for 

the studies being modeled,
•	 dispersion of the covariate (continuous covariate), 

number of subjects with each category (categorical 
covariate), informing whether data transformation or 
some other adjustment to the method is needed,

•	 the potential role of the covariates to support decision 
making,

•	 the ability of the covariates to represent the clinical con-
ditions of interest (such as hepatic or renal impairment).
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In addition to the considerations listed above, graphi-
cal exploration of random-effect estimates of parameters 
versus covariates and generalized additive models24 are 
sometimes used in exploratory contexts to limit the co-
variate scope before formal covariate model development 
begins, although it is important to note that this approach 
may be a source of bias by exclusion. Any use of the ob-
served response (such as concentration in a PK model) to 
refine the covariate scope may contribute to overall selec-
tion bias and multiplicity and, for this reason, should be 
avoided. The probability of a false positive covariate rela-
tionship increases as the number of covariates included in 
a priori screening increases. In the event that consumers 
of the analyses are not aware of the extent of screening, 
this may have the effect of hiding the true risk of false pos-
itives. Moreover, the subjective nature of graphical screen-
ing entails a less transparent decision path, potentially 
elevating concerns with “cherry-picking” in order to ob-
tain a covariate model that supports a desired conclusion. 
As such, prior exclusion of covariates based on graphical 
and/or generalized additive model (GAM)-based screen-
ing is generally not suitable in the context of a confirma-
tory analysis. Additionally, these methods have limitations 
where empirical Bayes estimates of model parameters may 
be biased and shrunk toward the population mean when 
data are not rich to estimate that parameter and thereby 
warrants caution when using these methods.25

Correlations between covariates

Once an initial covariate scope has been established, 
consideration should be given to correlations between 
covariates. Full investigation of covariate correlations is 
only possible after data acquisition and as such is not 
a planning activity in the strict sense. Reduction of co-
variate scope based on covariate correlations, however 
– insofar as it is carried out without regard to the ob-
served values of the response variable – maintains the 
spirit of prespecification and is appropriate even in con-
firmatory contexts.26 Consideration of well-established 
causal relationships may provide a basis for informing 
the covariate scope. For example, renal function has an 
obvious direct causal effect on any renally cleared drug, 
and the effects of body size and body composition on PK 
parameters also have a strong biological and experimen-
tal basis.5,27 Age, by contrast, is just a marker for the pas-
sage of time and thus cannot have a direct causal effect 
on body structure and function, even though it might 
be correlated with these. Thus, it is often reasonable to 
assume that the effect of age is mediated by the more 
clearly mechanistic causal effects of body size, body 
composition, and renal function. In such cases, it will 

often be reasonable in adults to exclude age from the 
covariate scope. The use of postmenstrual age and post-
natal age are important covariates that are not explained 
by body size, body composition, and renal function in 
neonates and infants.28 It should also be noted that the 
inclusion of covariates, such as age and sex, in the calcu-
lation of CLcr does not mean that other covariate effects 
involving age and sex (such as fat-free mass) should be 
considered confounded with CLcr and thus excluded 
from the covariate scope. This is because the influence 
of renal function and body composition on a parameter, 
such as clearance, are mechanistically quite different. It 
is important to note that potentially misleading associa-
tions with increasing age may arise when other mecha-
nistically based covariates that are correlated with age, 
such as plasma protein binding, are not accounted for.

The inclusion of correlated covariates can result in 
problems of both bias and imprecision for parameter es-
timation. In a scenario in which one of two correlated 
covariates can be considered more mechanistically ap-
propriate, the likelihood of selecting the covariate with 
the more mechanistic effect decreases with increasing 
the correlation of the covariates when both are tested on 
the same parameter in the context of stepwise covariate 
modeling.20 In the same vein, in a scenario in which two 
correlated covariates are both included on the same pa-
rameter, increasing correlation between the covariates 
will lead to increasing correlation between the estimates 
of the two covariate coefficients, resulting in increased es-
timation uncertainty in both.26 When prior information is 
not sufficient to identify the more mechanistic (explana-
tory) of two covariates, data-driven selection may be bet-
ter, provided there is enough information in the data for 
this purpose; both candidate covariates could be included 
in the covariate scope in this instance.29 Finally, although 
not a matter of covariate correlation, per se, an additional 
concern with the “masking” of covariate effects arises in 
the context of nonlinear mixed effects modeling when 
substantial shrinkage is present. For example, if PK data 
have been collected at sparse and/or suboptimal sampling 
times, population estimates of KA and V parameters may 
be highly correlated; similarly, if too narrow a range of 
doses is studied to inform the PD component of a model, 
population estimates of Emax and C50 may also be highly 
correlated. In such cases, the risk of selecting the right co-
variate on the wrong parameter is elevated. Allowing the 
covariate effect to be estimated on both of the correlated 
parameters may mitigate the problem, albeit at a cost to 
model complexity and parameter imprecision.30

Problems associated with correlated covariates may 
be less relevant when the objectives are purely predictive 
and parameter interpretation is not required. Inclusion 
of correlated predictors will not generally result in biased 
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predictions as long as the correlation between the covari-
ates is maintained in future data, and increased parameter 
uncertainty does not necessarily result in increased pre-
diction uncertainty (although the inclusion of truly super-
fluous predictors will always be detrimental with respect 
to the trade-off between bias and variance). This predic-
tive justification should be adopted with care, however, 
because a model built on a sample population (such as a 
adults or healthy volunteer population) may not be repre-
sentative of a future population (such as a patient popu-
lation) owing to the assumption that correlations will be 
preserved in future data.5,27

Covariate correlations can be explored graphi-
cally, or numerically, by calculating pairwise correla-
tion coefficients for continuous and binary covariates 
(Supplementary Material S1, section 2.2).

Missing covariate data

Missing covariate data are often encountered in the analy-
sis of clinical data. Handling missing covariate values in 
an appropriate manner is important to avoid bias and 
imprecision of parameter estimates. Over the past several 
years, methods to handle missing covariate data, such as 
substitution with the median or the most common values 
in the population, single or multiple imputation, complete 
case analysis or list-wise deletion, and maximum likeli-
hood modeling, have been proposed for nonlinear mixed 
effect models.31–33 Similarly, methods for handling miss-
ing categorical covariates (such as complete case analysis, 
estimation of an additional covariate, and several mixture 
model approaches) have been proposed based on the un-
derlying reasons for missingness.34 Methods such as the 
Fixed Random Effects Model (FREM), have been success-
ful in partially or completely offsetting issues presented 
by incomplete covariate data.35 In recent years, machine 
learning methods, such artificial neural networks and 
random forests, have also been implemented for imputa-
tion of missing covariates.36,37 Regardless of which meth-
odology is selected, it is important from a transparency 
perspective that the general methodological approach be 
established prior to consideration of the analysis.

