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Abstract: We study positively buoyant miscible jets through high-speed imaging and planar laser-induced
fluorescence methods, and we rely on supervised machine learning techniques to predict jet characteristics.
These include, in particular, predictions to the laminar length and spread angle, over a wide range of Reynolds
and Archimedes numbers. To make these predictions, we use linear regression, support vector regression,
random forests, K-nearest neighbour, and artificial neural network algorithms. We evaluate the performance of
the aforementioned models using various standard metrics, finding that the random forest algorithm is the best
for predicting our jet characteristics. We also discover that this algorithm outperforms a recent empirical
correlation, resulting in a significant increase in accuracy, especially for predicting the laminar length.
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1 Introduction

Injection of a fluid into an ambient fluid of different density typically leads to the formation of a buoyant jet [1].
A positively (negatively) buoyant jet is typically generated when the momentum and buoyancy fluxes act in the
same (opposite) direction [2, 3]. Buoyant jets are a frequent occurrence both in the natural world and in
industry. In nature, for example, buoyant jets are encountered in volcanic eruptions [4], flows of rivers into
oceans and lakes [5], motion of clouds [6] andmeteorology [7]. Industrial examples of buoyant jets aremany and
may include effluent and pollutant releases [8, 9], cleaning processes [10, 11], and building ventilation [12], to
name a few.

To understand buoyant jet behaviours, it is essential to examine jet characteristics, which as described in
recent studies [13–16], can be classified into two categories based on their temporal behaviour: unsteady and
quasi-steady. As an example, the jet penetration length, representing the distance that the jet has traveled at a
given moment in time, serves as a model for the unsteady and quasi-steady characteristics in positively and
negatively buoyant jets, respectively [2, 16, 17].

A non-buoyant jet, characterized by an absence of a density difference between the jet and surrounding
fluid, can be divided into two primary regions: a laminar region and a turbulent region, as established in the
classical work of McNaughton and Sinclair [18]. They have found that, following injection and over some
distance, the jet initially maintains a stable cylindrical shape with a smooth boundary. However, after a certain
distance from the nozzle (known as the laminar length, Lm), the jet begins to become unstable, resulting in
visible growing perturbations at its boundary [19]. Lm exhibits several noteworthy features, such as a jet
diameter that closely matches that of the nozzle, and energy levels that are near-identical to those of the source
[13]. Thanks to the interest in understanding/analyzing Lm, a number of correlations have been developed to
predict it, for instance for non-buoyant jets [18, 20, 21], indicating that Lm decreases with an increase in the
Reynolds number (Re). For positively buoyant jets, Hassanzadeh et al. [13] have recently extended an empirical
correlation for Lm based on Re and Archimedes number (Ar), revealing that Lm increaseswith an increase in Ar.

*Corresponding author: Seyed Mohammad Taghavi, Department of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6,
Canada, E-mail: Seyed-Mohammad.Taghavi@gch.ulaval.ca. https://orcid.org/0000-0003-2263-0460
Hossein Hassanzadeh and Saptarshi Joshi, Department of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6, Canada

Chem. Prod. Process Model. 2024; 19(2): 163–177

https://doi.org/10.1515/cppm-2023-0026
mailto:Seyed-Mohammad.Taghavi@gch.ulaval.ca
https://orcid.org/0000-0003-2263-0460


After the laminar length ends, the jet undergoes breakdown and its radius expands while its energy
decreases [13, 22]. The jet expansion rate can be quantified via the jet spread angle (θ), i.e., a quasi-steady
characteristic that remains nearly constant over time. Non-buoyant jets at high Reynolds numbers typically
exhibit a spread angle of approximately θ ≈ 21°–25° [23]. For positively buoyant jets [13], θ decreases with an
increase in Re and Ar. Note that an accurate prediction of buoyant jet shapes and boundaries, facilitated by
determining Lm and θ, can hold practical significance for environmental and industrial processes, e.g., jet
cleanings [24], jetfires [25], environmental flows [26], wastewater discharges [27], drug delivery systems [28], 3D
printing technologies [29], and needle-free injections [30].

