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Abstract

Malaria is the most common cause of death among the parasitic diseases. Malaria contin-

ues to pose a growing threat to the public health and economic growth of nations in the tropi-

cal and subtropical parts of the world. This study aims to address this challenge by

developing a predictive model for malaria outbreaks in each district of The Gambia, leverag-

ing historical meteorological data. To achieve this objective, we employ and compare the

performance of eight machine learning algorithms, including C5.0 decision trees, artificial

neural networks, k-nearest neighbors, support vector machines with linear and radial ker-

nels, logistic regression, extreme gradient boosting, and random forests. The models are

evaluated using 10-fold cross-validation during the training phase, repeated five times to

ensure robust validation. Our findings reveal that extreme gradient boosting and decision

trees exhibit the highest prediction accuracy on the testing set, achieving 93.3% accuracy,

followed closely by random forests with 91.5% accuracy. In contrast, the support vector

machine with a linear kernel performs less favorably, showing a prediction accuracy of

84.8% and underperforming in specificity analysis. Notably, the integration of both climatic

and non-climatic features proves to be a crucial factor in accurately predicting malaria out-

breaks in The Gambia.

Introduction

Malaria, a parasitic disease transmitted primarily by mosquitoes, continues to pose a signifi-

cant threat to public health, particularly in tropical and subtropical regions [1]. It manifests

with symptoms ranging from minor to severe, often leading to fatal outcomes, with an esti-

mated 627,000 lives lost in 2020 alone, accounting for 7.8% of childhood mortality globally [2].

Despite substantial investments in malaria control and research programs by the World Health

Organization (WHO) in recent years [3], malaria remains a prominent concern in Sub-Saha-

ran Africa, notably affecting children under the age of five [4].
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In The Gambia, malaria prevalence has been associated with specific climatic conditions

favorable to the growth of the Plasmodium parasite and the Anopheles mosquito [5]. Although

malaria cases have decreased over the years, the disease’s highly seasonal transmission persists,

primarily during and immediately after the rainy season [6]. The Gambia National Malaria

Control Program (GNMCP) has played a pivotal role in reducing the country’s malaria bur-

den, leading to a decrease in the number of cases from 346.9 per 100,000 people in 2004 to 66

per 100,000 people in 2018 [7]. However, challenges persist, particularly in the eastern region

of The Gambia, where malaria prevalence remains high, ranging from 10 to 40% [8]. This

imposes a substantial financial and health burden on households in this region [9]. The persis-

tence of intense seasonal transmission during and after the rainy season underscores the need

for effective preventative measures.

Machine learning’s transformative impact on healthcare is evident in its ability to swiftly

analyze datasets and enhance decision-making for improved patient outcomes [10]. While tra-

ditionally associated with large datasets, recent applications, such as a study on juvenile-onset

systemic lupus erythematosus [11], demonstrate machine learning’s effectiveness in extracting

insights from smaller datasets. This adaptability positions machine learning as a versatile tool

in healthcare, influencing disease prognosis, prediction, and other critical tasks.

Forecasting malaria outbreaks using machine learning poses several challenges. Despite the

promising capabilities of machine learning techniques in healthcare, accurately predicting the

occurrence and dynamics of malaria outbreaks is intricate due to the complex interplay of vari-

ous factors. Climatic conditions, socio-economic factors, and human behavior contribute to

the complexity of the malaria transmission dynamics, making it a multifaceted challenge for

predictive modeling. This study addresses these challenges by leveraging machine learning

algorithms to gain valuable insights into the impact of climatic factors on malaria outbreaks in

The Gambia. The utilization of C5.0 decision trees (DT), artificial neural networks (ANN), k-

nearest neighbors (KNN), support vector machines (SVM) with linear (svmLinear) and radial

kernels (svmRadial), logistic regression (LR), extreme gradient boosting (XGBOOST), and

random forests (RF) reflects an effort to overcome these complexities and contribute to the

advancement of malaria control and early warning systems.

Related work

Various studies have used and compared different machine learning approaches to predict

malaria outbreak and total malaria cases using meteorological data and malaria cases. Studies

have revealed that climate has a significant impact on the incidence and spread of malaria,

however the impact of different climate variables varied by region [5]. The two main factors

that contributes to the transmission of malaria are rainfall and temperature [12]. Additionally,

temperature, rainfall, and relative humidity are the main climatic variables that influence the

plasmodium parasite’s growth and maturity, therefore any change in these variables would

undoubtedly have an impact on mosquito ecology [13].