Functional forms of 
covariate-parameter relations

At the analysis planning stage, one often lacks a sufficient 
basis to fully prespecify the functional forms of all parameter-
covariate relationships with complete confidence, even in 
so-called “confirmatory” settings. Nonetheless, transpar-
ency in model-building and associated decision making is 

enhanced to the extent that one documents prior preference 
for particular functional forms, pending diagnostics that 
may or may not support that prior preference. Prior prefer-
ence in many cases is a simple matter of convention and/
or mathematical convenience. For example, linear func-
tional forms have the desirable property that a change in 
the value of the covariate produces a proportional increase 
or decrease in the associated parameter. Certain functional 
forms are justifiable in advance, such as the application of 
allometric theory to describe the relationship between CL 
and V parameters and body weight.

When dealing with categorical covariates, low-
frequency categories are often encountered. Most often, 
this is handled by combining with other categories (com-
monly the reference category). Careful consideration is 
required when doing this, however, because it may lead 
to biased estimates of covariate effects or even a failure to 
identify rare effects.38 Scientific and clinical judgment and 
prior knowledge are again essential in such situations. 
Mathematical specification of a variety of functional 
forms is provided in the next section.

COVARIATE MODELING

General considerations for continuous 
covariates

For continuous covariates, such as age and body weight, 
linear, exponential, or power functions may be used to de-
scribe the relationship between the covariate and PK and 
PD parameters. The choice of the functional form is in-
fluenced by several factors, such as the qualitative shape 
of the relationship between the parameter and the con-
tinuous covariate (e.g., linear, concave, convex, and sig-
moidal),39 and the distribution of the covariate itself (if the 
covariate can include negative values, the use of a power 
model is not appropriate, for example).

The linear functional form is easier to interpret but 
may require that the parameter space for the covariate 
parameter be appropriately bounded in order to avoid 
physiologically implausible results (such as negative 
values for parameters).40 For parameters that have log-
normal random-effect distributions (most PK and PD 
parameters), covariate relationships described by expo-
nential functions assure that the resulting PK or PD pa-
rameters respect appropriate boundaries regardless of 
covariate values. For power relations, the same is true as 
long as covariate values are larger than zero. Regardless 
of the functional form, caution should always be applied 
when considering extrapolation beyond the range of the 
observed data. In other cases, well-established empirical 
relationships exist, such as those describing maturation 
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effects on CL over the first 2 years of postnatal age.6,28 The 
particular sigmoid Emax function that is typically used for 
this purpose does not have a mechanistic justification, but 
it does generate biologically plausible values when extrap-
olated between age at conception (value = 0) and matura-
tion as an adult (value = 1).28 Continuous models of this 
kind offer advantages over more empirical models such as 
those applying linear splines or breakpoints (an example 
of which is the so-called “hockey stick” model) in circum-
stances in which covariate relationships are nonlinear. 
Table  2 provides the mathematical equations and sum-
marizes considerations for choosing the most appropriate 
functional form for a relationship.

Continuous covariates may be transformed, or binned, 
into categorical form. Median, tertile, or quartile bound-
aries are commonly used for this. However, a major dis-
advantage of this approach is the loss of information 
that occurs with this kind of coarsening and is not gen-
erally preferred. For instance, the US Food and Drug 
Administration recommends use of a regression approach 
to better estimate the effect of renal function on PK pa-
rameters instead of utilizing categorical variables that 
correspond to normal, mild, moderate, and severe renal 
impairment.41 Categorization may be performed at the 
simulation stage after a model containing the full contin-
uous covariate has been developed in order to understand 
the loss of information arising from this transformation.

Remarkably high or low values of covariates – outliers – 
are not unusual, nor are distributions of values that are non-
normal (most often, heavy-tailed and/or skewed). In such 
circumstances, extremely high or low values may inappro-
priately influence or distort estimates of covariate effects. A 
common technique applied to offset this problem is to “cap” 
covariate values over a certain cutoff at the value of the cut-
off or to transform the distribution so that it is more “nor-
mal” (logarithmic transformation is the most commonly 
used).21 Graphical exploration of covariate distributions is a 
useful way to determine whether this is necessary.

Functional forms for continuous relationships are 
usually applied after centering (by subtraction) or scal-
ing (by division) the covariate by a reference value so that 
population parameter estimates will correspond to these 
reference covariate settings. The reference value used for 
scaling or centering can be either a centered value of a co-
variate dispersion, such as a median, or it could be a stan-
dard (commonly accepted) reference, such as a weight 
of 70 kg.42 However, if the reference covariate value is 
selected outside the middle of the covariate distribution 
(e.g., when fitting pediatric data), this may result in in-
flated parameter imprecision of the structural parame-
ter at the reference value and model instability43 leading 
to estimation issues and difficulties in convergence. On 
the other hand, using a centered reference value can 

help improve model stability, but can hamper the ease of 
between-study comparisons. The choice of using standard 
or centered reference values therefore depends on one's 
objective. It should be noted that regardless of the choice, 
a stable model should converge to the same estimates of 
the covariate effects and minimum value of the objective 
function because the likelihood is invariant to the center-
ing/scaling of the parameters. Standard reference values, 
if widely accepted, can be used when within the covariate 
range and may be used with caution when extrapolating 
beyond the covariate range provided the model is stable 
(e.g., fit the model with both standard and centered ref-
erence values and confirm that they converge to the same 
set of estimates of the covariate effects and objective func-
tion value [OFV]). Standard reference values can also be 
used when applying the same model to an updated data-
set, which can help to make comparisons easier. In other 
situations, a centered value may be used for estimation 
purposes, but when reporting, parameter values with any 
covariate reference of interest may be calculated for pur-
poses of comparison. Centering and scaling approaches 
provide better interpretation of the population parameter 
at the reference value, and, in addition, reduce correlation 
between fixed effect estimates for the reference value of 
the population parameter and covariate effect leading to 
more stable estimation.