To properly implement machine learning techniques, it is essential to have high-quality, unbiased, and
representative datasets [31–33]. Depending on the available datasets and the desired outcome of applying
machine learning, it is beneficial to distinguish between different types of machine learning tasks [34]. For
instance, the unsupervised learning technique is tailored for analyzing unlabeled datasets, where the correct
responses (labels) are not known, but there is still a need to extract meaning or patterns from the data [35]. On
the other hand, the reinforcement learning technique is not employed to learn the patterns in the data, but
rather to discover amodel of how a given system operates [34]. In addition, the supervised learning is a popular
class of machine learning that learns from known (labeled) data to make predictions or decisions about unseen
data [36]. In supervised learning, a model is trained on a set of input–output pairs, called training data, where
the inputs represent the features of the data and the outputs represent the corresponding labels or targets.
There are various supervised learning algorithms that differ in their assumptions, complexity, and ability to
handle different types of data. Some popular algorithms include linear regression (LR), random forests (RF),
support vector regressions (SVR), K-nearest neighbors (KNN), and artificial neural networks (ANN) [37–39].

In fluid mechanics, data-driven and machine learning modeling are being increasingly explored, e.g., as a
potential alternative to revisit existing empirical laws [40]. With the aim to model the relationship between
observed data and target variables, supervised learning techniques have been successful in mapping complex
non-linear relationships [41, 42], making them suitable for modeling buoyant jets. Unsupervised and semi-
supervised learning algorithms [40, 43], designed to uncover hidden structures in datasets, could be also
potential methods for modeling jet characteristics, although supervised learning may remain favoured for this
task [44, 45]. On the other hand, one could perhaps argue that reinforcement learning [46], which focuses on
maximizing reward through sequential actions in a given environment, may not be appropriate for modeling
buoyant jets.

In recent years, researchers have turned to machine learning techniques to improve the accuracy of
predicting jet flow characteristics, which have long been a subject of interest in fluid mechanics, with broad
applications across various industries and environments. For example, El-Amin & Subasi [47] have examined
the performance of different supervised learning algorithms to predict the temperature distribution in tur-
bulent jets, involving the injection of hot water into colder ambient. Their analysis has revealed that the RF
algorithm outperforms other algorithms in accurately predicting the temperature variation over time.
Mashhadimoslem et al. [48] have investigated the jet fires that occur as a result of accidents involving
hydrocarbon fuels, such as explosions and fires. They have employed the ANN algorithm trained on literature
data to predict both the length of the flame and the released heat flux during the jet fire process. Their results
has shown that the ANN algorithm performs well in predicting the hydrocarbon jet fire characteristics, sug-
gesting its potential for use in quantitative risk assessments in industries. Kumar et al. [49] have evaluated
various machine learning algorithms to predict the volume oxygen transfer coefficient in plunging jet aerators.
Their findings have indicated that the SVR algorithm offers the highest accuracy in estimating this coefficient.
In addition, their results have highlighted the significance of the jet velocity as the most influential parameter
affecting the oxygenation performance of plunging jets.

Despite the significant role of buoyant jet characteristics in many applications, our brief literature review
shows a research gap regarding the prediction of these characteristics using machine learning techniques. To
the best of our knowledge, no studies have yet explored the positively buoyant jet features using these
techniques, emphasizing the need for further investigations in this research area. Therefore, in this study, we
aim to address the lack of research on modeling positively buoyant miscible jet characteristics through the use
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of machine learning techniques, in particular, to predict Lm and θ, for a wide range of Re and Ar. We conduct
our experiments using high-speed imaging and planar laser-induced fluorescence (PLIF) techniques. Using
experimental data, we train multiple supervised learning algorithms, including linear regression (LR), support
vector regression (SVR), random forests (RF), K-nearest neighbour (KNN), and artificial neural network (ANN)
algorithms. Then, we evaluate the performance of thesemodels using various standardmetrics and identify the
most accurate predictive model for our flows.

The paper is organized into three sections. The methodology, including the experimental setup, measure-
ment techniques, and machine learning algorithms used in our work, is presented in Section 2. Then, Section 3
provides our experimental results and evaluates the performance of various machine learning algorithms.
Finally, the work is briefly summarized in Section 4.

2 Methodology

In this section, we present the details of our experimental setup, procedure, and materials, followed by brief explanations of our
measurement techniques, including the high-speed imaging and planar laser-induced fluorescence (PLIF) methods.We then introduce
the supervised algorithms employed and present the metrics used to compare their performances.

