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Abstract

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-

based mosquito control strategies advance from laboratory to field testing. Especially appli-

cable are mosquito gene drive projects, the potential scale of which leads monitoring to be a

significant cost driver. For these projects, monitoring will be required to detect unintended

spread of gene drive mosquitoes beyond field sites, and the emergence of alternative

alleles, such as drive-resistant alleles or non-functional effector genes, within intervention

sites. This entails the need to distribute mosquito traps efficiently such that an allele of inter-

est is detected as quickly as possible—ideally when remediation is still viable. Additionally,

insecticide-based tools such as bednets are compromised by insecticide-resistance alleles

for which there is also a need to detect as quickly as possible. To this end, we present

MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap

placement for genetic surveillance of mosquito populations such that the time to detection of

an allele of interest is minimized. A key strength of MGSurvE is that it allows important bio-

logical features of mosquitoes and the landscapes they inhabit to be accounted for, namely:

i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be

explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their

sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and

iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented

to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban

landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island

of São Tomé, São Tomé and Prı́ncipe. Further documentation and use examples are pro-

vided in project’s documentation. MGSurvE is intended as a resource for both field and

computational researchers interested in mosquito gene surveillance.
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Author summary

Mosquito-borne diseases such as malaria and dengue fever continue to pose a major

health burden throughout much of the world. The impact of currently-available tools,

such as insecticides and antimalarial drugs, is stagnating, and gene drive-modified mos-

quitoes are considered a novel tool that could contribute to continuing reductions in dis-

ease transmission. Gene drive approaches are unique in the field of vector control in that

they involve transgenes that could potentially spread on a wide scale, and consequently,

surveillance is expected to be a major cost driver for the technology. This is needed to

monitor for unintended spread of intact drive alleles, and the emergence of alternative

alleles such as homing-resistance alleles and non-functional effector genes. Additionally,

surveillance of insecticide-resistance alleles is of interest to support the impact of insecti-

cide-based tools such as bednets. Here, we present MGSurvE, a computational framework

that optimizes trap placement for genetic surveillance of mosquito populations in order to

minimize the time to detection for an allele of interest. MGSurvE has been tailored to vari-

ous features of mosquito ecology, and is intended as a resource for researchers to optimize

the efficiency of limited surveillance resources.

Introduction

Mosquito-borne diseases such as malaria, dengue and yellow fever continue to pose a major

public health burden throughout much of the world. Gene drive-modified mosquitoes have

been proposed as a potentially transformative tool to complement currently-available tools by

biasing inheritance in favor of an introduced allele [1]. Progress has been made in Anopheles
malaria vectors towards two general classes of gene drive strategies: i) “population replace-

ment”, whereby inheritance is biased in favor of an allele that confers refractoriness to patho-

gen transmission [2, 3]; and ii) “population suppression”, whereby vector populations are

suppressed by biasing inheritance in favor of an allele that induces a severe fitness cost or sex

bias [4, 5]. In Aedes arboviral vectors, a “split drive” system has been engineered with Cas and

guide RNA (gRNA) drive components at separate loci [6]. Split drive systems display transient

drive behavior because the Cas and gRNA components frequently co-occur following a release,

but soon dissociate and are eliminated by virtue of fitness costs. The potential spread and scale

of impact of this technology is promising; however, surveillance programs present a major cost

driver as they must scale with the intervention [7, 8].

Surveillance for gene drive projects will be required to monitor the effectiveness of the strat-

egy at field sites, as has been done for previous self-limiting genetic control projects [9]; how-

ever, a more demanding task will be to detect unintended spread of gene drive alleles beyond

field sites, and to detect the emergence of alternative alleles both within and beyond field sites.

One concern for these systems is the emergence of drive-resistant alleles which, especially for

population suppression strategies, would have a significant fitness advantage over intact drive

alleles, leading vector populations to rebound [10, 11]. This is also a concern for population

replacement strategies, as when the drive has spread and there are fewer cleavable wild-type

alleles remaining, less costly resistant alleles may replace the drive alleles, reducing their dura-

tion of impact [12]. Another concern for population replacement strategies is the emergence

and spread of drive alleles lacking a functional effector gene [13].