General considerations for 
categorical covariates

Categorical covariates can be binary (2 categories) or 
polychotomous (3 or more categories) and can be ordered 
(ordinal scale) or non-ordered (nominal scale). An exam-
ple of nominal categories is geographic region, whereas 
the Eastern Cooperative Oncology Group function score 
is an example of an ordinal categorical variable, in which 
values of 0, 1, or 2, ordered as 0 less than 1 less than 2, 
represent the degree of functional performance of an in-
dividual. In such a case, treating them as ordered is more 
appropriate than testing them as nominal categories, or 
combining them. Table 2 presents the typical mathemati-
cal forms that are commonly used for either nominal or 
ordinal categorical covariates. Table 2 also presents some 
interpretations and considerations for each of these forms.

Modeling the combined effects of multiple 
covariates on a parameter

The effects of more than one covariate on a specific param-
eter are often combined using either multiplicative or ad-
ditive form as shown in Equations 1 and 2 respectively.44
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Multiplicative form

where CovEffPcov,i is the multiplicative change in parameter 
P due to the covariate (cov) in individual i. �Ppop is the popu-
lation reference value of the parameter P in the population. 
TVPi is the typical value of the parameter for individual i 
with all covariate effects included.

Additive form

Multiplicative specification may be more practical (and 
sometimes also more plausible and/or mechanistic) than 
the additive, if the (structural) parameter is restricted to 
positive values. If, on the other hand, parameters may 
take positive or negative values, such as a logit probabil-
ity, log-hazard, or a difference parameter (such as a mean 
orthostatic change in blood pressure), the multiplica-
tive formulation is likely to have problems of interpreta-
tion and an additive parameterization may be preferred. 
In Supplementary Material  S2, an example of covariate 
models combined by multiplication of individual co-
variate effects is presented. In the illustrative example in 
Supplementary Material  S1, section  3.4, equations and 
demonstrations of fits of different functional forms are 
demonstrated.

General considerations for 
time-varying covariates

The covariates described above may vary with time, such 
as body weight, the use of concomitant medication, and 
organ maturation in neonates and infants. Time-varying 
covariates present several challenges and complexities: for 
instance, covariates may be impacted by treatment, as is 
the case for changes in renal function caused by renally 
eliminated antibiotics, such as vancomycin,45 or changes 
in the performance status of a patient over time, such as in 
cancer13 or organ transplantation.46 Accounting for time-
related changes in covariate effects is often important 
for ensuring appropriate dosing and exposure, as well as 
for assessing PD effects without bias.13,14 Baseline values 
are commonly used, but often this approach may not ad-
equately explain intrasubject variability. As an example, 
clearance of ipilimumab was observed to decrease over 

time in some patients and was considered a marker for 
improvement in clinical condition. Evaluating the effects 
of time-varying markers for cancer-related cachexia, such 
as albumin, body-weight, and LDH, helped to further elu-
cidate possible mechanisms of time-varying CL.47 Models 
to implement extensions to the covariate model for time-
varying covariates have been described by Wälbhy et al. in 
which the covariate effect is either split into the baseline 
and difference from baseline, and/or an interindividual 
variability parameter is estimated in the covariate effect.48 
The complexity of time-varying covariates warrants a 
broader discussion than we have space for in this article, 
but it is important that it not be overlooked.

COVARIATE MODEL BUILDING 
METHODS

The selection of a covariate model-building approach is 
generally driven by the objective and context of the analy-
sis (exploratory or confirmatory, for example) and the 
amount of available information. The covariate model 
building methods most commonly used are classified into 
two categories: screening methods and prespecification 
methods. Within the screening methods, the selection of 
covariates is driven by the analysis dataset, often with a se-
lection of putative relationships suggested by prior knowl-
edge. With sufficient information, screening approaches 
may be appropriate and practical for developing models 
that merely need to be predictive (for use in the simulation 
of clinical trials, for instance). Screening methods, when 
applied to external /prior data, can also serve as a guide 
for the prespecification methods. In contrast, prespecifi-
cation methods are often useful for confirmatory analyses 
where justification of dose adjustment (or lack thereof) is 
the major goal; in this context, demonstrating the practi-
cal absence of a covariate effect (such as those related to 
primary demographic characteristics, such as age, weight, 
sex, and race, as well as common conditions, such as 
renal and hepatic impairment) is often just as important 
as detecting covariate effects that are actually present. In 
the best application of this approach, even the functional 
forms of the covariate relationships would be prespecified, 
either based on prior knowledge or else based on prior ap-
plication of screening methods, such as graphical explora-
tion or GAM (applied to external/prior data).

A mixture of both approaches that utilizes prior knowl-
edge about common covariates (Table 1) and established 
covariate models and parameters to build a “base” model, 
that can then be used as the base for further covariate 
model building using screening methods, has been used 
as well. This approach builds on well-established science 
(for example, by assuming that PK parameters vary with 

(1)TVPi = �Ppop ⋅

Ncov∏
cov=1

(
CovEffPcov,i

)

(2)TVPi = �Ppop +
∑Ncov

cov=1
CovEffPcov,i
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size, babies mature into adults, and renally eliminated 
drug clearance is predictable from CLcr) and can then lead 
to more finely tuned exploration of other covariates that 
are otherwise lost in the random effect noise.22 Evaluating 
covariates based on their mechanistic relevance or explor-
atory nature has also been implemented in stepwise co-
variate model (SCM+) building methods described in the 
sections below.49

Screening methods

Stepwise generalized additive modeling

This method uses regression of individual post hoc esti-
mates with covariates using generalized additive mod-
els.50 A stepwise addition or deletion is then used to select 
covariate relationships using a selection criterion, usually 
the Akaike information criterion (AIC).51 This approach 
may be problematic in case of high shrinkage25 or if not 
all model parameters of interest include random effects. 
We refer the reader to section 4.2 in the Supplementary 
Material S1 for an illustrative example, although this ap-
proach is not often used in practice.

Wald approximation method

Kowalski and Hutmacher proposed a covariate model 
building method based on Wald's approximation method 
(WAM).52 The WAM provides a quadratic approximation 
of the likelihood ratio, based on the covariance matrix of 
the estimates from a full model. The selection of covari-
ates for WAM consists of obtaining a convergence of the 
full model (a model including all covariates) and uses the 
ranked Schwarz information criterion for model selec-
tion. The WAM generally requires fewer model runs than 
stepwise procedures to identify a final reduced model 
and provides a set of competing parsimonious models. 
However, the WAM requires that all full models, includ-
ing all covariate-parameter relations to be investigated, 
can be estimated without convergence problems and 
with a successful covariance step, which can be challeng-
ing. We refer the reader to section 4.3 in Supplementary 
Material S1 for illustrative example and technical details. 
Again, this method is not in common use.