2.1 Experimental setup and procedure

Our experimental setup, as shown in Figure 1a, included a transparent tank and a centrally located circular nozzle for injecting a
heavier fluid (salt-water, coloured with black ink) into a lighter ambient fluid (deionized water). The higher density of the injection
fluidwas obtainedwith adding sodium chloride as weighting agent. The tankwas filledwith the ambientfluid, and the injection fluid
was fed by a gear pump (ISMATEC MCP-Z series), providing a wide range of injection velocities, V̂0 (note that we mark the

Figure 1: Experimental setup and key characteristics of positively buoyant jets. (a) Experimental setup schematic, including high-speed
imaging and PLIF for capturing positively buoyant jet behaviour, with gravity indicated by g . (b) A typical positively buoyant jet formed by
injecting a heavy fluid into a transparent fluid, defined by dimensionless laminar length (Lm) and spread angle (θ) with dimensionless jet
radius (rj), and a white dashed centerline.
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dimensional parameters with the hat symbol and the dimensionless ones without throughout this manuscript). It should be
mentioned that our experimental domain was fairly large (Ŵt/D̂n and L̂t/D̂n ≫ 1), allowing us to neglect any potential wall effects on
the flow dynamics. In fact, this assumption enabled us to treat the jet as flowing through an unbounded environment, also known as
a free jet. Table 1 outlines the dimensions of the rectangular tank and the range of flow parameters used in this study.

Our main jet flow features (i.e., laminar length and spread angle) were extracted through image analysis of high-speed camera
recordings. These recordings were made using a low-noise high-speed digital camera (Basler acA2040-90μm), capturing images at
regular intervals (typically 20 frames per second or higher if needed). The setup was illuminated behind, top and sides via light
boxes (containing light-emitting diode series); this light was filtered through diffusive sheets for homogeneity. The light intensities
were converted to normalized concentration maps, via in-house MATLAB codes, based on two reference images taken for the light
absorption calibrations. Finally, the jet features of our interest were inferred from the jet boundary obtained through the normalized
concentration images.

PLIFwas used to visualize 2D (bottomview) cross-sections of our jets. The process involved illuminating a cross-section of the flow
with a green laser sheet (Laserglow technologies, wavelength of 532 nm) after dyeing the heavier injected fluid with fluorescent
particles (i.e., rhodamine B). The illuminated cross-section was captured by a high-speed digital camera, positioned below the setup
perpendicular to the laser sheet plane, allowing us to capture of the bottom-view flow structures.

We gain a deeper understanding of the physics underlying the jet flow dynamics by exploring the role of main governing
dimensionless numbers, i.e., the Reynolds and Archimedes numbers [13]. The Reynolds number represents the ratio of inertial force to
viscous force and is given by:

Re = ρ̂m V̂0 D̂n

μ̂j
(1)

where ρ̂m is the averaged density (i.e., ρ̂m = ρ̂j+ρ̂a
2 ), V̂0 is the injectionflowvelocity, D̂n is the nozzle diameter, and μ̂j is the jet viscosity. On

the other hand, the Archimedes number reflects the ratio of buoyant force to viscous force, defined as:

Ar = ρ̂m(ρ̂j − ρ̂a)ĝ D̂
3
n

μ̂2j
, (2)

where ĝ represents the acceleration due to gravity. In the current study, we investigate the dynamics of our buoyant jets for a wide
range of dimensionless numbers, i.e., 8 × 102 ≲ Re ≲ 14 × 103 and 102 ≲Ar ≲ 6 × 105. Furthermore, to extend the applicability of our results
across diverse conditions and scales, wemake all lengths, times, and velocities dimensionless using characteristic parameters obtained
by balancing the source momentum and volume fluxes [2]. We achieve this by employing D̂n, D̂n

V̂0
, and V̂0 to make lengths, times, and

velocities dimensionless, respectively. Therefore, throughout the paper and unless otherwise stated, all quantities are rendered
dimensionless, to ensure a consistent and comprehensive approach to our analysis.

2.2 Machine learning techniques

In the present study, our focus is on supervised learning algorithms, due to the availability of labeled data and our goal of accurately
predicting buoyant jet characteristics. Asmentionedbefore, the supervised learning technique relies on labeled datawith known target
values, making it a suitable choice for our available data. In addition, for the purpose of an accurate prediction, the supervised learning

Table : The values and ranges of the dimensional flow parameters in our study. Note that the properties of the jet and ambient fluids are
distinguished by the subscripts “j” and “a”, respectively.

