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Abstract

Rationale and Objectives: Small airways disease (SAD) and emphysema are significant 

components of COPD, a heterogenous disease where predicting progression is difficult. SAD, 

a principal cause of airflow obstruction in mild COPD, has been identified as a precursor to 

emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can 

help distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns 

of both diseases to characterize how and in whom COPD progresses. We aimed to determine 

if distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema 

progression.

Materials and Methods: We analyzed paired inspiratory-expiratory chest CT scans at 

baseline and 5-year follow up in 1495 COPDGene subjects using topological analyses of 

PRM classifications. By spatially aligning temporal scans, we mapped local emphysema at 

year 5 to baseline lobar PRM-derived topological readouts. K-means clustering was applied to 

all observations. Subjects were subtyped based on predominant PRM cluster assignments and 

assessed using non-parametric statistical tests to determine differences in PRM values, pulmonary 

function metrics and clinical measures.

Results: We identified distinct lobar imaging patterns and classified subjects into three radiologic 

subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition 

from healthy lung to fSAD). Relative to year 5 emphysema, FT showed rapid local emphysema 
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progression (−57.5% ± 1.1) compared to FD (−49.9% ± 0.5) and ED (−33.1% ± 0.4). FT consisted 

primarily of at-risk subjects (roughly 60%) with normal spirometry.

Conclusion: The FT subtype of COPD may allow earlier identification of individuals without 

spirometrically-defined COPD at-risk for developing emphysema.
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INTRODUCTION

Emphysema, defined as alveolar destruction and airspace enlargement distal to the terminal 

bronchiole, is a characteristic pathologic process of COPD [1]. Numerous studies using 

computed tomography (CT) for quantifying emphysema have reported the association of 

emphysema with a decline in lung function [2, 3] and functional status, increased dyspnea 

[4, 5] and overall worse clinical outcomes [6, 7]. The significance of emphysema on patient 

health is evident in a study by Zulueta and colleagues [7], who found in a large cohort of 

asymptomatic smokers that emphysema, quantified using a scoring method on CT, predicts 

early death from COPD and lung cancer. This finding highlights the importance of early 

diagnosis of emphysema. Although quantitative emphysema detection methods exist [8–12], 

these techniques only identify the presence of emphysema and not its onset.

Small airways disease (SAD), another major contributor to pulmonary obstruction in 

COPD, has been identified as a potential precursor to emphysema. Using microCT, 

McDonough and colleagues identified narrowing and destruction of smaller airways along 

the periphery of emphysematous regions of lung tissue. Comparison of the number of 

terminal bronchioles per milliliter of lung volume with the alveolar dimensions (mean linear 

intercept) that were measured within the same lung samples showed that narrowing and loss 

of terminal bronchioles clearly preceded the appearance of microscopical emphysematous 

destruction in the centrilobular emphysematous phenotype of COPD [13]. In a recent study, 

microCT analysis identified what the authors term a “hot spot”: regions of microscopic 

emphysematous destruction with an average airspace size of ⩾500 and <1000 μm associated 

with the loss of terminal bronchioles in COPD [14]. Similar conclusions were proposed 

by Galban et al. using Parametric Response Mapping (PRM), a paired inspiratory and 

expiratory CT technique that indirectly measures SAD even in the presence of emphysema 

[15]. It has been previously demonstrated that PRM-derived SAD, referred to as functional 

small airways disease (PRMfSAD), is an independent predictor of lung function decline and 

that regions of PRMfSAD do transition to emphysema [15, 16].

While PRM and other recent novel diagnostic techniques have improved our ability to 

diagnose and phenotype COPD [17–21], in the clinical domain, GOLD staging remains the 

most widely used and accepted method to guide decision making for diagnosis and treatment 

COPD [22]. Unfortunately, due to the delay of symptoms in emphysema and SAD, these 

diseases are diagnosed late. As such, little is known about the local progression patterns 

in emphysema. In this study, we investigated how PRM-based readouts can identify areas 

of local lung parenchyma with progressive emphysema. Our quantitative CT method is 
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an extension of the PRM approach, which can provide detailed local information on the 

distribution and arrangement of PRM-derived fSAD and normal parenchyma to identify 

distinct radiologic patterns associated with emphysema progression. More broadly, we 

hope that early identification of COPD phenotypes will give clinicians and researchers 

the ability to appropriately monitor disease progression on an individual level, as well as 

design and tailor personalized treatment options targeting the underlying pathophysiology of 

emphysema development.