Stepwise covariate model 
building and advances

Stepwise covariate modeling (SCM) consists of sequential 
application of predefined rules to add (forward selection) 

or remove (backward elimination) covariates depending 
on the value of a statistic, such as a p value or a model 
selection criterion, such as AIC or Bayesian Information 
Criteria, and is one of the most popular methodologies 
in current use for the systematic selection of covariates.53 
We refer the reader to section  4.4 in Supplementary 
Material S1 for illustrative example and technical details. 
Extensions to the standard approach, such as bootstrap 
SCM, allow the evaluation of selection bias during SCM, 
identification of correlations between included covariates, 
and assessment of the type I error rate for covariate inclu-
sion (false positive covariates).54 First- and second-order 
linearized SCM can identify parameter-covariate relation-
ships from a large pool of parameter-covariate relations in 
a fraction of computational time compared to traditional 
SCM and is useful if SCM run times are very long.55 A 
novel method, Conditional Sampling used for Stepwise 
Approach based on Correlation (COSSAC), is based on 
a statistical test between individual parameters sampled 
from conditional distribution and covariates has been re-
cently introduced. It has been demonstrated to speed up 
the SCM process.56 Additional sophisticated techniques 
within the SCM toolkit, such as SCM+, which uses the 
“adaptive scope reduction” and SCM+ with “stage-wise 
filtering” that categorizes covariates based on its impor-
tance, such as mechanistic, structural, or exploratory 
have been shown to perform better choosing relevant 
covariates than traditional SCM methods.49 Tools such 
as Perl-speaks-NONMEM (PsN) have been developed to 
automate the process, allowing many covariate relation-
ships and functional forms to be tested in sequence and 
in parallel. Stochastic Approximation for Model Building 
Algorithm (SAMBA) is another novel approach that is an 
iterative procedure that aims to accelerate and optimize 
the model-building process by identifying the best way to 
improve the model components at each step.57 As with 
other fields of medicine, machine learning algorithms 
are also being explored for covariate screening. Machine 
learning methods, such as random forest, neural net-
works, and support vector regression were compared to 
traditional screening methods and were found to be more 
efficient in case of large datasets or complex models with 
long run times. Although these advances are promising, 
experience with these novel methods is relatively limited 
at the time of writing.

The least absolute shrinkage and 
selection operator

The least absolute shrinkage and selection operator 
(LASSO) is a method that aims at optimizing the covariate 
model for good predictive performance (including covariate 
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relations to the degree they are expected to improve the 
predictive performance, given the available data for analy-
sis).58,59 Although it may not be a commonly used method, 
this has been shown to be useful in  situations where the 
SCM is difficult when selecting covariates from small data-
sets (few subjects, or investigating small subgroups, such as 
rare genotypes).58,60 Using cross-validation, the implemen-
tation of the LASSO method provides an evaluation of the 
covariate model and does not require the user to specify a 
p value for selection. We refer the reader to section 4.5 in 
Supplementary Material  S1 for illustrative example and 
technical details. The LASSO algorithm has been extended 
to HyperLasso60 (which proposes applying a slightly more 
generalizable penalty function) and the adjusted adaptive 
Lasso61 (which may perform better in small datasets).

Prespecification methods

Full fixed effect model

The full fixed effect model (FFEM) has become a popular 
prespecification approach for evaluating covariate effects. 
Within FFEM, all the parameter-covariate relations of inter-
est are estimated simultaneously, in contrast with covariate 
selection algorithms that evaluate multiple models within 
the model space for various combinations of presence or ab-
sence of individual covariate effects with the goal of finding a 
parsimonious model (one with fewer covariate parameters) 
that adequately fits the data.62 Such parsimonious models 
may have reduced prediction error relative to a full model, 
because a full model may have some covariate parameter 
estimates that are essentially contributing noise to the pre-
dictions. In contrast, full model methods (assuming the 
full model is stable) are better for making inferences about 
individual covariate effects because they establish a fixed 
baseline for inference (a single full model is fitted), whereas 
data-driven covariate selection methods result in final mod-
els in which numerous covariate relationships from the full 
model have been removed, suggesting more is known about 
the data than is truly the case and resulting in downwardly 
biased estimates of standard errors. Whereas the term “full 
model” is generally understood to refer to a model that in-
cludes all relationships that have prior plausibility, the term 
“saturated model” may be used to refer to a model in which 
the relationships of all covariates in scope with all param-
eters are estimated regardless of plausibility. The use of 
saturated models mitigates the risk of parameter bias due to 
model misspecification but is not always practical because 
of the number of parameters to be estimated. The full model 
approach also considers a data reduction step with regard to 
avoiding the addition of correlated covariates, such as weight 
and body mass index, on the same parameter, such as CL, 

and thereby avoid issues with model instability, as discussed 
in earlier sections of this review.62 Another potential caveat 
in use of FFEM approach, however, may also occur in a situ-
ation in which two model parameters are highly correlated 
– in this instance, the same covariate would be relevant for 
both, but the coefficients and the precision of the estimate 
or estimates would be quite different depending on whether 
the covariate effect was applied to one of the two, or both. 
In this case, it would probably be most appropriate to apply 
the effect on only one, with the choice being driven by sci-
entific plausibility and the purpose of the model. We refer 
the reader to section 3.3 of Supplementary Material S1 for 
FFEM model fit.

Full random effect model

In the FREM, all covariates are treated as components 
of a multivariate response. The relationships between all 
covariates and all parameters of interest are estimated 
simultaneously as covariances within a multivariate ran-
dom effects distribution.63,64

There is a benefit in estimating all parameter-covariate 
relationships and the computational cost is typically small 
compared to data-driven approaches. As implemented 
in software, such as PsN, all covariates are estimated on 
all model parameters. For example, if a food effect on ab-
sorption rate is included as part of the FREM it will also 
be included on all other parameters, such as distribution 
volumes, regardless of whether they are mechanistically 
plausible, in order to minimize the likelihood of bias in-
troduced by model misspecification. The FREM model 
may be converted to the FFEM model for diagnostics, 
goodness-of-fit, and for simulations and predictions nec-
essary for communication. We refer the reader to sec-
tion 4.6 of Supplementary Material S1 for an application 
example using the PsN implementation.

An overview of the most used covariate model building 
methods is presented with the advantages and challenges 
of each method in Table 3.