Kalipe et al. [14] explored the prediction of malaria outbreaks in healthcare centers in the

Visakhapatnam district, India. They conducted a comprehensive analysis using historical

meteorological data and records of malaria cases collected over six years. Specifically, the study

involved the combination and aggregation of two distinct datasets: one comprising historical

meteorological data and the other consisting of records of malaria cases. Among the various

machine learning models considered, XGBoost stood out, demonstrating superior perfor-

mance with an accuracy of 96.26%. This finding emphasizes the effectiveness of XGBoost in

comparison to the other models assessed in the study.
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Zinszer et al. [15] predicts malaria using environmental and clinical indicators across differ-

ent settings in Uganda. Multivariate autoregressive integrated moving average models were

used to create facility-specific forecasting models for confirmed malaria, which generated

weekly forecast horizons across a 52-week forecasting period. They came to the conclusion

that, when combined with environmental indicators, clinical data could be utilized to increase

the accuracy of malaria forecasts in endemic environments. Similarly, Lee et al. [16] conducted

a study using clinical data extracted from PubMed abstracts spanning from 1956 to 2019. The

focus of their study was to compare the predictive performances of six machine learning mod-

els: SVM, RF, Multilayer Perceptron, AdaBoost, Gradient Boosting (GB), and CatBoost for

malaria prediction. Addressing data imbalance concerns, they applied the Synthetic Minority

Oversampling Technique (SMOTE). Post-SMOTE implementation, Random Forest emerged

as the most effective model. The outcomes of their investigation led to the conclusion that

leveraging patient data with machine learning techniques enables accurate malaria prediction.

Stephen et al. [17] used 5 supervised machine learning techniques, including naive Bayes

(NB), support vector machine, linear regression, logistic regression (LR), and KNN, to model

the outbreak of malaria. Results showed that NB had the best accuracy for both training and

testing, with an average accuracy of 79.1%. Adamu et al. [18] compared six different machine

learning classifiers for the prediction of malaria cases using weather, non-climatic characteris-

tics, and malaria cases: SVM, KNN, RF, DT, LR, and NB. With an accuracy of 97.72% on the

data set utilized for the investigation, it was discovered that RF is the best model. The findings

indicated that non-climatic and atmospheric factors play a substantial role in predicting the

frequency of malaria outbreaks in a certain society.

In [19], the authors aimed to develop a hybrid classification and regression model for pre-

dicting disease outbreaks using datasets, focusing on malaria outbreaks. The motivation behind

this approach stemmed from the recognition that certain single data mining techniques faced

accuracy challenges. The hybrid model, created by combining decision trees, random forests,

Naive Bayes multinomials, simple logistic, Sequential Minimal Optimization (SMO), instant-

Base learning algorithm (IB1), and Bayesian logistic regression, demonstrated improved output

results compared to employing a single technique. During hybrid training, the model achieved

an accuracy of 100%, and during hybrid evaluation, it maintained an accuracy of 75%.

In Senegal, Diao et al. [20] conducted a significant study in malaria forecasting. They for-

mulated a generalized linear model based on Poisson and negative binomial regression mod-

els, considering climatic variables, insecticide-treated bed-nets distribution, Artemisinin-

based combination therapy, and historical malaria incidence. The study demonstrated the effi-

cacy of the Poisson regression model and addressed issues of over-forecasting through the sat-

uration of rainfall. In Rajasthan, India, Singh et al. [21] proposed a hybrid ML algorithm

(Probabilistic Principal Component Analysis P2CA − Particle Swarm Optimization (PSO)

− ANN) for malaria outbreak prediction in districts like Barmer, Bikaner, and Jodhpur. Using

meteorological variables, data fusion, and P2CA, the model achieved accurate predictions, out-

performing benchmarks. It shows promise as an early warning system based solely on meteo-

rological data.

Despite these valuable contributions, several limitations persist in the existing research.

Challenges related to data imbalance, model generalization, and regional variations in climatic

impacts on malaria transmission are frequently encountered. Many studies face difficulties in

achieving a balance in the distribution of malaria cases, affecting the performance of predictive

models. Additionally, the generalization of models to diverse geographic regions remains a

challenge, as the impact of climatic variables on malaria transmission may vary significantly.

Furthermore, inconsistencies in methodologies and datasets hinder direct comparisons across

studies.

PLOS ONE Malaria outbreak prediction in The Gambia

PLOS ONE | https://doi.org/10.1371/journal.pone.0299386 May 16, 2024 3 / 22

https://doi.org/10.1371/journal.pone.0299386


It is essential to note these limitations, as they underscore the need for a nuanced and con-

text-specific approach in the development of malaria prediction models. More importantly,

the identification of these challenges emphasizes the significance of the present study in

addressing and contributing to the resolution of these limitations in the literature. In addition,

to the best of our knowledge, this is the first study on the use of machine learning techniques

to predict malaria outbreaks in The Gambia.

Materials and methods

In conducting the analysis for prediction, we utilized a robust set of tools and software to

ensure accuracy and reliability. All the statistical procedures conducted in this study were

implemented using the most recent version of R, a widely recognized open-source statistical

tool known for its versatility and extensive data analysis capabilities. Specifically, the predictive

modeling and analysis were performed using the caret package [22] in R. The package provides

a comprehensive framework for building, training, and evaluating predictive models, making

it particularly suitable for our study’s objectives.

Study area

The Gambia is the smallest mainland nation in Africa with an estimated population of

2,603,917 people. It has a total land area of 11,300 km2 and is situated on the west coast of

Africa with latitude and longitude of 13˚280N and 16˚340W respectively. The country is bor-

dered by Senegal on three sides and with a narrow Atlantic coastline on the west.