For spread beyond field sites, open questions relate to the optimal density and placement of

traps and the frequency of sampling required to detect gene drive alleles, drive-resistant alleles

or non-functional effector genes while they can still be effectively managed. Similar questions
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relate to the spread of new alleles conferring resistance to other interventions, such as bednets

or indoor residual spraying with insecticides. Lessons may be learned from studies of invasive

species, a key result for which is that early detection is critical to minimizing invasion impact,

preserving the possibility of local elimination, and maximizing the cost-effectiveness of surveil-

lance programs [14, 15].

To this end, we present MGSurvE: an analytical framework that optimizes trap placement

for surveillance of mosquito populations such that the time to detection of an allele of interest

is minimized. MGSurvE takes into account biological features of mosquitoes and the land-

scapes they inhabit—namely, resources required by mosquitoes (e.g., blood and sugar-based

food sources and aquatic breeding sites) and movement of mosquitoes between these

resources on a landscape. It also accommodates traps with differing attractiveness profiles.

MGSurvE may be used in parallel with MGDrivE [16] or MGDrivE 2 [17] to determine the

expected distribution of times to detection or the number of individuals having the allele of

interest at this time point in closed populations. We describe how to set up, run and interpret

output from MGSurvE, and provide examples of trap placement optimization for an Aedes
aegypti population in Queensland, Australia, and an Anopheles gambiae population on the

tropical island of São Tomé, São Tomé and Prı́ncipe. We then conclude with a discussion of

future modeling needs and applications for genetic surveillance of mosquito populations.

Design and implementation

MGSurvE provides a computational framework to distribute mosquito traps through a land-

scape such that the time to detection of an allele of interest is minimized. To do so, the

MGSurvE package includes three major components (Fig 1), described here: i) “landscape

specification,” in which mosquito sites (or groups of sites) are attributed to nodes, with move-

ment rates between nodes determined by movement rules and dispersal kernels, ii) “trap opti-

mization,” in which the spatial distribution of a given number of mosquito traps is optimized

by minimizing the expected time for an allele of interest to reach a trap, as determined by an

optimization routine, and iii) “analysis and visualization of results,” in which optimization

reports are exported, and landscapes including traps may be visualized These components are

reflected in the structure of the codebase, which is developed in Python [18]. We now describe

the model components here, with the mathematical representation provided in the S1 Text.

Landscape specification

Before the distribution of traps can be optimized, a landscape must first be specified. In

MGSurvE, the landscape is a metapopulation within which discrete mosquito population

nodes are distributed. The appropriate scale at which populations are modeled depends on the

species of interest and the resolution at which optimized trap placement is desired. For

instance, a household scale may be adequate for Ae. aegypti populations, which are thought to

be relatively local dispersers usually found within 50 m of the breeding site they hatched from

[19, 20], while a village scale may be more appropriate for An. gambiae populations, which dis-

perse over distances of up to 7 km [21]. In this initial version of MGSurvE, all sites are assumed

to have equal population size. Nodes in MGSurvE may also represent specific resources—e.g.,

blood and sugar sources for feeding, and water sources for egg-laying—the inclusion of which

allows traps to be distributed in relation to these. Landscapes in MGSurvE may be sex-specific,

which is particularly relevant if specific resources are included, as only females blood-feed and

lay eggs, while both females and males sugar-feed.