The unique strength of our work is the identification, using an unsupervised analysis of 

our tPRM readouts, of a unique subset of subjects characterized by rapid emphysema 

progression in a short 5-year follow up period who at baseline were primarily “at-risk” of 

COPD with preserved spirometry. Our tPRM approach shows potential as a surrogate of 

early emphysema onset at the lobal level, which is often heterogenous in individuals, that 

can complement existing global pulmonary function metrics.

MATERIALS AND METHODS

Study Sample

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: 

NCT00608764), a large NIH-funded prospective multi-center observational study. In Phase 

1 (2007–2012) of the original study, written and informed consent was obtained from all 

participants and the study was approved by local institutional review boards of all 21 

centers. Ever-smokers with greater than or equal to 10 pack-year smoking history, with and 

without airflow obstruction, were enrolled between January 2008 and June 2011. For Phase 

2 (2012–2017), participants were invited to return for a follow up evaluation. Approximately 

half of the Phase 1 cohort returned for the 5-year follow up visit (Phase 2). Participants were 

non-Hispanic white or African American. Participants underwent volumetric inspiratory and 

expiratory CT using standardized protocol; images were transferred to a central lab for 

protocol verification and quality control [23]. Exclusion criteria for COPDGene included 

a history of other lung disease (except asthma), prior surgical excision involving a lung 

lobe or greater, present cancer, metal in the chest, or history of chest radiation therapy. 

Participants were excluded from the present study due to inadequate CT for computing 

topologic parametric response mapping (tPRM), such as missing an inspiration/expiration 

scan, or failing quality control implemented specifically for the present study. Quality 

control protocol is described in Supplemental Figure 1. Data for participants evaluated here 

have been utilized in numerous previous studies, and a list of COPDGene publications can 

be found at http://www.copdgene.org/publications.htm. Our study is the first to report on 

tPRM analysis across the entire Phase 1 and Phase 2 cohorts of COPDGene participants.

Subject Characteristics, Spirometry and CT Imaging

Subject characteristics, spirometry and CT imaging were acquired from all subjects at 

Phase 1 and 2. Spirometry was performed in the COPDGene study before and after the 

administration of a bronchodilator, specifically 180 mcg of albuterol (Easy-One spirometer; 

NDD, Andover, MA). Post-bronchodilator values were used in our analyses. COPD was 

defined by a post-bronchodilator FEV1/FVC of less than 0.7 at the baseline visit, as 
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specified in the GOLD guidelines [24]. GOLD grades 1–4 were used to define spirometric 

disease severity. GOLD 0 classification was defined by a post-bronchodilator FEV1/FVC ≥ 

0.7 at the baseline visit, alongside FEV1% predicted ≥ 80%. Participants with FEV1/FVC ≥ 

0.7 with FEV1% predicted less than 80% were classified as having preserved ratio impaired 

spirometry (PRISm) [25]. In addition, demographics and smoking history were collected and 

6-minute walking distance was measured. Health-related quality of life was assessed via St. 

George’s Respiratory Questionnaire (SGRQ) [26]. All CT data were obtained and analysis 

was performed as part of the COPDGene project. Whole-lung volumetric multidetector CT 

acquisition was performed at full inspiration (total lung capacity) and normal expiration 

(functional residual capacity) using a standardized previously published protocol [23]. Data 

reconstructed with the standard reconstruction kernel was used for quantitative analysis and 

all CT data were presented in Hounsfield units (HU) [23].

Parametric Response Map (PRM)

Parametric Response Mapping was performed on all paired CT scans using Lung Density 

Analysis (LDA) software (Imbio, LLC, Minneapolis, MN) to generate PRM maps. In brief, 

LDA segmented the lungs and lobes with airways removed and inspiratory CT scans were 

spatially aligned to the expiratory images. Lung voxels were classified using pre-determined 

HU thresholds as: normal (PRMNorm, −950 < inspiration HU ≤ −810, and expiration HU 

≥ −856), functional small airways disease (PRMfSAD, −950 < inspiration HU ≤ −810, 

expiration HU < −856), emphysema (PRMEmph, inspiration HU < −950, expiration HU 

< −856), or parenchymal disease (PRMPD, inspiration HU > −810) [27]. Only voxels 

between −1,000 HU and −250 HU at both inspiration and expiration were used for PRM 

classification.