The country is divided into 8 local government areas and subdivided into 43 districts. And

is home to at least ten distinct ethnic groups, each of which has maintained its own language

and extensive cultural heritage.

The climate in The Gambia is characterized by a prolonged dry season lasting from mid-

October to mid-June, succeeded by a brief rainy season from June to September, with an aver-

age daily temperature of 28˚C conducive to the survival of Anopheles gambiae mosquitoes [6].

The average temperature ranges from 18 to 30˚C during the dry season and from 23 to 33˚C
during the wet season. Annual rainfall averages from 700 millimeters in the far north to 1, 000

millimeters in the South and Southeast.

Malaria exhibits a seasonal pattern in The Gambia, with the highest incidence of clinical

cases and fatalities occurring between September and November [23]. Additionally, the major-

ity of malaria cases in The Gambia are reported during the rainy season and the subsequent

one or two months.

Dataset used

The specific contribution of our study lies in utilizing two distinct datasets (historical meteoro-

logical and clinical datasets) spanning nine years (January 2013 to December 2021) to predict

malaria outbreaks in each district of The Gambia. While previous studies have highlighted the

influence of climatic factors such as rainfall, temperature, and humidity on malaria incidence

[12, 24], our approach integrates machine learning techniques to provide a more accurate and

district-specific prediction of malaria outbreaks. This extends the existing knowledge by

leveraging advanced analytical methods for a targeted and nuanced understanding of the

impact of climatic conditions on malaria transmission at a local level.

The clinical dataset obtained from the health management information system (HMIS),

Directorate of Planning and Information under the ministry of health contains monthly rec-

ords of malaria cases, both severe and uncomplicated cases and total deaths for each district.

These data were collected from all district hospitals and clinics across the country by well-
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trained nurses (state registered or state enrolled) and doctors. The majority of instances of

malaria were uncomplicated. The cases and deaths were recorded per month for each district

from January 2013 to December 2021. The population size for each district was also incorpo-

rated in this dataset. The total population for 2013 was taken from the 2013 population and

housing census conducted by The Gambia Bureau of Statistics (GBOS), while the remaining

years were projected total for each district.

The meteorological data were collected from the Department of water resources, the meteo-

rological division under the Ministry of Fisheries, water resources and national assembly mat-

ters. The data contains three main climatic variables; temperature, rainfall and relative

humidity. The minimum and maximum temperatures were measured in degree Celsius (˚C),

relative humidity in percent (%) and rainfall in millimeters (mm). The monthly average read-

ings were taken from 9 weather stations spread across the country. Fig 1, created using spData

package [25] and ggspatial package [26] in R software, depicts the locations of the main five

out of these nine weather stations in The Gambia, situated across different regions of the

country.

Data cleaning and preprocessing

After combining the clinical and meteorological datasets, the final dataset contains 4428 obser-

vations and nine variables. Rigorous steps were taken to ensure the dataset’s integrity and reli-

ability. Fortunately, there were no missing values for crucial variables, such as, deaths, severe

cases, uncomplicated cases, and population size. However, approximately 4% of the meteoro-

logical data, including minimum temperature, maximum temperature, rainfall, and relative

humidity, had missing observations. To address these missing values, we employed the mean

imputation technique, calculating the mean of non-missing values for the respective month

across the years 2013 to 2021. This meticulous imputation approach aimed to maintain data

quality and consistency.

Moreover, the dataset underwent a comprehensive normalization process to enhance the

effectiveness of machine learning algorithms. It is a critical preprocessing step that plays a piv-

otal role in enhancing the quality and effectiveness of machine learning algorithms. In this

study, normalization was applied to numerical independent variables using the min-max nor-

malization technique. This process transforms features into a shared range, mitigating the

Fig 1. The map of the Gambia showing its five main meteorological stations across different regions.

https://doi.org/10.1371/journal.pone.0299386.g001
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impact of larger numeric values dominating the model’s learning process.

X � Xmin

Xmax � Xmin
ð1Þ

Where Xmax and Xmin represent the variables’ maximum and minimum values, respectively.

After scaling, all the numerical variables have values between 0 and 1.

Normalization becomes particularly crucial in scenarios where the scale of numerical fea-

tures varies significantly. Without normalization, features with larger numeric values may

exert undue influence on the learning algorithm, potentially overshadowing the contributions

of smaller-scale features. The rationale behind data normalization lies in its ability to create a

level playing field for numerical features, ensuring that each contributes proportionally to the

learning process. This contributes to the overall robustness and reliability of the machine

learning models employed in predicting malaria outbreaks. The normalization formula

employed in this study, as depicted in Eq 1, ensures that all numerical variables are scaled to

values between 0 and 1.

Several researchers have emphasized the importance of data normalization in improving

data quality and overall algorithm performance. By implementing this preprocessing tech-

nique, biases associated with feature scales are minimized, allowing machine learning models

to more effectively discern patterns and relationships within the data [27].