MODEL DIAGNOSTICS FOR 
COVARIATE EFFECTS

It is important to assess whether covariate-parameter rela-
tionships present in the data are adequately characterized 
by the functional forms represented in the final model. This 
can be done by plotting the random effects against the co-
variates; the plots should demonstrate the removal of trends. 
In the theophylline example described in Supplementary 
Material  S1, weight and age showed trends when plotted 
against empirical Bayes estimates (EBEs) of the base model 
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T A B L E  3   Key characteristics of covariate model building methods.

Method Key characteristics

Build on established 
knowledge

•	 The established knowledge model encourages discovery of new phenomena by building on what is known. 
For example, addition of body weight on parameters of CL and V in the base model based on the principles 
of allometric scaling. This allows identification of the influence of other covariates after adjusting for known 
associations with body size.

•	 Lack of standard reporting of parameter values makes it harder to determine what has been established.

Graphical exploration 
method

•	 Simple to use.
•	 Provide a quick overview of correlation between covariates and parameters included in the model.
•	 Assessment is only possible for model parameters where between subject variability is included in the base 

model.
•	 Subjective judgment based on visualization.
•	 Dependent on quality of individual estimates. Unreliable results for EBEs in presence of (>20%) shrinkage.34

•	 Only one parameter-covariate relationship can be identified at a time, like univariate selection.
•	 Cannot handle time-varying covariates.
•	 Does not provide an explicit functional representation of the relationship between parameters and covariates 

and the shape of the relation is tainted by shrinkage.
•	 Does not consider correlation between covariates.

Stepwise GAM •	 Simple to use.
•	 Provides explicit functional representation of the parameters-covariates relationship.
•	 Short running time.
•	 Stability of covariates selection can be assessed using Bootstrap GAM.
•	 Implemented in software (Xpose).
•	 Assessment is only possible for model parameters where between subject variability is included in the base 

model.
•	 Highly depends on the quality of the EBEs. The selection of covariates and the functional form may be 

tainted by shrinkage, and not yield the optimal model for implementation.
•	 Selection bias in presence of shrinkage.
•	 Does not handle time-varying covariates.
•	 Does not handle cross-parameter correlations.
•	 Limited utility with development of more sophisticated tools.

SCM •	 Handles selection of multiple covariates within the population model.
•	 Stable search methods (based on Greedy algorithm).
•	 Handles time-varying covariates.
•	 Allows investigating covariates on parameters without a separate random effect.
•	 Does not depend on posterior Bayes estimates.
•	 p-values are pre-specified and easy to communicate.
•	 Implemented in software (PsN).
•	 Time-consuming unless linearization methods are used.
•	 Selection bias and reduction of predictive performance.
•	 Allows selection among highly correlated covariates, but in many instances not powered to distinguish.
•	 Small dataset may result in low power and poor predictive performance.
•	 Only statistically significant covariates are selected.
•	 Final models from the current data may not be predictive to external data.
•	 Difficult to adjust p value for multiple testing.

LASSO •	 Increase predictive performance in particular for small sample size.
•	 Shorter run-time if many covariate relations are investigated.
•	 Allows investigating covariates on parameters without a separate random effect.
•	 Correlated covariates are handled.
•	 Does not depend on posterior Bayes estimates.
•	 No need to specify p value for covariate selection.
•	 Cross-validation is challenging on unstable models.
•	 Not designed for hypothesis testing.
•	 Little experience of this method in pharmacometrics.
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without covariates, whereas the trends were removed after 
inclusion in the full model with covariates. Such diagnos-
tics should be evaluated with an awareness that ή parameter 
shrinkage toward the mean has the potential to mask co-
variate relationships in such displays,65 although advances 
in algorithms can correct the bias of EBEs in both estimation 
of effect size and test statistics.66

Visual predictive checks (VPCs) stratified by covari-
ates of interest are also useful for illustrating how co-
variates have influenced model fit.27,67 For continuous 
covariates, VPCs depicting a continuous covariate as 
the independent variable can provide a useful method 
to evaluate the appropriateness of the model at differ-
ent covariate values.68 Model diagnostics for covariate 
effects should be provided to the extent necessary for 
a reader to develop an appropriate level of confidence 

in the model's characterization of those relationships. 
For ease of exposition for nonspecialist readers, diag-
nostics that are primarily of interest to specialists may 
be relegated to an appendix or supplementary material. 
Section 5 in Supplementary Material S1 provides exam-
ples of VPCs for the purpose of model diagnostics.

COVARIATE EFFECT SUMMARY 
AND REPORTING

General principles for reporting

Reporting of covariate results constitutes the crucial hinge 
by which the insights gleaned from modeling may open or 
close the door to strategic decisions in the development, 

Method Key characteristics

WAM •	 Requires fewer model runs than stepwise procedures.
•	 Provides rapid indication of candidate covariates for inclusion.
•	 WAM provides a competing set of parsimonious models while stepwise procedures lead to a single 

parsimonious model.
•	 Requires a stable full model with covariances.
•	 Ill-conditioning of the full model can lead to irregularities in the likelihood surface and a poor 

approximation.
•	 Sensitive to parameterization.
•	 Limited experience.

Prespecification methods

FFEM •	 Direct assessment of all covariate relations of interest.
•	 Provides a fixed framework for inference, avoiding downward bias in standard errors.
•	 Useful for assessing clinical relevance.
•	 Reduces risk of overfitting to observed data.
•	 Correct inference assumes covariate relations have been captured correctly.
•	 Not true if covariate act on additional parameter in the model.
•	 Pre-selection of correlated covariates may result in omission of important covariate relationships.
•	 Problematic if predefined full model is unstable.
•	 Not a completely prespecifiable method.

FREM •	 Correlated covariates present no problems.
•	 No covariate-parameter relation is assumed to be zero, among the parameters and covariates of interest.
•	 Handles missing data implicitly.
•	 Covariates are truly prespecifiable.
•	 Choose covariates at the level of labeling not at the level of modeling.
•	 Useful for assessing clinical relevance.
•	 No covariate-parameter relation is fixed to zero, even if it is mechanistically implausible to act on the specific 

parameter.
•	 Assessment is only possible for model parameters where between subject variability is included in the base 

model.
•	 Time-varying covariates are difficult to handle.
•	 Complex to explain and interpret.
•	 Similar limitations as FFEM method, except that correlated covariates are well handled and thereby 

preselection is possible, and the method can be completely prespecified

Abbreviations: CL, clearance; EBE, empirical Bayes estimate; FFEM, full fixed effect model; FREM, full random effect model; GAM, generalized additive 
model; LASSO, least absolute shrinkage and selection operator; PsN, Perl-speaks-NONMEM; SCM, stepwise covariate model; V, volume of distribution; WAM, 
Wald approximation method.