Parameter Name SI unit Range or value

bDn Nozzle diameter M (.–.) × 
−

bg Gravitational acceleration m
s .

bLt Tank length M  × 
−

bV Mean injection velocity m
s (–) × 

−

bWt Tank width M  × 
−

bμa Ambient fluid’s viscosity Pa s  × 
−

bμj Jet fluid’s viscosity Pa s  × 
−

bρa Ambient fluid’s density kg
m

. × 


bρj Jet fluid’s density kg
m

(.–.) × 
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technique proves to bemore appropriate compared to the unsupervised one,which focuses on pattern identificationswithout a specific
prediction goal. With these considerations in mind, let us now present a brief overview of the five popular supervised learning
algorithms employed in our study for the predictivemodeling of buoyant jet characteristics, including LR, SVR, RF, KNN, and ANN (with
a focus on multi-layer perceptron (MLP)). Note that the LR and ANN algorithms are employed to model multiple regression problems,
i.e., the target vector contains two outputs in our case (yk = Lm θ[ ]). On the other hand, the SVR, RF and KNN algorithms are
employed to model simple regression problems with a single output target (yk = Lm[ ] or θ[ ]).

LR determines the best linear relationship between input features and the output. The schematic diagram depicting the structure
of the LR model is illustrated in Figure 2a. Considering a dataset {(xk , yk)}Nk=1, where N samples have multiple feature vectors (xk) and
targets (yk) with k = 1, …, N, the objective is to simply construct a linear model (f) in the form of [42]:

f (x) = wx + b, (3)

where w is the weight matrix and b is the bias vector. In our case, a kth sample has the feature vector xk = Re Ar[ ] and the target

vector yk = Lm θ[ ]. The optimal parameters of the model (w*, b*) are determined by minimizing an appropriate objective function

through the gradient descent algorithm [50]. One example of a commonly used objective function is the “mean squared error”, which is

a quadratic cost function (see Table 2). Before moving to more complex models, we use LR in this study as a simpler model, i.e., less

prone to overfitting compared to non-linear models [42].
SVR extends “support vector machines”, which perform classifications by finding the optimal hyperplane with largest margin

using support vectors, modeled as a quadratic optimization problemwith various loss functions [54]. SVR can handle continuous values
by introducing the ξ-tube insensitivity region around the function, to approximate it with the hyperplane represented by support
vectors. In this model, the test and training data are independent and identically distributed. A typical quadratic loss function is [54]:

Lξ(yk , f (xk ,w)) = 0, |yk − f (xk ,w)| ≤ ξ;
(|yk − f (xk ,w)| − ξ)2, otherwise,{ (4)

where x is the featurematrix containing xk = Re Ar[ ] for all the samples (k = 1,…,N), and y is the targetmatrix (single output) having
a row yk = Lm[ ] or θ[ ] for all the samples (k = 1,…,N). To reduce overfitting, a regularization parametermay be also introduced in this
model. To handle datasets that cannot be separated by a hyperplane in the original space, the space is transformed into a higher
dimension, enabling linear separation by a hyperplane. This process, known as kernelization [55], frequently utilizes the radial basis
function (RBF) kernel [56]:

K xk , x′( ) = exp −‖xk − x′‖2
2σ2( ), (5)

which calculates the similarity between two vectors (i.e., xk and x′) in space. In Equation (5), ‖xk − x′‖ denotes the L2 norm (Euclidean
distance) between the two vectors xk (the feature vector of the kth sample) and x′ (centroid vector), and σ represents the standard
deviation. SVR is computationally efficient and offers high accuracy and strong generalization ability, regardless of the input space
dimensionality [54]. Figure 2b shows the general schematic diagram of the SVR model used in our work.

RF is an ensemble learning method that combines multiple decision tree models to make a prediction (see Figure 2c). RF uses a
bagging technique and randomly selects features for each split in the learning process. The prediction for a test data point is the average
of the predictions made by each of the n decision trees [57]:

f (xk) = 1
n
∑
n

i=1
fi(xk), (6)

where xk is the feature vector for the kth sample and fi(xk) represents the prediction of the ith decision tree out of the n decision trees
that make up the ensemble. Note that RF is immune to overfitting due to its ensemble approach [58].