Topology Analysis of PRM

Topological analysis of PRM (tPRM) was performed using methods previously described 

[28]. tPRM metrics were defined through application of Minkowski measures on 3D binary 

voxel distributions: volume density (V), surface area (S), mean breadth (B), and Euler-

Poincaré characteristic (χ) [29]. Maps of Minkowski measures (V, S, B, χ) were computed 

for each PRM class map. In brief, 3D tPRM data were computed using a moving window 

of size 213 evaluated on a grid with 4-voxel spacing (i.e., windows centered at every fifth 

voxel). Local values from each parameter are normalized to produce parametric densities, 

with V, S, and B normalized by the masked local window volume and χ normalized by 

the masked window voxel count to provide density approximations that are comparable and 

unaffected by mask edges. Summary tPRM values for each participant were computed as 

the mean tPRM value of voxels over the entire lung volume. To indicate the PRM class 

associated with a Minkowski measure, the PRM class is presented as a superscript (e.g., 

VfSAD is the volume density of PRMfSAD). tPRM analysis was performed using open-source 

and in-house software developed in MATLAB R2019a (MATLAB, The MathWorks Inc., 

Natick, MA).

Alignment of Regional Emphysema at Year 5 to Baseline tPRM

To evaluate baseline tPRM values within regional emphysema defined at year 5, the 

following process was performed: 1. Volume density maps of PRMEmph were determined 
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using year 5 paired CT scans (VEmph5); 2. Volumes of interest were defined as having a 

VEmph5 > 0.25, a volume at year 5 equivalent to a 10 mm diameter sphere, and VEmph0 

in this volume that must be 10% or more smaller than VEmph5 [=100*(VEmph0 - VEmph5)/

VEmph5]. These constraints indicate that these lung regions had sufficient emphysema and 

progression over the 5-year period; 3. The VEmph5 segmentation map was spatially aligned 

to the baseline expiratory CT scan using LDA software; 4. The aligned VEmph5 segmentation 

map was multiplied to the baseline lobe segmentation map to generate a lobe-specific 

emphysema map. Detailed inclusion criteria for subjects are provided in Supplemental 

Figure 1.

Data and Statistical Analysis

Data are presented as mean and standard deviations unless stated otherwise. Statistical work 

was undertaken using MATLAB R2019a and IBM SPSS Statistics v27 (SPSS Software 

Products). In all tests, significance was defined by p < 0.05.

Lobar Cluster Analysis of Emphysema Regions

We assumed that the topology of PRMNorm and PRMfSAD at baseline provided sufficient 

information to represent all PRM classifications. As such, eight features (i.e., Vi, Si, Bi, 

and χi, where i represents PRMNorm and PRMfSAD at baseline) were included in an 

unsupervised cluster analysis. This analysis was performed using a K-means algorithm. 

Individual lobes with emphysema involvement were treated as independent measures. The 

number of clusters was objectively determined using the Calinski-Harabasz method. The 

relative contributions of each cluster by lobe were determined and evaluated. Cluster 

differences in baseline tPRM measures, lesion volume, VEmph at year 5 and change in 

VEmph normalized to VEmph5 were determined using Kruskal-Wallis test.

Subject Subtype Analyses

As cluster analysis was performed at the lobe-level, an individual case may consist of all 

three clusters. Subjects were designated into three groups based on the following criteria: 

subjects with lobe-level cluster 2 (2, 12, 23, and 123) were designated emphysema-dominant 

(ED), remaining subclusters with lobe-level cluster 1 (1 and 13) were designated fSAD-

dominant (FD), and the rest (3) were designated fSAD-transition (FT) (see Supplemental 

Figure 4). Differences in various continuous and categorical variables between subject 

groups were determined using the Kruskal-Wallis non-parametric test with Bonferroni post-

hoc testing and Pearson χ2 test, respectively.

Institutional Review Board Approval Statement

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: 

NCT00608764), a large NIH-funded prospective multi-center observational study. In Phase 

1 (2007–2012) of the original study, written and informed consent was obtained from all 

participants and the study was approved by local institutional review boards of all 21 

centers.
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RESULTS

Table 1 provides total subject characteristics at the time of Phase 1 accrual. This population 

(N=1495) was predominantly male with a mean age and BMI, with standard deviation (SD), 

of 62 ± 8 years and 27 ± 5 kg/m2, respectively. Most subjects had mild to moderate COPD 

(GOLD 1 and 2), with only 4% of the population diagnosed with very severe COPD (GOLD 

4). At-risk subjects with > 10 pack year smoking history and no COPD diagnosis made up 

a quarter of the cohort (N = 367). PRM classifications in the entire cohort were primarily 

normal (49 ± 16%) and fSAD (22 ± 12%).

Lobar-Based Cluster Analysis of CT Regions

As emphysema progression is a local event, each lobe with emphysema was treated as an 

independent observation. As such, a sole case may have up to 5 observations, representing 

emphysema involvement in all 5 lobes. We identified 3 well-defined clusters using only 

topology readouts from PRMNorm and PRMfSAD representing distinct imaging patterns. 