In addition to addressing missing values and normalizing features, the dataset was carefully

examined for potential anomalies and outliers. The final step involved creating the dependent

variable, named “outbreak,” based on a carefully designed ratio using malaria cases and popu-

lation size as shown in Eq 2.

r ¼
Cs þ Cu

P
ð2Þ

where, Cs and Cu represent the severe and uncomplicated cases, respectively and P denotes the

population size in each district in the Gambia. To categorize the ratio into meaningful groups,

an outbreak was defined as a ratio of cases greater than 0.01, signifying a significant threat in

this context. Conversely, a no outbreak was defined as a ratio of cases less than or equal to

0.01.

The combination of these steps not only addressed missing data but also ensured the overall

reliability and quality of the dataset. This thorough preprocessing lays a strong foundation for

the subsequent machine learning analyses.

Fig 2 shows the distribution of all the numeric variables in the dataset. Clearly, malaria

cases, deaths, and total rainfall are highly skewed to the right. While maximum temperature

appear to be slightly normally distributed, minimum temperature appeared to be left

skewed.

Prediction models

We applied eight different algorithms; ANN, KNN, C5.0 DT, support vector machine using

linear kernel (svmLinear), support vector machine using radial kernel (svmRadial), XGBoost,

RF and LR to predict malaria outbreak in each district in the Gambia. Chosen for their wide-

spread use and high predictive accuracy, these models are versatile and commonly employed

in both classification and regression tasks. In the context of machine learning, classification

involves categorizing instances into predefined classes, such as predicting whether a district is

likely to experience a malaria outbreak. On the other hand, regression predicts continuous

numerical values. Our study primarily focuses on a classification problem.
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Initially, the dataset was divided into a training set (70%) and a testing set (30%). The fea-

tures were extracted from the training set during the model training phase. Subsequently, the

testing set was utilized to evaluate how each model performed in predicting malaria

outbreaks.

• ANN: The Artificial Neural Network (ANN) is inspired by the functioning of the biological

nervous system. It comprises interconnected nodes arranged in three layers: input, hidden,

and output. Neurons in the input layer distribute the input signal to neurons in the hidden

layer, and the output is determined similarly. The basic structure involves synthetic neurons

and a mathematical function [28–30]. Let xi represent the input, wij the weights, and f the

activation function, then the output yk can be calculated as:

yk ¼ f

 
X

i

wijxi

!

• KNN: The KNN algorithm is one of the earliest and most straightforward algorithms [31]

which can be applied in both classification and regression tasks. KNN classifies data points

based on the nearest training data points. It is non-parametric and classifies based on prox-

imity without considering dataset dimensions [31, 32]. Let d represent the distance metric, k
the number of neighbors, and ci the class, then the prediction ŷ for a new data point can be

Fig 2. Distribution of climatic variables, malaria cases and deaths: Malaria cases, deaths and rainfall are highly

skewed to the right. None of the features appeared to be distributed normally.

https://doi.org/10.1371/journal.pone.0299386.g002
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expressed as:

ŷ ¼ arg max
ci

X

j

Iðdðxj; xnewÞ < kÞ

• DT: Decision Trees (DT) are hierarchical structures with root, branches, internal nodes, and

leaf nodes. Using a divide and conquer method, the ideal split points are found using a top-

down greedy search [33–35]. Let S be the set of samples, X the set of features, and H(X) the

information content, then the DT algorithm aims to recursively partition S into subsets Si
using X and H(X).

The most well-known decision tree algorithms are Breiman et al.’s CART [35] and Quinlan’s

ID3, C4.5, and C5.0 [36, 37]. However, we used the C5.0 algorithm in this study.

• RF: Random Forest (RF) is an ensemble technique relying on multiple decision trees [38].

When DTs are grown very deeply, the training data are frequently overfitted, leading to a sig-

nificant fluctuation in classification results for a little change in the input data. They become

extremely sensitive to the training data as well as error-prone to the dataset as a result. RF

solve this issue by training different parts of the training dataset using multiple DTs, and this

helps in reducing bias, tolerate outliers, avoid overfitting and it is much less sensitive to the

training data [39]. Let T be the set of decision trees, pi the prediction of each tree, and ŷ the

final prediction, then the RF prediction can be formulated as:

ŷ ¼ arg max
ci

X

j

Iðpij ¼ ciÞ

• SVM: Support Vector Machines (SVM) are effective for classification and regression. They

have been used successfully in a variety of fields, including the medical field [39, 40]. Let X

be the input data, w the weights, b the bias, and � the margin, then the SVM objective func-

tion for a linear kernel is given by:

min
w;b

1

2
kwk2

þ C
X

i

maxð0; 1 � yiðw � Xi � bÞÞ

In this study, we utilized both the SVM model using a linear kernel (svmLinear) and SVM

using radial kernel (svmRadial).

• XGBoost: XGBoost is an efficient ensemble technique based on gradient boosting. It mini-

mizes a cost objective function, J, comprising a regularization term and a loss function [41].