KNN is an instance-based method that uses the training examples for every prediction [59]. It requires the storage of the training
data and finds the K closest training samples to a new data point xk, outputting the average target value [58]:

f (xk) = 1
K

∑
xi∈NK (xk )

yi, (7)

whereNK(xk) is the neighbourhood defined by theK closest points to xk (i.e., the feature vector of the kth sample) in the training set and
closeness ismeasuredusing a distance function such as the Euclidean distance or cosine similarity. yi is the target vector (single output),
i.e., Lm[ ] or θ[ ] in our work, corresponding to the ith neighbour of xk. Increasing K reduces overfitting, but also reduces resolution at
decision boundaries. While KNN can handle non-linearities, it has a high prediction time, lacks interpretability and is unable to
perform feature selection [58]. The visual representation of the KNN model architecture is given in Figure 2d.

ANN is a machine learning model inspired by the human brain [60]. In this method, a perceptron with a single neuron takes
inputs, computes a linear combination, and outputs with a sigmoid activation. Multiple neurons can be layered to form an MLP
network, represented by the function [61]:
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f (x) = fl(fl−1(…(f2(f1(x))))). (8)

with each layer having weights, biases and activation function assigned to it. The network is trained using gradient descent and back-

propagation [62]. In addition, ANNs can capture complex patterns but requiremore data and computational resources than traditional

algorithms [54]. Figure 2e illustrates the general architecture diagram of ANN model in our study.

Figure 2: General architecture
diagrams of different algorithms
used in this study: (a) LR, (b) SVR,
(c) RF, (d) KNN, and (e) ANN.
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2.3 Models performance metrics

To evaluate the effectiveness of ourmachine learningmodels, we rely on standard performancemetrics [63, 64], including coefficient of
determination (R2), mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). These standardmetrics (listed in Table 2) provide a quantitative assessment of themodel’s performance and
they are used to compare different models. For instance, MSEmeasures the average of the squares of the errors and incorporates both
the estimator bias and variance. Also, RMSE is the square root ofMSE and has the same units as the quantity being estimated. MAE does
not assign importance to outliers. Finally, MAPE is similar to relative error and represents the average ratio of the difference between
actual and predicted data. However, it may not be useful for data with low order of magnitudes (or close to zero) as it could lead to a
surge in error.

Additionally, to understand the underlying linear relationships between the variables in the dataset, the linear correlation
coefficient (r), taking values between −1 and +1, is used. A positive rwould indicate that an increase in one variable is accompanied by
an increase in another one, while a negative rwould suggest a decrease in one variable as another one increases [65]. Therefore, r can
provide insight into the relationship between our features and target variables.

3 Results and discussion

In this section, we first provide an overview of buoyant miscible jet characteristics via our experimental results.
We then analyze and compare our trained machine learning models based on two jet flow features of interest
(i.e., laminar length and spread angle) usingmulti-output target vectors for LR andANNmodels, and single-output
regression models for SVR, RF, and KNN. Finally, we examine the performance of RF in predicting of the jet’s
overall shape/boundary.

3.1 Buoyant miscible jet characteristics of interest

Let us present a typical experimental result of a heavy fluid (dark fluid) being vertically injected into a light
ambient fluid (transparent fluid), as depicted in Figure 1b. The injection inertia and buoyancy forces combine to
form a positively buoyant jet. At the initial portion of the jet, a stable column forms, without much obvious
perturbation at the jet boundary. However, after a certain distance from the nozzle (i.e., the breakdown position),
instabilities (e.g., Kelvin–Helmholtz type) cause the jet to become unstable, as evidenced by noticeable pertur-
bations at the jet boundary, eventually resulting in mixing between the jet and ambient fluids. In the laminar
length region, there is minimal mixing and the jet radius is roughly equal to the nozzle radius. On the other hand,
beyond the breakdown position, the jet radius steadily increases, while the jet spread angle remains constant.

We also use PLIF to visualize the bottom-view of the jet, at varying axial distances from the nozzle. Figure 3a

shows the equivalent dimensionless jet radius (defined as rj = A̅
π

√
withA being the dimensionless jet cross-section

area at a given time) versus time, atX≈ 11. Thisfigure also includes three PLIF experimental images in the plane of

Table : Mathematical formulation of different model performancemetrics (y) [–], with yi,o and yi,p representing the observed and
predicted values of the ith observations, respectively, and y being the mean value.