Once a point set of mosquito population nodes has been defined, the next step is to define

the daily per-capita movement probabilities between each pair of nodes. Movement is assumed
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to be Markovian (i.e., the conditional distribution of future states depends only on the current

state), and is calculated from dispersal kernels, which derive relative daily movement probabil-

ities from the distance between each pair of coordinates and the density of other sites in the

vicinity of the focal site. The base MGSurvE implementation provides functions to implement

exponential decay, long-tailed exponential and zero-inflated exponential kernels; which

encompass a basic family of short-distance flight-types for mosquitoes. The zero-inflated expo-

nential, for example, takes into account the Aedes’ tendency to dwell in a given point only to

fly to nearby locations; whereas Anopheles disperse further from their immediate neighbor-

hood, which can be characterized by a decaying-exponential kernel. However, the MGSurvE

framework is not limited to these, and any function that takes two node coordinates and the

required parameters can be defined and used. In the event that specific resources are included

in a landscape, movement probabilities are modified by a “masking matrix,” which is deter-

mined by the resource type of the mosquito’s current node. For instance, a mosquito currently

in a node with blood-feeding resources may be more likely to seek a node with water for egg-

laying. This type of movement is similar to that of the MBITES framework (Mosquito Bout-

based and Individual-based Transmission Ecology Simulator) [22].

With a point set and movement probabilities defined, the final step in specifying the land-

scape is to define and incorporate traps, the positions of which will be updated through the itera-

tions of the optimization process. MGSurvE can incorporate a wide range of traps (e.g., BG

Sentinel traps, CDC light traps, ovitraps, etc.), which may differ in their attractiveness as defined

by parameters and attributes such as mean radius of attractiveness, mosquito sex, and resource

Fig 1. Components of the MGSurvE framework. The MGSurvE package includes three major components, reflected in the codebase, to distribute

mosquito traps through a landscape such that the time to detection of an allele of interest is minimized: (A) landscape specification, (B) optimization of trap

distribution, and (C) analysis and visualization of results.

https://doi.org/10.1371/journal.pcbi.1012046.g001
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type of the current mosquito node. For instance, an ovitrap will be most likely to attract nearby

female mosquitoes that are currently in a node with a food resource and hence may soon seek

an egg-laying site. Of note, specific traps can be flagged as “immovable,” so the positions of other

traps may be optimized given the fixed trap locations. The trap attractiveness profiles are used to

modify the movement probabilities of the movement matrix, and it is this modified matrix that

is used by the optimization algorithm to optimize trap placement. A demonstration of landscape

specification on a six-node metapopulation with resource types is provided in Fig 2.

Optimization of trap distribution

MGSurvE makes use of a genetic algorithm (GA) to optimize trap placement by calling the

DEAP framework (Distributed Evolutionary Algorithms in Python) [23], by default. GAs are a

subset of evolutionary algorithms that search computational solution space using biologically-

inspired operators such as mutation, crossover and selection upon computationally-created

“chromosomes,” which store information about potential solutions to the optimization task at

hand [24]. Notably, these computational constructs not related to the biological application at

hand, but rather named after the biological counterparts they emulate. In the case of

MGSurvE, chromosomes consist of a list of “alleles”, each of which contains information per-

taining to the position of a trap. MGSurvE considers two classes of optimization problems: i)

“discrete optimization”, in which traps may only be placed within the set of currently-listed

population nodes, and ii) “continuous optimization”, in which traps may be placed anywhere

in the landscape. Discrete optimization may be appropriate for applications on a larger spatial

scale—e.g., for cases where population nodes are villages and traps may only be placed within

villages. Continuous optimization may be appropriate for applications on a finer scale—e.g.,

where nodes represent specific resources (blood, sugar or water sources), and traps are placed

relative to these. For discrete optimization, the chromosomes of the GA consist of a list of trap

IDs (identification numbers), while for continuous optimization, the chromosomes consist of

a list of coordinates representing trap longitude and latitude.