T A B L E  3   (Continued)
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approval, and clinical use for dose individualization. 
Reporting should therefore be carried out in a manner 
that facilitates comprehension for decision makers, many 
of whom will be nonspecialists with respect to modeling, 
whereas at the same time providing sufficient detail to 
satisfy modeling specialists who may wish to confirm or 
leverage certain findings in the future models or analyses 
of their own.

When reporting, model parameters should be sum-
marized in a table that (at a minimum) provides param-
eter estimates and associated measures of uncertainty 
(Supplementary Material  S1, section  6). Typically, co-
variate effect parameters and primary parameters (such 
as bioavailability, clearance, and volume of distribution, 
in the context of a PK model) can all be described in a 
single table. One should ideally include a column with 
brief text in each entry to explain the interpretation (an 
example would be the change in a parameter per year 
increase in age). It will frequently be the case that some 
transformation of a parameter estimate (commonly its 
exponentiated value) will be more readily interpretable 
than the parameter itself. Reporting on the transformed 
(more interpretable) scale tends to be more amenable to 
supporting the discussion and conclusions in a report, 
whereas reporting on the scale used for likelihood op-
timization (or posterior sampling, in a Bayesian frame-
work) is likely to facilitate future use of the model by 
pharmacometricians who may not have access to the 
data and/or model output. In many cases, the use of the 
model by other pharmacometricians can be enabled and 
facilitated with supplementary material; reporting on 
the transformed scale may be preferable in the body of 
a report. The functional form of parameter transforma-
tions should be provided for covariate effect parameters 
that are tabulated on a transformed (e.g., exponentiated) 
scale. Parameter scales should also be carefully chosen 
when reporting numerical values. For example, a re-
ported fold odds adjustment of 1.001 per ng/mL con-
centration creates the impression that the effect of drug 
concentration is negligible, but if interventions differing 
on the μg/mL scale are considered, one should note that 
1.001^1000 = 2.7, corresponding to a 2.7-fold change in 
odds of event for every μg/mL increase.

Discussion of explained parameter variability (EPV), 
the part of parameter variability explained by inclusion of 
covariate effect, may facilitate understanding of the im-
portance of a given covariate-parameter relationship. It 
is expected that covariate inclusion on a specific parame-
ter will explain part of the parameter variability between 
subjects leading to increased predictability in response. 
Hence, it is expected that EPV will increase and the unex-
plained PV will decrease.69

Statistical significance in model 
development and inference

In the context of covariate modeling, statistical signifi-
cance may arise in two distinguishable ways:

1.	 In reference to a prespecified model including a given 
parameter-covariate relationship, hypothesis tests pro-
vide one framework for valid statistical inference about 
that relationship. As has been emphasized in the 
statistical community,70 inferential frameworks based 
on confidence intervals (or credible intervals, in the 
Bayesian context) are typically more informative and 
less subject to misinterpretation than are p values or 
assessments of statistical significance. Nonetheless, null 
hypothesis significance tests may provide a valid means 
of inferring the direction of covariate effects, when used 
appropriately in reference to a prespecified model.

2.	 As a technique for covariate model development (in 
stepwise covariate modeling, for example), hypoth-
esis tests (such as the likelihood ratio test [LRT]) 
merely provide a reasonable heuristically motivated 
algorithm for including or excluding covariates but 
do not provide a basis for valid statistical inference. 
The LRT is based on the difference in minimum OFV 
between models with and without the covariate re-
lationship. The first and second order approxima-
tions of the models as implemented in commonly 
used software tools such as NONMEM result in OFVs 
that are approximately proportional to minus twice 
the logarithm of the likelihood of the data given the 
model (−2LL). Under the null hypothesis we assume 
that the simpler covariate model is correct, the differ-
ence in OFV (the likelihood ratio [∆OFV]) between 
two nested models is approximately χ2-distributed. 
Because the simpler model may exclude a number of 
other important covariates (in addition to other po-
tential model misspecifications and deficiencies in 
asymptotic approximations), the actual significance 
levels achieved by the use of the likelihood ratio test 
will often be different from nominal levels.71 Indeed, 
it has been noted that the actual significance level 
of the likelihood ratio test is upwardly biased.72,73 
As discussed in the preceding sections, all screen-
ing covariate model building techniques are subject 
to selection bias, which reduces the evidential value 
of “statistically significant” results in comparison to 
the evidential value that statistical significance has 
in a confirmatory context. Selection bias is often less 
important with higher-power covariates (that exert 
stronger effects) but should be borne in mind where 
effects are smaller or less precisely estimated.
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Statistical significance and 
clinical relevance

Neither of the above applications of significance testing 
provides any basis for inferring that a covariate “has no 
effect.” A lack of significance is rightly interpreted as an 
“absence of evidence,” but not as “evidence of absence.” 
Evidence of the (practical) absence of a covariate effect 
is most convincingly demonstrated by including the 
covariate effect in the model and assessing (usually by 
means of a confidence interval) whether non-negligible 
values of the covariate effect can be ruled out, as dis-
cussed below.

Hypothesis tests of the null hypothesis of “no effect” 
and associated p values do not provide information about 
the magnitude of a covariate effect, and so are insufficient 
to address questions about clinical relevance.70 It should 
be noted, however, that this concern relates specifically to 
hypothesis tests of “no effect.” The concepts of statistical 
significance and clinical relevance are distinct but need 
not be applied disjointly. For example, when a clinically 
relevant threshold �* can be established, a statistical test of 
H0: � ≥ �* versus H0: � < �* can result in a valid statistical 
inference that “the magnitude of the effect is statistically 
significantly less than any effect that would be clinically 
relevant” (if the null is rejected) or that, “effects in the 
clinically relevant range cannot be ruled out” (if the null 
is not rejected). Whereas this hypothesis testing formula-
tion is rarely explicitly used in pharmacometric covariate 
analyses, it is often used implicitly by juxtaposing confi-
dence intervals with reference lines that provide working 
demarcations between clinically relevant and clinically 
irrelevant values. (This constitutes an implicit use of hy-
pothesis testing because a confidence interval can be in-
verted to provide a hypothesis test of every parameter in 
the parameter space.74)

The clinical relevance of covariates is usually deter-
mined in the context of the need to modify the dosing 
regimen in accordance with the covariate. A value of 
20% difference in exposure has been widely cited as a 
clinically irrelevant change that does not require dos-
ing adjustment.75,76 This convention has been borrowed 
from the bioequivalence context, but alternative heu-
ristics have been proposed for establishing regions of 
practical equivalence that are appropriate to a given 
context.77 Once such a region is defined, three scenarios 
come into play:

1.	 If the entire 95% confidence interval (or credible in-
terval) for the covariate effect lies within the clinically 
relevant region, the covariate relationship is clinically 
relevant. Such a covariate relationship will be always 

statistically significantly different from the null (“no 
effect”) value.