The update rule for each iteration can be expressed as:

ŷkþ1 ¼ ŷk � Z
@J
@ŷk

• LR: Logistic Regression (LR) models binary variables, which typically indicate whether an

event will occur or not [42]. Let X be the input data, w the weights, b the bias, and σ the
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sigmoid function, then the LR prediction can be written as:

ŷ ¼ sðw � Xþ bÞ

Feature selection

Feature selection is an important step in building and using machine learning models espe-

cially in disease prediction. It can greatly improve the performance of the model [43]. We use

the backward elimination method in each model to select only the relevant climatic features in

predicting malaria outbreak. This method helps in reducing overfitting, as well as save a signif-

icant amount of time during the learning process [44].

Performance measures

We assessed each classification model’s performance using a variety of performance metrics,

including sensitivity, specificity, accuracy, and area under the receiver operating characteristic

curve (ROC). The confusion matrix with parameters true positive (tp), true negative (tn), false

positive (fp), and false negative (fn) is used to construct the performance measures of all the

classifiers. The performance measures (accuracy, sensitivity and specificity) were calculated

using these parameters. Below, we give an introduction and definition of each assessment cri-

teria used to assess each learning model included in this study.

• Accuracy: It is the most widely used metrics for evaluating the performance of classifiers. It

is the proportion of subjects with accurate labels to the entire group of subjects.

Accuracy ¼
tpþ tn

tpþ tnþ fpþ fn

Accuracy is a widely adopted metric for classifier performance assessment.

• Sensitivity: The ability of a model to correctly identify positive examples in a binary classifi-

cation is measured by sensitivity. It is also known as the recall or true positive rate (TPR).

Sensitivity ¼
tp

tpþ fn

Sensitivity emphasizes the accurate identification of positive cases, contributing to a model’s

robustness. A model performs better when the sensitivity is higher at accurately identifying

positive cases.

• Specificity: Specificity is the proportion of true negatives the model successfully detects.

This percentage is also known as the true negative rate (TNR).

Specificity ¼
tn

tnþ fp

Specificity complements sensitivity by highlighting the model’s effectiveness in identifying

true negatives.

• Area under the ROC curve (AUC): The ROC curve is a plot that compares true positive

rate (TPR) and false positive rate (FPR) at various classification thresholds. TPR is sensitivity
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while FPR is 1 − specificity. AUC is a discrimination metric indicating how well the predictor

can distinguish subjects into two categories. AUC provides a comprehensive overview of the

model’s discriminatory power across different threshold levels, offering insights into overall

predictive performance.

These selected performance metrics collectively offer a thorough evaluation of the models,

capturing aspects of accuracy, sensitivity, specificity, and discriminatory capability. Their

inclusion ensures a multifaceted assessment aligned with the diverse requirements of malaria

outbreak prediction.

Upsampling

In the context of training and testing data, the initial random split of the dataset into these sets

highlighted a significant class imbalance, particularly regarding “outbreak” and “no outbreak”

cases, as depicted in Fig 3. Notably, 87% of both the training and testing datasets consisted of

“no outbreak” cases.

To address the challenge posed by class imbalance during the training phase, we employed

the up-sampling method exclusively on the training dataset. Up-sampling involves the genera-

tion of additional instances of the minority class (outbreak) through random sampling with

replacement. The goal is to augment the size of the minority class to align it with the majority

class (no outbreak) in the training data. Importantly, this up-sampling process is specifically

applied to the training dataset and not the testing dataset.

By implementing up-sampling in this manner, the training data becomes more representa-

tive of the underlying distribution of outbreak and no outbreak cases. This contributes to a

more balanced learning process during model training, allowing the machine learning algo-

rithm to better capture patterns within the minority class. It’s essential to note that up-sam-

pling is a training-specific technique and does not directly influence the distribution of classes

in the testing dataset or during cross-validation.

In summary, the use of up-sampling in the training dataset helps mitigate the challenges

posed by class imbalance, fostering improved model generalization and predictive accuracy

during the training phase while preserving the natural distribution of classes in the testing

dataset and during cross-validation.

Model validation

To robustly assess the performance of each model during the training phase, we employed a

10-fold cross-validation. This involved randomly dividing the training data into ten mutually

exclusive folds of roughly equal size. Each model was then trained and tested ten times, with

each iteration using nine subsets for training and the remaining subset for testing. This process

yielded ten performance estimates, such as model accuracy, for each algorithm. The final per-

formance estimate for each model was based on the average of these ten estimates, as shown in

Eq 3.

CVPE ¼
X10

i¼1

PEi ð3Þ

where PEi stands for the performance estimate of fold i and CVPE stands for the cross-valida-

tion performance estimate.

The choice of 10-fold cross-validation was motivated by its effectiveness in providing a

robust evaluation of model performance. By dividing the training data into ten folds, our mod-

els underwent comprehensive training and testing iterations, promoting thorough exposure to
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diverse data patterns. This approach mitigates overfitting, enhances the reliability of perfor-

mance estimates, and ensures a resource-efficient use of the available data. The decision to

repeat the 10-fold cross-validation five times further strengthens the statistical significance of

our performance evaluations.