In each generation of the optimization cycle, the GA calculates the fitness of all the compu-

tational chromosomes in the current population (as defined in Equation 8 in S1 Text), which

gives us an estimate of how good each potential solution is. With this information, the algo-

rithm selects chromosomes to populate the next generation of the algorithm (selecting the

ones with higher fitness more frequently than others). At this point, the GA selects pairs of

chromosomes and combines them together in a process that emulates mating, copying the off-

spring to the new solution population. Finally, some of these newly generated solutions are

selected for a process that resembles mutation, whereby some alleles of the chromosome are

changed in hopes that these changes might lead to fitter individuals. By iterating these steps on

our chromosomes, the population as a whole should move towards increasingly better (fitter)

solutions. A thorough explanation of how the GA and how it connects to the mathematical

components used in MGSurvE, along with descriptions of the terminology, is available in S1

Text. Of note, our optimization task attempts to reduce time to detection so the fitness metric

of interest is being minimized; but all the principles remain the same regardless.

Analysis and visualization of results

MGSurvE provides a number of functions to analyze and visualize results from the trap place-

ment optimization procedure. Landscape and optimization reports are generated and exported

to disk for performance checks and further analysis. Optimal trap placement can be plotted

alongside the distribution of mosquito population nodes, with examples provided in the fol-

lowing use case section and Figs 2–4. Plots from MGSurvE are fully compatible with matplotlib
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Fig 2. Demonstration of landscape specification in MGSurvE. (A) A metapopulation consisting of six mosquito population nodes is depicted on the left,

with a corresponding movement matrix depicted on the right (shades represent daily per-capita movement probabilities). Here, movement probabilities

depend only on distance, and are derived from a zero-inflated exponential dispersal kernel with a staying probability of 0.75 and a mean dispersal distance,

conditional upon movement, of 1. (B) The same metapopulation is depicted with resources attributed to nodes on the left (triangles represent blood-

feeding sites, and circles represent water/egg-laying sites). The corresponding movement matrix is depicted on the right. A masking matrix is used to

modify movement probabilities according to the resource type of the mosquito’s current node (e.g., to account for the fact that a recently blood-fed

mosquito is more likely to seek a node with water for egg-laying, etc.). (C) Two traps with maximum attractiveness (i.e., the probability a mosquito falls into

a trap in its immediate vicinity) of 0.5 (red) and 0.3 (green), are incorporated into the metapopulation with resources attributed depicted on the left. The

coordinates and attractiveness profiles of the traps are used to modify the movement matrix, depicted on the right. Here, τ is a square matrix in which each

entry stores the probability of movement from site to site, ν contains the probabilities of flying from sites to traps, I represents the identity matrix, and 0

represents a matrix of zeros. The structure of the additional rows and columns reflects the fact that traps are absorbing.

https://doi.org/10.1371/journal.pcbi.1012046.g002
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[25], and the movement matrices generated can be exported to disk and mosquito spatial sim-

ulation frameworks such as MGDrivE [16], MGDrivE 2 [22] and MBITES [22].

Results

To demonstrate how the MGSurvE framework can be used to distribute traps on a landscape

in order to minimize time to detection of an allele of interest, we compute and visualize opti-

mal trap placement for two example species and landscapes: i) an Ae. aegypti population in the

suburban landscape of Yorkeys Knob in Queensland, Australia, and ii) an An. coluzzii popula-

tion on the island of São Tomé, São Tomé and Prı́ncipe. Code for these examples is available at

the MGSurvE repository (https://github.com/Chipdelmal/MGSurvE).

Fig 3. Example optimal trap placement on a suburban landscape (Ae. aegypti in Queensland, Australia). (A) We consider two types of traps with

distinct attractiveness profiles represented by: i) an exponential kernel (green) with maximum attractiveness of 0.5 and a mean radius of attractiveness of

15.88 m, and ii) a sigmoidal kernel (magenta) with maximum attractiveness of 0.5, an inflection radius f 16 m and a shape parameter of 0.25. Household-

based mosquito population nodes are depicted for Yorkeys Knob (B). Daily movement probabilities between households are derived from a zero-inflated

exponential kernel with a daily staying probability of 72% [19, 27], and a mean dispersal distance conditional upon movement of 54 m [20]. The genetic

algorithm of MGSurvE distributes traps such that the mean (B1–2) and maximum (B3) expected times for a given mosquito to be trapped, considering all

possible origin sites on the landscape, is minimized. The base layer for map including buildings footprints can be downloaded from OpenStreetMap