2.	 If the entire 95% confidence interval (or credible in-
terval) for the covariate effect lies within the clinically 
irrelevant region, the covariate relationship is not clini-
cally relevant. Such a covariate relationship may or 
may not be statically significantly different from the 
null (“no effect”) value. It may be important in combi-
nation with other relationships.

3.	 If the 95% confidence interval (or credible interval) 
for the covariate effect spans both clinically relevant 
and irrelevant regions, there is insufficient informa-
tion for the clinical relevance of the relationship to 
be unambiguously determined. Such a covariate rela-
tionship may or may not be statistically significantly 
different from the null (“no effect”) value. In the 
event that the null value is excluded, one may con-
fidently infer the direction of the effect, even though 
the magnitude cannot be established with sufficient 
resolution.

Predictive summary

Whereas regression coefficients have fairly direct and 
straightforward interpretations for linear models with nor-
mally distributed errors, this is not the case for nonlinear 
mixed effects models, nor is it the case for generalized linear 
models.78 In cases where the covariate is applied to a physi-
ologically interpretable parameter, such as CL, predicted 
values of that parameter at a variety of covariate settings 
will facilitate interpretation. Supplementary Material  S1, 
section 6 provides examples of forest plots describing covar-
iate effects. Additionally (and especially when covariate's 
effect on a parameter has less obvious physiological mean-
ing), interpretation is enhanced by providing a similar plot 
for the predicted value of an exposure metric, such as the 
area under the curve from zero to infinity. Predicted values 
of the dependent variable itself (such as drug concentration 
or PD effect) may also be shown in a variety of covariate 
settings (by plotting the expected value against time with 
uncertainty, using faceting79 to represent conditioning on 
values of the covariate, for example).

For categorical covariates, the predicted response can 
often be shown at each level of the covariate. For contin-
uous covariates, percentiles of the covariate distribution 
will typically provide helpful reference points at which to 
assess the model-predicted values.

When generating predictions across multiple values 
of a single covariate, it is not always clear how the other 
covariates and random effects should factor into the pre-
dictions. A common practice is to present a predicted 
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value (with confidence interval) for a “reference subject” 
alongside predicted values (and confidence intervals) for 
what might be called “perturbed reference subjects,” those 
with the same covariate, except for one covariate that has 
been changed to another level. This methodology has 
been proposed as a reasonable analog to partial regression 
coefficients,78,80 at least in the sense that the covariate's 
effect is being evaluated “after adjusting for all other co-
variates.” Although such partial effects have the merit of 
essentially re-expressing regression coefficients on a more 
interpretable scale, one should consider whether predic-
tions derived in that manner adequately address the re-
search questions of interest. Whereas the ceteris paribus 
(“other things equal”) approach may be reasonable for an-
swering questions about exogenous interventions (such as 
“What would happen if we held everything else equal and 
changed exposure only?”), it may be quite unreasonable 
to answer questions about the predictive associations of 
endogenous risk factors (such as “What would happen to 
the exposure level if we held bodyweight constant at 70 kg, 
but the patient was 4 years old rather than 65?”). For this 
reason, it will generally be desirable to complement ceteris 
paribus simulations with mean or quantile predictions for 
a population with varying covariate values. For instance, a 
plot of predicted parameters or exposures could be gener-
ated to compare predictions between elderly (age ≥ 65) and 
non-elderly (age < 65) in which appropriate values of other 
covariates for each age category are used.

FREM provides one means by which this may be ac-
complished, averaging the conditional distribution of 
other covariates conditional on the covariate under 
investigation.

USE OF COVARIATE MODELS: 
REGULATORY AND PATIENT 
PERSPECTIVES

Covariate analyses have been successfully used to sup-
port the recommended dose proposals in regulatory 
submissions, with the most common covariates that 
may/may not require a dosage adjustment presented in 
Table 1. For example, weight-based dosing is supported 
by a positive allometric relationship of CL and body 
weight, whereas “flat” dose proposals (a single dose for 
all subjects) can be justified by the absence of such a 
relationship in a suitably designed study with adequate 
power. Identified covariate relationships have also been 
used in PK/PD analysis to provide information about 
the balance between effectiveness and safety. Covariate 
relationships for PK and PK/PD analyses are also used 
to guide contraindications, recommendations for situa-
tions where drug–drug interactions may occur and for 

extrapolation. An example of how covariate relation-
ships are used in extrapolation can be found where adult 
PK data are used to predict dose or exposure in pediatric 
populations. Extrapolation is particularly useful during 
PK/PD dose ranging or dose finding studies in one or 
several pediatric age ranges.

To date, published regulatory guidance on covariate ad-
justment has focused particularly on the use of covariates 
in randomized comparisons (https://​www.​fda.​gov/​media/​​
123801/​download). In that context, covariate adjustment 
is primarily a matter of statistical efficiency, because ran-
domization itself can be expected to remove most covariate 
imbalances between treatment groups. As such, random-
ized comparisons inherently reflect the causal effects of 
treatment rather than artifacts of causal confounding (ex-
cept in cases where the randomization is invalidated by 
intercurrent events occurring between randomization and 
outcome; see https://​www.​fda.​gov/​media/​​108698/​down-
loadg). By contrast, the associations of interest in pharma-
cometric analyses typically correspond to non-randomized 
comparisons (e.g., high exposure vs. low exposure and 
normal renal function vs. impaired renal function). In the 
pharmacometric context, therefore, covariate adjustment 
does not merely offer optional gains in statistical efficiency 
but is fundamentally required in order to mitigate the risks 
of confounding that attend observational (nonrandom-
ized) data. Even more important to patients and clinicians 
is the use of covariate-guided dosing when initiating ther-
apy and during follow-up when response measures may 
also be available.