Fig 3. Proportion of outbreak in both the training and testing data.

https://doi.org/10.1371/journal.pone.0299386.g003
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Results

Summary of the dataset

The dataset utilized in this study comprises a diverse set of variables aimed at comprehensively

understanding the factors influencing the occurrence of outbreaks. These variables encompass

meteorological features, month, district and population size for each district in The Gambia.

Table 1 presents a descriptive compilation of the variables used in this study.

Climatic variables and malaria incidence patterns

The Pearson correlation among the climatic variables is shown in Fig 4. Most of the variables

are either weakly or moderately correlated except between rainfall and relative humidity with a

correlation of 0.7. The correlation between maximum temperature and relative humidity is

also slightly strong with a correlation of −0.66. More importantly, all theresults were found to

be statistically significant using a significant level of 5% as shown in Table 2. These nuanced

findings emphasize the complexity of the interactions between climate and malaria outcomes

in the country.

Most of the clinical malaria cases occurred during the ending of the rainy season and the

two months after, which is around August to December as shown in Fig 5. This is the time of

year when there is a lot of greenery and stagnant water in the bushes and on the streets, which

is ideal for anopheles mosquito reproduction. This goes on to further explain rainfall’s role in

forecasting malaria outbreaks. Except for December, these months also have the highest aver-

age relative humidity. Fig 5 further shows that over these months, the minimum and maxi-

mum temperatures ranged from 15.8 to 22.9˚C and 32.25 to 35.33˚C, respectively.

Model evaluation and performance comparison

We selected features for each model using backward elimination. Features included in the

final models are presented in Table 3. The variables month, district and population size were

set to be included in every model whereas the climatic variables were selected using the back-

ward elimination method. Notably, both XGBoost and ANN were the only models that incor-

porated all climatic predictors. In the case of C5.0 DT and svmLinear, only one climatic

variable was omitted. Conversely, svmRadial did not include any climate predictor.

To optimize the performance of each predictive model, hyperparameter tuning was con-

ducted using the grid search method. This approach involves systematically searching through

a predefined set of hyperparameter values to identify the combination that yields the optimal

model performance.

Table 1. Summary of all the variables in the dataset.

Categorical variable name Distinct classes

Outbreak 2

Month 12

District 41

Continuous variable name Mean S.D Range

Total rainfall 77.80595 129.1016 0–651.4

Minimum temperature 20.13897 3.585981 10–37.5

Maximum temperature 35.64957 2.814196 30.2–47.36667

Relative humidity 56.42773 19.0511 17–98

Population size 53074.01 88917.42 3789–528789

https://doi.org/10.1371/journal.pone.0299386.t001
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For instance, the parameter k in the K-Nearest Neighbors (KNN) classifier was explored

across the values K = {3, 5, 7, 9, 11}, with the grid search determining k = 3 as the optimal

choice. Similar ranges and search procedures were applied to the hyperparameters of other

classifiers.

The optimal hyperparameters selected for each predictive model are presented in Table 4.

These values represent the configurations that resulted in the highest model performance

within the specified search space.

Fig 4. The Pearson’s correlation among all the climatic variables used.

https://doi.org/10.1371/journal.pone.0299386.g004
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Table 2. 95% confidence interval of the correlation coefficient among the climatic variables with their corresponding p-values.

Climatic Variables Rainfall Maximum temperature Minimum temperature Relative humidity

Rainfall (1, 1) (−0.58, −0.54) (0.46, 0.50) (0.68, 0.71)

< 2.2e − 16 < 2.2e − 16 < 2.2e − 16 < 2.2e − 16

Maximum temperature (−0.58, − 0.54) (1, 1) (−0.15 − 0.09) (−0.68 − 0.65)

< 2.2e − 16 < 2.2e − 16 2.756e − 16 < 2.2e − 16

Minimum temperature (0.46, 0.50) (−0.15 − 0.09) (1, 1) (0.58, 0.62)

< 2.2e − 16 2.756e − 16 < 2.2e − 16 < 2.2e − 16

Relative humidity (0.68, 0.71) (−0.68 − 0.65) (0.58, 0.62) (1, 1)

< 2.2e − 16 < 2.2e − 16 < 2.2e − 16 < 2.2e − 16

https://doi.org/10.1371/journal.pone.0299386.t002

Fig 5. Variation of the climatic variables, total malaria cases and deaths in each month over the years. In the upper

panels of the first row, we can observe the number of malaria cases and deaths in thousands, although not used as

predictors. Each line represents a different year, indicated by the various colors. The bottom four panels show the

climate variables and their variability. The boxplots depict each month of the year, while the colored dots represent the

data points in the corresponding years. The minimum and maximum temperatures were measured in degrees Celsius

(˚C), the rainfall was measured in millimeters (mm), and the relative humidity was measured in percentages (%).

https://doi.org/10.1371/journal.pone.0299386.g005
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The performance measures across various models on both the training and testing datasets

as shown in Tables 5 and 6 respectively reveal insightful patterns. In the training set, Random

forest (RF) displayed a strong overall predictive capability (accuracy: 99.8%, sensitivity: 100%,

specificity: 98.3%). Artificial Neural Network (ANN) and svmRadial also demonstrated high

accuracy, sensitivity and specificty, providing a robust performance on the training set.