Additional details are provided on cluster methods and results in the Supplemental Results.

Presented in Table 2 are the lobe-specific characteristics for each imaging cluster. It is 

important to note that the mean volume density is proportional to the percentage of PRM 

for a given volume (%PRMi = 100*Vi, where i indicates a PRM class). Sorted by total 

observations, clusters 1 and 2 had a similar number of observations, with roughly a third 

observed for cluster 3 (Table 2). Cluster 2 was found to have the largest emphysema volume 

(0.13 ± 0.129 L) and volume density (VEmph) at year 5 (0.43 ± 0.1). Emphysema volume, 

volume density and change were found to be significantly different between all clusters 

(pair-wise p<0.0001). Cluster 3 demonstrated the largest percentage difference in VEmph at 

baseline normalized to year 5 [defined as 100*(VEmph(yr0) – VEmph(yr5))/VEmph(yr5)]. No 

noticeable lobe preference for clusters was observed.

Figure 1 shows the cluster results of topology readouts volume density (V) and Euler-

Poincaré Characteristic (χ) for all PRM classifications. In brief, V quantifies the amount of 

a PRM classification, whereas χ quantifies the consolidation of a PRM classification into 

small pockets (positive values) or a large mesh (negative values). As seen in Figure 1A, 

cluster 2 showed the highest VEmph (0.29 ± 0.11), which was accompanied by the highest 

levels of VfSAD (0.43 ± 0.11). Lobe Cluster 1 consisted of high levels of VfSAD (0.35 ± 0.09) 

and cluster 3 consisted mostly of VNorm (0.41 ± 0.16). In Figure 1B, Lobe Cluster 2 had the 

largest negative value in χfSAD (−0.008 ± 0.008). In contrast, elevated levels in χ, associated 

with formation of pockets, were only observed for χfSAD (0.010 ± 0.007) in cluster 3 and 

χEmph (0.012 ± 0.007) in Lobe Cluster 1. Surface area (S) and mean breadth (B) also 

showed unique combinations in values for PRM-derived Norm and fSAD (Supplemental 

Figure 3). All topologies for PRMNorm and PRMfSAD were statistically different between 

clusters (p<0.0001).

Subject Subtype Analyses

We observed varying contributions of fSAD and emphysema in our imaging clusters. 

Lobe Cluster 2, which we identified as emphysema dominant, exhibited elevated VEmph 
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and VfSAD. Lobe Cluster 1, fSAD dominant, had high VfSAD, low VEmph and elevated 

χEmph (emphysema pockets). Finally, Lobe Cluster 3, transition of normal parenchyma to 

fSAD, consisted of low VEmph and VfSAD but elevated χfSAD. Depending on lobe cluster 

involvement, we grouped individual subjects into subtypes as follows: fSAD-transition 

(FT), fSAD-dominant (FD), and emphysema-dominant (ED), (details are provided in 

Supplemental Figure 4). Figure 2 highlights three representative subjects, each from a 

different subtype. The subject designated as ED was diagnosed with GOLD 3 COPD 

(FEV1% predicted of 31%) and had whole-lung percent volumes of PRMEmph and 

PRMfSAD of 26% and 41%, respectively. The FD subject was diagnosed with GOLD 1 

COPD (FEV1% predicted of 84%) with percent volumes of PRMEmph and PRMfSAD of 2% 

and 32%, respectively. The subject designated as the FT subtype had a low symptom burden 

as measured by SGRQ score (GOLD 0, FEV1% predicted and FEV1/FVC of 105% and 

0.75, respectively) with negligible PRMEmph (0.6%) and PRMfSAD (1%). At Phase 2, the FT 

subject progressed to GOLD 1 COPD (FEV1/FVC of 0.66).

Subject characteristics at baseline are presented in Table 1 by subtypes. All variables except 

sex were found to be significantly different between subtypes. With respect to pulmonary 

function measurements, ED had the lowest values in all measurements. FD had lower 

pulmonary function measurements than FT. However, subjects from every GOLD stage 

were seen in every subtype, suggesting these patient designations do not simply represent 

differences in disease severity. ED did show the highest prevalence of GOLD 3 and 4 

subjects (41.2%), which accounted for elevated whole-lung PRMEmph (11 ± 10%). FD 

showed nearly three times as many at-risk subjects (29.6%) with nearly as many GOLD 2 

(34.7%) as ED (11.9% and 35.6%, respectively). In contrast, FT consisted predominantly 

of at-risk subjects, which made up 60.3% compared to 29.6% and 11.9% for FD and 

ED, respectively. Six-minute walk and SGRQ scores differed significantly between subsets 

except for FD and FT (p=0.056 and 0.215, respectively). As expected, whole-lung PRM 

values aligned with our subject subset designations. All PRM and CT lung volumes were 

significantly different between subtypes.