(https://www.openstreetmap.org/search?query=yorkeys%20knob#map=16/-16.8125/145.7273).

https://doi.org/10.1371/journal.pcbi.1012046.g003
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Discrete and continuous optimization on a suburban landscape (Ae.
aegypti in Queensland, Australia)

Here, we demonstrate the application of MGSurvE to distribute traps in order to minimize

time to detection of an allele of interest for Ae. aegypti populations in the suburb of Yorkeys

Knob 17 km northwest of Cairns, Queensland, Australia. Yorkeys Knob was a trial site for a

successful release of Wolbachia-infected mosquitoes in 2011 [26] (Fig 3B). Ae. aegypti is a rela-

tively local disperser, and so households serve as an appropriate population node for the land-

scape. Resource types do not need to be specified, as in this demonstration, we are assuming

households provide all the feeding and breeding resources required by Ae. aegypti. This

assumption, however, can be relaxed if we were interested in studying the effects of resource

heterogeneity in the way we should approach our surveillance task (for tutorials on how to

Fig 4. Example optimal tap placement on an island landscape (An. coluzzii in São Tomé, São Tomé and Prı́ncipe). Placements of an increasing number

of traps with exponentially-decaying attractiveness kernels (A) are optimized (5, 10, 15 and 20 traps). Two of these traps are fixed in position for each

demonstration (black-edged crosses). Mosquito population nodes are depicted for São Tomé (B); which represent villages and suburbs of comparable size,

aggregated to maintain a minimum distance of 500 m between nodes. Daily movement probabilities between localities are derived using an ecology-

motivated algorithm through a resistance landscape calibrated to a daily staying probability higher than 0.97 and mean lifetime dispersal distance of 7.0 km

[21, 32, 33]. The genetic algorithm of MGSurvE distributes traps such that the mean expected time for a given mosquito to be trapped, considering all

possible origin sites on the landscape, is minimized (C). Here, each trace representing an independent run of the full optimization cycle. We consider

optimally placing 5 (B1), 10 (B2), 15 (B3) and 20 (B4) traps on the landscape, each having an exponential kernel with a mean radius of attractiveness of 24

m [28] and maximum attractiveness of 0.5. The island’s shapefile used in this manuscript is public domain and can be downloaded from Natural Earth

(http://www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_sovereignty.zip).

https://doi.org/10.1371/journal.pcbi.1012046.g004
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incorporate these factors, see the online documentation at https://chipdelmal.github.io/

MGSurvE/build/html/demos.html, and the model description in S1 Text). Household coordi-

nates in Yorkeys Knob were sourced from OpenStreetMap (https://www.openstreetmap.org/),

and daily movement probabilities between households were derived from a zero-inflated expo-

nential kernel with a daily staying probability of 72% [19, 27], and a mean dispersal distance

conditional upon movement of 54 m [20].

In optimizing trap placement, we consider two types of traps with distinct attractiveness

profiles represented by: i) an exponential kernel with a mean radius of attractiveness of 16 m

[28], and ii) a sigmoidal kernel with an inflection radius of 16 m and shape parameter of 0.25

(Fig 3A). Both traps have maximum attractiveness of 0.5, meaning that, for a trap placed

within a population node, the ratio of mosquitoes that enter the trap to those that do not per

time-step is 0.5:1 (i.e., in this case, half of mosquitoes in the same node as the trap enter the

trap per day). In Yorkeys Knob, 16 traps were assigned, to reflect the number of traps used to

monitor the Wolbachia trial at this site [26]. Half were assigned the exponential kernel, and

half were assigned the sigmoidal kernel, to demonstrate the simultaneous placement of two

trap types. We considered both discrete and continuous optimization cases to compare their

results, although using the discrete case is preferred due to the fact that traps would likely be

assigned to households without a more precise location being specified. The placement of each

trap was then optimized according to two fitness functions—minimizing the mean and maxi-

mum expected times for a given mosquito to be trapped, considering all possible origin sites

on the landscape. The GA implemented default mutation and crossover operators with 10 sto-

chastic repetitions and 2,000 generations of the optimization process for each scenario (traces

in Fig 3C). The code for this analysis is included in the S2 Text and at https://github.com/