Name Parameter Mathematical formulation

Coefficient of determination R ∑N
i ðyi; p�yÞ

∑N
i ðyi; o�yÞ

Mean squared error MSE 

N∑
N
i ðyi; o � yi; pÞ

Root mean squared error RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


N∑
N
i ðyi; o � yi; pÞ

q
Mean absolute error MAE 

N∑
N
i jyi; o � yi; pj

Mean absolute percentage error MAPE 

N ∑N
i j

yi; o�yi; p
yi; o

j
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Y and Z. The jet radius increases initially and but it eventually reaches a quasi-steady value, i.e., not affected by
further time progression. As the jetmoves further away from the nozzle, as seen in Figure 3b (X≈ 58) and Figure 3c
(X ≈ 75), the jet radius increases and it takes more time for rj to reach the quasi-steady value. Note that the zero
value in the initial part of each plot represents the time required for the jet to reach the specific axial position for
measurement.

3.2 Datasets

We use our experimental observations to create datasets to implement the machine learning algorithms,
analyzing Lm and θ of our buoyant jets as functions of Re and Ar. Accordingly, we develop machine learning
models for {Lm, θ} from feature vectors {Re, Ar}. To ensure that our machine learning models are robust and
informative, we use a comprehensive set of experiments, i.e., 110 in total, covering a wide range of parameters.
We divide the dataset into training and testing parts, specifically allocating 70 of these experiments as training
datasets, with the remaining 40 used as test datasets, to validate the accuracy of our models. This approach
enables us to create robust and reliable datasets that can provide valuable insights into the complex dynamics of
our miscible buoyant jets. It is worth noting that the ranges of the dimensionless parameters for training and
testing are 8 × 102 ≲ Re ≲ 14 × 103 & 102 ≲ Ar ≲ 6 × 105. In addition, to decrease non-linearity and balance
proportionality, we apply log transformation and standard scaling:

ζ ′ = log(ζ ) − λy
σ

, (9)

where ζ is the original (raw) data and ζ′ is transformed data, while λy and σ are themean and standard deviation of
log(ζ), respectively.

The tuning of hyper-parameters is an important piece of themachine learning puzzle that has a direct impact
on the accuracy of the models [66]. In the literature, researchers have come up with various methods for finding
the optimal hyper-parameters, ranging from sophisticated optimization algorithms, such as genetic algorithms
and particle swarm optimization, to trial and error methods [66–68]. In the present study, the hyper-parameters
are tuned employing the trial and error method, through a step-wise search approach. The optimal values for the
hyper-parameters resulting from this procedure are presented in Table 3.

Before we proceed, it is worth briefly overviewing the smooth convergence of validation and training losses
in ANN, as exemplified in Figure 4a and b; as seen, the training curve reaches the convergence loss fasterwhile the
validation loss decreases gradually. As the training continues these curves reach a stable state with a constant
minimal gap, which is the optimal performance of ANN at which point the training process is terminated to
prevent overfitting. Figure 4c and d give examples of the ANN model convergence, via plotting the experimental
data versus the predicted data (i.e., LExp.m vs. LPre.m in Figure 4c, and θExp. vs. θPre. in Figure 4d). As epochs increase, the
predicted values approach the experimental ones. However, as will be seen, the scarcity of data results in higher
values of converged loss metrics in ANN compared to those in RF (see Table 4).

Figure 3: Development of jet radius over time at varying axial distances, (a) X ≈ 11, (b) X ≈ 58, (c) X ≈ 75, as captured by PLIF (as exemplified
by the superimposed experimental images), yielding a steady value indicated by black dashed line. The flow parameters are Re ≈ 4550 and
Ar ≈ 41,703.
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Figure 4: Loss plots for the training of ANN for (a) MSE and (b) MAE against the number of epochs (i.e., the number of times the gradient
descent algorithm iterates over the entire training dataset), with the blue solid line representing training and the red dotted line
representing validation. Variation of the positions of data points over increasing epochs in the plane of (c) LExp.m & LPre.m , and (d) θExp. & θPre.. The
data correspond to Re ≈ 1500 & Ar ≈ 35,000 (blue circle), Re ≈ 1200 & Ar ≈ 450 (red triangle), and Re ≈ 3800 & Ar ≈ 296,000 (green square).
The progressive increase in the symbol size indicates the increase in the corresponding epochs at an interval of 10. The dotted lines in (c) and
(d) represent LExp.m = LPre.m and θExp. = θPre., respectively.