In general, trust in the results of a covariate analysis 
arises from the transparent use of appropriate method-
ology as described in the previous section on Planning 
Covariate Analyses and Covariate Modeling. In particular, 
it is essential for regulators and clinicians to understand 
which covariates have been evaluated on which parame-
ters in order to correctly assess the strength of evidence. 
Scientifically plausible relationships between parameters 
and covariates are needed to make label claims, which 
puts a strong emphasis on clinically relevant covariate 
relationships.

With respect to covariate scope, a particular point of 
clinical and regulatory interest is the degree to which 
a given covariate accurately represents a clinical con-
dition (such as hepatic or renal impairment). It should 
be considered whether the covariate effect is scientifi-
cally plausible and whether it may be a surrogate for an-
other covariate. For example, estimated CLcr using the 
Cockcroft-Gault equation or estimated GFR using the 
modification of diet in renal disease equation are com-
monly used to define renal function. However, in some 
situations, such as in patients who are undergoing kid-
ney replacement therapy, acute renal failure, extremes 

https://www.fda.gov/media/123801/download
https://www.fda.gov/media/123801/download
https://www.fda.gov/media/108698/download
https://www.fda.gov/media/108698/download
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of age, body size, or muscle mass, conditions of severe 
malnutrition or obesity, disease of skeletal muscle, or 
on a vegetarian diet, the use of these equations may not 
be accurate to reflect the degree of renal impairment. 
In these situations, CLcr calculated using timed urine 
collection (e.g., 24 h) or measurement of clearance of 
an exogenous filtration maker will be more reflective of 
glomerular filtration. Moreover, modeling renal func-
tion as a covariate on a continuous scale is typically 
encouraged rather than categorizing the renal function 
into normal renal function or mild, moderate, and se-
vere renal impairment.

Regulators understand that in many cases the differ-
ent functional forms for covariate relationships may yield 
similar predictions because the covariate variability range 
is limited and does not allow such discrimination. In such 
cases, sensitivity analyses may be conducted to verify that 
the effect of different forms does not affect the estimate. 
Regulatory assessment of detected covariate relationships 
will also pay attention to whether a small number of influ-
ential subjects are driving the detected relationship. Fixed 
values can be accepted for some covariate effect parame-
ters (for example, fixed theory-based allometric exponents 
for weight effect on clearance and volume parameters of 
3/4 and 1.0, respectively) but the justification for the fixed 
value should be provided.

Regulatory and patient perspectives require trust in 
both positive claims (as when an effect for a given covari-
ate has been detected and quantified) and negative claims 
(as when it is asserted that no dosage modification is re-
quired for a given population). Considerations related to 
practical equivalence, as discussed above in the Reporting 
section, are therefore especially relevant. It is unlikely that 
decision makers will accept claims of no relevant clini-
cally significant effect unless the relationship was actually 
tested. For detected parameter-covariate relationships, 
decision makers are interested in knowing how precisely 
the effect has been estimated and the magnitude of the 
estimated effect so that appropriate recommendations 
can be made to the prescriber. It needs to be established 
whether or not the estimated effect size magnitude war-
rants a dosage modification. From a regulatory perspec-
tive, a two-fold difference in PK exposure is a commonly 
used magnitude to justify dose adjustment based on PK 
data alone. However, the influence of magnitude of co-
variate effect on PK parameters can be better evaluated if 
a PK/PD relationship has been characterized and which 
allows the magnitude of the covariate effect to be put into 
perspective with regard to effectiveness or safety parame-
ters, as appropriate.

Regulatory agencies are often open to all methods and 
innovations for covariate analyses, as long as the methods 
are scientifically sound and appropriately described.

SUMMARY AND 
RECOMMENDATIONS

It is difficult to recommend a “one-size-fits-all strategy” for 
covariate model development, given the very wide spectrum 
of techniques, approaches, and tools that are applied, and 
the wide diversity in datasets and populations that come 
into play. Covariate analysis is typically performed, and re-
sults are reported, based on the purpose of the analysis and 
the anticipated audience. Failure to use a standard for re-
porting parameters42 has made it difficult to find common 
features of models and use covariate analysis in a consistent 
way in order to discover new knowledge.

There are, however, several aspects of covariate analy-
sis that are common to (nearly) all approaches.

•	 Clearly document those aspects of the analysis that 
were prespecified and those that were decided upon 
based on the observed response data, so that consum-
ers of the analysis may better assess the strength of evi-
dence associated with the results. Ensure that technical 
aspects of the analysis (data encoding, functional forms, 
interpretation, and inference) are fully justified, docu-
mented, and subjected to quality control.

•	 Be transparent when departing from prespecified meth-
ods and provide a rationale for such departures. A pre-
specified pharmacometrics analysis plan (PMAP) that 
prespecifies covariates, covariate selection algorithm, 
and criteria, etc., can go a long way toward ensuring 
such transparency. Then, when preparing the report 
PMAP may be referred for the extent to which the pre-
specified methods were followed and any departures 
and the rationale for those departures from the PMAP 
could be documented in a separate section in the report.

•	 Use prior knowledge, scientific judgment, and mechanism-
based models to overcome challenges arising from inevita-
ble correlations of covariates, such as size, age, and organ 
function. In the presence of highly correlated covariates, 
dimensionality may be reduced by focusing on mechanis-
tically plausible relationships. Where no clear mechanistic 
advantage exists, sensitivity analyses using models with 
each of the two competing covariates may be performed to 
investigate the impact on predictions.

•	 Ensure the base model is stable (parameters reliably 
and consistently estimated, with acceptable precision). 
Sometimes this may require adding covariate effects 
(such as allometric scaling of body weight) a priori.

•	 Screening (data-driven) approaches may be satisfactory 
when prediction is the primary goal.

•	 If the model is to be used for identifying covariate re-
lations that may be important in dosing or for other 
descriptive purposes, a prespecification approach will 
generally be the most appropriate.
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•	 Use sensitivity analyses as necessary to ensure that the 
covariate model is not unduly affected by parametric as-
sumptions or high or low outliers. Complement model-
based analyses with exploratory (non-model-based) 
data analyses.

•	 Facilitate the proper interpretation of negative findings 
by providing confidence intervals where possible and, 
in the event that one or more covariates have been ex-
cluded from the model entirely based on a screening 
method, by alerting consumers of the analysis to the 
possibility that exclusion may simply represent insuffi-
cient data to detect the effect in question (“absence of 
evidence is not evidence of absence”).

We hope that what we have presented in this article 
will provide a useful basis for analysts to choose the most 
appropriate approach for their specific sets of circum-
stances. The goals of the analysis should typically inform 
the methodology used – no approach is perfect, but some 
are better suited to certain tasks than others.
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