Chipdelmal/MGSurvE/tree/main/MGSurvE/demos/YKN, with additional video commentary

and explanations available at https://youtu.be/RhYmeJ3XZ_8 (minutes 28 to 30). The opera-

tors and selected parameters for the algorithm are described in S1 Text. The resulting trap dis-

tributions are depicted in Fig 3B1 and 3B2 (for the case of the mean expected time for a

mosquito to be trapped) and Fig 3B3 (for the case of maximum expected time for a mosquito

to be trapped). From this output, we see that the GA distributes traps throughout the land-

scape, often placing them within concentrations of nodes, and sometimes in regions where

sub-networks connect to the main section of the landscape, all of which are consistent with

faster trapping times. The discrete and continuous mean times converged to similar optimum

trapping times (61.46 and 60.97 days, respectively), despite their drastically different computa-

tional optimization evolutionary processes (Fig 3C shows the continuous case slowly moving

towards the optimum, whereas the discrete case moves most in the early phases of the process).

The maximum discrete optimization fitness metric seeks to minimize the time it would take

for a mosquito to fall into any trap, beginning from the trap for which this time is longest. As

such, this approach tends to prioritize placing traps as far from each other as possible whilst

covering the most remote locations (e.g., the eastern-most households in our landscape). In

this case, the algorithm converged to a minimum trap time of 82 days, beginning from the trap

for which this time is longest. This is an important metric in situations where confinement of a

certain allele/trait is paramount.

Discrete optimization on an island landscape (An. coluzzii in São Tomé,

São Tomé and Prı́ncipe)

In the second example, we use MGSurvE to distribute traps in order to minimize time to

detection of an allele of interest for An. coluzzii populations on the island of São Tomé, São

Tomé and Prı́ncipe. São Tomé, an island 225 km west of the coast of Gabon, has been
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identified as a suitable candidate for field trials of gene drive mosquitoes due to the presence of

a single dominant malaria vector species (An. coluzzii), relative isolation from mainland

Africa, and a history of ecological studies of mosquitoes on the island [29] (Fig 4B). An. coluz-
zii can disperse relatively large distances [20], and so villages and suburbs of comparable size

serve as appropriate population nodes. Due to the scale of these localities, and the fact that they

were aggregated in a meta-population scheme, resource types do not need to be specified here

as each village contains all the resources needed for mosquitoes to flourish. Locality coordi-

nates in São Tomé were sourced by aligning locations in the São Tomé and Prı́ncipe census

(https://projectsportal.afdb.org/dataportal/VProject/show/P-ST-KF0-001) with locations in

Google Maps (https://www.google.com/maps), and the DBSCAN algorithm (Density-Based

Spatial Clustering of Applications with Noise) [30] was used to aggregate nearby localities in

order to maintain a minimum distance of 500 m between nodes. Daily movement probabilities

between localities were derived using an ecology-motivated algorithm in which mosquito

movement is simulated as correlated random walks through a resistance landscape, with resis-

tance being provided by elevation and land use [31]. Data from mark-release-recapture experi-

ments on An. gambiae sensu lato [21, 28, 32] were used to calibrate the movement model

according to a daily staying probability higher than 0.97 and mean lifetime dispersal distance

of 7.0 km.