Table : The optimum values of the hyper-parameters for different algorithms.

Model Hyper-parameters

Lm θ

SVR Margin of tolerance (ξ) = . Margin of tolerance (ξ) = .
Penalty parameter (C) =  Penalty parameter (C) = 

RF Number of decision trees (n) =  Number of decision trees (n) = 
KNN Number of nearest neighbours (K ) =  Number of nearest neighbours (K ) = 
ANN Number of hidden layer (H ) =  Number of hidden layer (H ) = 

Number of neurons in the hidden layer (l) =  Number of neurons in the hidden layer (l) = 

Table : Performance evaluation of models trained to predict Lm (first row for each model) and θ (second row for each model).

Algorithm R2 MSE RMSE MAE MAPE

LR . . . . .
. . . . .

SVR . . . . .
. . . . .

RF . . . . .
. . . . .

KNN . . . . .
. . . . .

ANN . . . . .
. . . . .

Literature correlation [] . . . . .

The highlighted values in bold represent the most suitable choices for each parameter.
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3.3 Laminar length (Lm)

The predictive modeling of the buoyant jet’s laminar length (Lm), with Re and Ar as feature vectors, is depicted in
Figure 5. As seen, Lm generally increases as Re decreases (which is evidenced by r = −0.828), yet shows little
correlation with Ar (with r ≈ 0); this can be also seen by the scattered distribution of Lmwith respect to Ar. Almost
all algorithms underestimate the laminar length at low Re, while showing better accuracy and uniformity at
moderate Re. The goodness of the fit can be assessed through the proximity of the datapoints to the desired
diagonal line LPre.m = LExp.m( ), with RF and SVR performing well, while LR and ANN showing lower accuracy. In
addition, the KNN model performs properly but it risks overfitting to the training data.

We quantify the performance of the five models (i.e., LR, SVR, RF, KNN, and ANN) in terms of predicting the
laminar length, by means of our five metrics described earlier (i.e., R2, MSE, RMSE, MAE, and MAPE), as given in
Table 4. As seen, LR and ANN have lower accuracy and R2 values. On the other hand, RF outperforms the other
models in terms of accuracy, i.e., indicated by its highestR2 value, followed by SVR andKNN. RF also has the lowest
error values, demonstrating its robustness, while a MAPE of less than 15 % further confirms its remarkable
accuracy [69]. Note that RF even provides an improvement of 12 % over a recent empirical correlation in the
literature [13] for Lm:

Lm ≈ 324.4 Ar0.29 + 38.6( )Re−1. (10)

3.4 Jet spread angle (θ)

Here, our aim is to predict the spread angle (θ) of our buoyant jets. Figure 6 compares the experimental and
predicted θ for different values of Re and Ar. At low Re and Ar, the models tend to underestimate θ, evidenced by
the negative correlations with Re (r = −0.516) and Ar (r = −0.468). More accurate models, such as RF and KNN,
exhibit closer predictions to the desired diagonal line, while weaker models, such as LR and ANN, show dis-
crepancies. This figure also reveals dependency of θ on Re, with lower (higher) θ at higher (lower) Re.

Let us also compare the performance of five algorithms using variousmetrics to predict θ. The results, shown
in Table 4, demonstrate that RF has the best performance, indicated by its high R2 value, while SVR and KNN have
comparable results. RF outperforms the other models with a low MAPE of less than 4 %.

Figure 5: Variation of the predicted LPre.m( ) and experimental LExp.m( ) laminar lengths at different Re and Ar, based on (a) LR, (b) SVR, (c) RF,
(d) KNN, and (e) ANN. The values of 8 × 102 ≲ Re ≲ 14 × 103 and 102 ≲ Ar ≲ 6 × 105 are represented by the colors and the symbol sizes,
respectively. The red dotted lines represent LPre.m = LExp.m .
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3.5 Jet shape

Accurately predicting both Lm and θ allows us to crudely describe the overall jet shape. As shown in Table 4, the
RF algorithm surpasses the other models in accurately predicting both variables, with R2 = 0.96 and MSE = 0.80
for Lm, and R2 = 0.91 and MSE = 1.64 for θ. In addition, SVR with RBF kernel performs well in capturing non-
linearity with R2 = 0.94 and R2 = 0.84 for Lm and θ, respectively. KNN also performs reasonably with R2 = 0.90 and
R2 = 0.88 for Lm and θ, respectively, but may over-fit the data. Furthermore, both the ANN and LRmodels exhibit
weak predictive capabilities for both the laminar length and spread angle, resulting in the lowest R2 values. The
inadequacy of ANN’s performance can be attributed to the lack of a large training dataset, whereas LR’s weak
performance may be due to the inability of linear models to effectively approximate non-linear datasets.
Overall, RF proves to be the best choice for our prediction tasks for both Lm and θ, thus, allowing us to crudely
identify the jet overall shape.