C5.0 Decision Trees (C5.0 DT) exhibited exceptional accuracy and specificity (99.9% and

99.3%, respectively) in the training set. On the testing set, C5.0 DT maintained consistent per-

formance (accuracy: 93.3%, sensitivity: 96.7%, specificity: 71.6%), showcasing its effectiveness

in practical applications.

Extreme Gradient Boosting (XGBoost) demonstrated remarkable consistency, achieving

100% across all metrics on the training set and maintaining high values on the testing set

(accuracy: 93.3%, sensitivity: 96.7%, specificity: 71.6%). In summary, C5.0 DT and XGBoost

emerge as the top-performing models, offering a well-balanced and robust predictive capacity

for malaria outbreak prediction.

Table 3. Features included in the final predicting models. The tick (✓) mark represents the inclusion of a particular

variable in the model, whereas if the variable is not included, the space remains blank. M represents months of the cal-

endar year, and Dis represents districts and P is for population size. Tmin, Tmax, R, H are minimum and maximum tem-

peratures, total rainfall, and relative humidity, respectively.

Models Features

M Dis Tmin Tmax R H P
LR ✓ ✓ ✓ ✓ ✓

KNN ✓ ✓ ✓

C5.0 DT ✓ ✓ ✓ ✓ ✓ ✓

ANN ✓ ✓ ✓ ✓ ✓ ✓ ✓

RF ✓ ✓ ✓

XGBoost ✓ ✓ ✓ ✓ ✓ ✓ ✓

svmLinear ✓ ✓ ✓ ✓ ✓ ✓

svmRadial ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0299386.t003

Table 4. Optimal parameters selected for each classifier.

Models Optimal tuning parameters

LR none

KNN k = 3

C5.0 DT trials = 20

model = tree

winnow = false

ANN decay = 0

size = 7

RF mtry = 46.88889

XGBoost nrounds = 200

lambda = 0

alpha = 0

eta = 0.3

svmLinear C = 2.154

svmRadial C = 1000

sigma = 100

https://doi.org/10.1371/journal.pone.0299386.t004
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The area under the receiver operating characteristic (ROC) curve (AUC) was also used to

compare each model’s performance, as shown in Fig 6. The AUC values of all the models are

at least 0.9 except for KNN with 0.89 which is the lowest. XGBoost has the highest AUC value

of 0.97 and closely followed by C5.0 DT with an AUC of 0.96.

After considering the performance of all the models with respect to the three popular per-

formance metrics (accuracy, sensitivity and specificity) and the AUC values, we recommend

the XGBoost and C5.0 DT model as the best performing models. They have the highest accu-

racy, specificity and AUC values.

Discussion

Predictive models for malaria outbreaks must be extremely accurate if they are to have any

hope of being helpful in clinical and public health decision-making as well as in planning

resources for better and more effective services, especially in areas where medical facilities are

scarce. With the use of these models, medical professionals might more effectively plan and

deliver treatment and diagnostics to lessen the effects of disease on humans, particularly in

endemic areas. In this study, we developed machine learning models to estimate the impact of

three climatic variables and some non-climatic variables in predicting malaria outbreak in

each district in the Gambia.

Two distinct datasets from 2013 to 2021 encompassing climatic and non-climatic factors

were analyzed in order to validate and compare all nine models. Fig 4 displays the Pearson cor-

relation among the climatic variables. Tables 5 and 6 displays the sensitivity, specificity, and

accuracy of each classifier’s performance. Despite the fact that each machine learning tech-

nique has unique strengths and weaknesses depending on the application type and size of the

Table 5. Performance measures on the training set.

Models Accuracy (%) Sensitivity (%) Specificity (%)

LR 88.0 98.9 52.2

KNN 93.6 100 66.9

C5.0 DT 99.9 100 99.3

ANN 96.3 99.9 78.4

RF 99.8 100 98.3

XGBoost 100 100 100

svmLinear 85.9 98.6 47.8

svmRadial 97.9 100 86.2

https://doi.org/10.1371/journal.pone.0299386.t005

Table 6. Performance measures on the testing set.

Models Accuracy (%) Sensitivity (%) Specificity (%)

LR 86.8 98.8 48.6

KNN 89.4 97.7 54.9

C5.0 DT 93.3 96.7 71.6

ANN 89.6 96.0 56.3

RF 91.5 95.4 65.1

XGBoost 93.3 96.7 71.6

svmLinear 84.8 98.4 44.7

svmRadial 91.0 95.0 63.7

https://doi.org/10.1371/journal.pone.0299386.t006
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Fig 6. This plot shows the area under the Receiver Operating Characteristic (ROC), (AUC) of all the learning algorithms. The green and the blue

curve shows the ROC curve using the training and testing data respectively. XGBoost has the highest AUC value of 0.97. (a) C5.0 DT. (b) KNN. (c) Logistic

Regression. (d) ANN. (e) Random Forest. (f) XGBoost. (g) svmLinear. (h) svmRadial.

https://doi.org/10.1371/journal.pone.0299386.g006
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dataset, all of the models produced promising results in terms of accuracy, sensitivity, specific-

ity as well as AUC values as shown in the result section. We selected XGBoost and C5.0 DT as

the best performing models.