In optimizing trap placement, this time we consider a variable number (5–20) of a single

type of trap with an attractiveness profile represented by an exponential kernel with a mean

radius of attractiveness of 24 m [28] and maximum attractiveness of 0.5 (Fig 4A). We used dis-

crete optimization due to the spatial scale, at which traps are most likely to be placed within

localities. The placement of each trap was optimized according to a fitness function corre-

sponding to minimizing the mean expected time for a given mosquito to be trapped, consider-

ing all possible origins on the landscape. The GA again implemented default mutation and

crossover operators, with the code for this analysis being available in S2 Text and at https://

github.com/Chipdelmal/MGSurvE/tree/main/MGSurvE/demos/STP (the description of the

selected parameters for the operators is available in S1 Text). The resulting trap distribution is

depicted in Fig 4B1–4B4 for the cases of 5, 10, 15 and 20 traps, respectively. This demonstra-

tion is different from the last one as we are increasing the number of traps whilst keeping the

optimization fitness goals the same, and we are adding two immovable traps (north and south

of the island). We can see that the algorithm balances the most transited nodes (in the north-

ern region) while seeking to cover some of the least-connected sections of the landscape (in

the south) as we increase the number of available traps. This is a result of the fitness function

representing the average maximum time to detection beginning anywhere on the landscape.

Additionally, we can see in Fig 4B and 4C that doubling the number of traps from 5 to 10 has a

drastic impact on reducing the mean time taken for mosquitoes to fall into traps (from 2,719

to 926 days). From this point, adding 10 more traps would only reduce the time to 406 days,

which may inform cost-effectiveness considerations.

Supporting information

S1 Text. Description of the modeling framework. A description of the mathematical equa-

tions that govern mosquito movement and trap attractiveness implemented as an absorbing

Markov chain.

(PDF)

S2 Text. Example use cases in suburban and island landscapes. Code used to optimize trap

placement for Ae. aegypti in Queensland, Australia and An. coluzzii in São Tomé, São Tomé
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and Prı́ncipe, as described in the manuscript.

(PDF)
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Formal analysis: Héctor M. Sánchez C., John M. Marshall.

Funding acquisition: John M. Marshall.

Investigation: Héctor M. Sánchez C.
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3. Carballar-Lejarazú R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, et al. Next-generation

gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proceedings

of the National Academy of Sciences. 2020; 117(37):22805–22814. https://doi.org/10.1073/pnas.

2010214117 PMID: 32839345

4. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive

system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature bio-

technology. 2016; 34(1):78–83. https://doi.org/10.1038/nbt.3439 PMID: 26641531

5. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive tar-

geting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes.

Nature biotechnology. 2018; 36(11):1062–1066. https://doi.org/10.1038/nbt.4245 PMID: 30247490

6. Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive sys-

tem in the human disease vector Aedes aegypti. Elife. 2020; 9:e51701. https://doi.org/10.7554/eLife.

51701 PMID: 31960794

7. James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, et al. Pathway to deployment

of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa:

PLOS COMPUTATIONAL BIOLOGY MGSurvE: A framework to optimize trap placement for surveillance of mosquito populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012046 May 6, 2024 11 / 13

https://doi.org/10.1038/s41467-021-24654-z
https://doi.org/10.1038/s41467-021-24654-z
http://www.ncbi.nlm.nih.gov/pubmed/34282149
https://doi.org/10.1038/s41467-020-19426-0
http://www.ncbi.nlm.nih.gov/pubmed/33144570
https://doi.org/10.1073/pnas.2010214117
https://doi.org/10.1073/pnas.2010214117
http://www.ncbi.nlm.nih.gov/pubmed/32839345
https://doi.org/10.1038/nbt.3439
http://www.ncbi.nlm.nih.gov/pubmed/26641531
https://doi.org/10.1038/nbt.4245
http://www.ncbi.nlm.nih.gov/pubmed/30247490
https://doi.org/10.7554/eLife.51701
https://doi.org/10.7554/eLife.51701
http://www.ncbi.nlm.nih.gov/pubmed/31960794
https://doi.org/10.1371/journal.pcbi.1012046


recommendations of a scientific working group. The American journal of tropical medicine and hygiene.

2018; 98(6 Suppl):1. https://doi.org/10.4269/ajtmh.18-0083 PMID: 29882508
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