Jet cross-sectional shapes are shown in Figure 7 for Re = 4550 and Ar = 41,703 at X = 11, X = 58, X = 75. The RF
algorithm accurately captures the shape while the LR algorithm presents inconsistencies; this highlights the
superiority of the RF algorithm in predicting the shape of our buoyant jets. To complement these results, Figure 8
presents a comparison between the three-dimensional jet boundaries obtained from experimental analysis and
the RF model prediction, showing reasonable agreement. This finding highlights the remarkable accuracy of the
RF model and its potential as a robust and reliable tool for predicting buoyant jet characteristics in different
conditions.

Figure 6: Comparison of predicted (θPre.) and experimental (θExp.) spread angle for different Re and Ar using five models: (a) LR, (b) SVR, (c)
RF, (d) KNN, and (e) ANN, with the ideal case (θPre. = θExp.) represented by a red dotted line. The values of 8 × 102 ≲ Re≲ 14 × 103 and 102≲ Ar≲
6 × 105 are represented by the colors and the symbol sizes, respectively.

Figure 7: Jet cross-sectional shape in the Y–Z plane at (a) X = 11, (b) X = 58, and (c) X = 75, with data from experiment (black line), RF (red
dashed line), and LR (blue dotted line). The flow parameters are Re ≈ 4550 and Ar ≈ 41,703.
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4 Summary

In this work, we have studied positively buoyant vertical jets through a combination of experiments (high-speed
imaging and PLIF) and machine learning techniques. Via considering two critical jet flow features (i.e., laminar
length, Lm, and the spread angle, θ), we have determined the overall shape of the jet, while presenting our results
based on governing dimensionless numbers, i.e., Re and Ar. Using supervised learning algorithms, we have used
the LR and ANN models as multiple regression problems, and the SVR, RF, and KNN models as simple regression
problems, while evaluating algorithm performance usingmetrics such as R2, MSE, RMSE, MAE, andMAPE. The RF
algorithm has shown excellent consistency with the experimental data, producing the best model performance,
even outperforming prior empirical correlations ([13]) by 12 % in accuracy. Our study may lay the foundation for
future research avenues, including predicting negatively buoyant jet shapes, incorporating viscosity ratios,
exploring non-Newtonian fluids, and utilizing deep learning techniques for higher accuracy and efficiency. This
can eventually lead to optimizing and controlling buoyant jets in practical applications.

Nomenclature

D̂n Nozzle diameter
ĝ Gravitational acceleration
L̂t Setup length
V̂0 Injection velocity
Ŵt Setup width
A Jet cross-section area
ANN Artificial neural network
Ar Archimedes number
b Bias vector
C Penalty parameter in SVR
H Number of hidden layers in ANN
K Nearest neighbours in KNN
k Index
KNN K-nearest neighbour
l Number of neurons in the hidden layer
Lm Laminar length
LR Linear regression
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Multi-layer perceptron
MSE Mean squared error
N Number of samples
n Number of decision trees
PLIF Planar laser-induced fluorescence
r Linear correlation coefficient
R2 Coefficient of determination
rj Jet radius

Figure 8: Three-dimensional jet boundaries obtained via the experiment (grey color) and
RF model (cyan color), made via plotting the equivalent dimensionless jet radius in the
axial direction. The flow parameters are Re ≈ 3800 and Ar ≈ 15,700.
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RBF Radial basis function
Re Reynolds number
RF Random forest
RMSE Root mean squared error
SVR Support vector regression
t time
X Axial coordinate
x Feature vector
Y Transverse coordinate
y Target vector
Z Depth coordinate
λ Mean deviation
μ Viscosity
ω Weight matrix
ρ Density
σ Standard deviation
θ Spread angle
ξ Margin of tolerance in SVR
ζ Original data
ζ′ Transformed data
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