We also applied feature selection algorithm technique to return the overall best model with

just the relevant features. The non-climatic features (District, population size and month) were

forced into all the nine models while the climatic variables were selected by the feature selec-

tion algorithm. The variable month was included in all of the predictive models in order to

forecast malaria cases for every month in The Gambia. This is because malaria transmission in

The Gambia highly varies with respect to the month. It was reported in [23] that The Gambia

records its highest clinical cases and fatalities in September and November. This report sup-

ports our findings, presented in Fig 5, showing November recording the highest number of

malaria cases in The Gambia. The variable District was also fixed to enable us predict malaria

cases for each district in The Gambia. From the feature selection results, all the models except

for KNN, RF and svmRadial have included at least two climatic features showing why they can

be a crucial variables in predicting malaria outbreaks. Each of the climatic variable appeared in

four models. The minimum and maximum temperature happened to be selected by the same

models. One of the two best models, XGBoost selected all the climatic variables while the sec-

ond one, C5.0 DT selected all except rainfall. This has further strengthened the significance of

these climatic variable in predicting outbreak. Furthermore, these three climatic factors have

been linked to the spread of malaria and the development of the anopheles mosquito, accord-

ing to numerous research [5, 12, 13]. To contextualize our findings, we compare our results

with existing literature, shedding light on the effectiveness of machine learning techniques in

diverse geographical settings.

Our approach aligns with studies worldwide, such as Kalipe et al. [14], which successfully

employed various machine learning techniques in predicting malaria outbreaks in Visakhapat-

nam, India. Similarly, Zinszer et al. [15] and Lee et al. [16] emphasized the significance of com-

bining environmental and clinical indicators, demonstrating enhanced accuracy in malaria

forecasts. These studies underscore the importance of considering diverse variables for robust

predictive models, supporting our integration of climatic and non-climatic factors.

Comparing specific models, our results align with Adamu et al. [18], where Random Forest

(RF) emerged as the best model. However, it’s noteworthy that the optimal model may vary

depending on the dataset and geographic location. Our study adds nuance to this understand-

ing, as both XGBoost and C5.0 Decision Trees (C5.0 DT) consistently outperformed other

models, providing a well-balanced and robust predictive capacity for malaria outbreak predic-

tion in the Gambia.

It’s essential to acknowledge limitations, such as data imbalance and regional variations.

These challenges are consistent with broader issues highlighted in the literature. Addressing

these limitations requires a nuanced and context-specific approach, emphasizing the need for

ongoing research to refine and improve predictive models. Our study, as the first of its kind in

the Gambia, lays the groundwork for future endeavors in this critical area, contributing to the

global effort to combat malaria and enhance public health outcomes.

Conclusion and future work

This study examined the significance of machine learning methods for predicting malaria out-

breaks in The Gambia. It is crucial to anticipate malaria outbreaks in order to lower the dis-

ease’s morbidity and fatality rates in The Gambia. And more importantly, the accurate

forecasting of malaria outbreak can give public, health authorities and clinical health services
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the knowledge they need and the required steps to conduct targeted malaria control strategies

that make efficient use of scarce resources to reduce loss of lives.

We employed a number of machine learning techniques to forecast malaria outbreaks in

each district in The Gambia. Using historical meteorological data, population size, and malaria

case data spanning 9 years (2013–2021), all models were trained, validated, and evaluated. The

findings indicated that a combination ofmeteorological and non-climatic factors like popula-

tion size, month are significant in predicting when malaria epidemics would occur in a partic-

ular region or district in The Gambia. Moreover, we recommended XGBoost and C5.0 DT as

the best models for prediction based on reasons highlighted in the result section.

In conclusion, our study represents a pioneering effort in malaria prediction within the

Gambia. By integrating climatic and non-climatic variables and leveraging effective machine

learning models, our work significantly contributes to the growing body of knowledge in

malaria forecasting. The insights gained from our research hold particular value for resource-

constrained regions, where accurate predictions are essential for informed public health deci-

sions and resource allocation.

This research can be enhanced in the future through the implementation of a hybridized

ensemble approach in our machine learning models. By integrating various methodologies,

the resulting model is poised to achieve increased reliability and robustness. This step aligns

with the evolving landscape of machine learning techniques and ensures our predictive models

remain at the forefront of predictive modelling.

Moreover, expanding the scope of our analysis to include additional factors such as treated

mosquito nets, indoor residual spray coverage, and other pertinent predictors could contribute

significantly to the comprehensive understanding of malaria dynamics in The Gambia. These

elements, though not addressed in the current study, represent crucial components that war-

rant consideration in future investigations.

In essence, this study lays the groundwork for subsequent studies to build upon, incorpo-

rating advanced methodologies and expanding the array of variables considered.
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