We further evaluated changes in PRM and pulmonary function testing (PFT) measures 

over the 5-year period within subjects identified in each subtype. Subjects designated 

as having FD and ED were found to demonstrate significant changes in all four PRM 

classifications (p<0.05; Figure 3). Subjects in the FT subtype were found to increase 

and decrease significantly only in PRMNorm (Figure 3A) and PRMfSAD (Figure 3B), 

respectively. Evaluating the percent change in PRM classifications between subtypes (Table 

3) showed that subjects designated as ED demonstrated an increase in PRMEmph of 3.8%, 

which was significantly higher than the other subtypes. The largest change in fSAD was 

observed in FT (9.0 +/−13.7%), followed by FD (5.7 +− 8.9%), which were statistically 

similar (p=0.536), but significantly larger than ED (p<0.0001 for both). No significant 

differences were observed between subtypes for changes in FEV1. Those cases designated as 

ED demonstrated the highest rates of change in FVC but were only found to be significant 

with FT (p=0.011). FD and FT subtypes showed rates of FEF25–75 (forced expiratory flow 

at 25–75% of FVC) decline that were significantly higher than ED (p=0.006 and p<0.0001, 

respectively), but these rates were not found to differ significantly (p=0.104).
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In summary, our lobar level analyses revealed 3 unique emphysema progression clusters 

scattered throughout the lung, from which we grouped individual subjects into separate 

subtypes, FD, FT, and ED. These subtypes had distinguishing clinical features (pulmonary 

function metrics, symptom burden, GOLD staging) but also provided additional local 

pathophysiologic data supporting the heterogeneity of emphysema development.

DISCUSSION

COPD is characterized by significant heterogeneity in the amount of airway disease and 

emphysema. PRM can distinguish between fSAD and emphysema, and as we demonstrate 

in this work, local emphysema progression can be identified by assessing the topology 

(i.e., amount and arrangement) of PRM-defined normal parenchyma (PRMNorm) and fSAD 

(PRMfSAD) [28] to better understand how and in whom COPD progresses. The focus 

on both lobar level and subject specific analyses reveals important overarching themes. 

Broadly, we have identified 3 unique radiologic patterns: fSAD-dominant (FD), emphysema-

dominant (ED), and fSAD-transition (FT)—the latter a group consisting of a unique 

transitional state from normal lung to fSAD that is associated with emphysema progression.

Emphysema-dominant subjects had the lowest baseline pulmonary function measurements, 

an expected result given that these subjects had the highest degree of emphysema at study 

enrollment. This subtype also had the highest prevalence of severe COPD subjects with 

the greatest number of GOLD 3 and 4 subjects. Not surprisingly, ED subjects were more 

likely to have ever smoked and had the lowest functional class (with the lowest 6-minute 

walk distance) and highest degree of symptom burden (with the highest SGRQ score). 

These were all statistically significant differences among the three subtypes. ED subjects had 

the largest increase in whole-lung PRM-defined emphysema after 5 years, which was also 

statistically significantly different (Table 3). While many of these findings are expected in 

this group with advanced disease, it was interesting to note that these radiologic changes 

correlated to worsening symptoms and functional status, but not necessarily to large changes 

in lung function after accounting for aging. This lack of significance further emphasizes 

that spirometric changes cannot consistently account for the degree of radiologic changes 

identified by PRM in subjects at risk for or with COPD over a short follow up period 

[30]. These findings suggest that tPRM may provide earlier evidence of regional disease 

progression and reveal different clinical trajectories, and thus, represent a more sensitive tool 

than global PFTs alone.

Lobes identified as fSAD-dominant showed nearly a 50% regional change in emphysema 

in the 5-year follow up period. This was greater than what was seen in the emphysema-

dominant cluster 2, which only had a 33% increase in emphysema (Table 2). This 

is consistent with recent studies showing that in cigarette smokers without baseline 

emphysema, the presence of fSAD is associated with emphysema development [31]. Over 

half of the subjects in the FD group were GOLD 1 or 2; however, 30% of subjects in this 

group were at-risk subjects, or GOLD 0. This suggests that a significant number of subjects 

at risk for developing COPD and with mild-moderate COPD all have some degree of fSAD. 

χEmph was high in the FD group, indicating the presence of small pockets of emphysema 

developing within larger regions of fSAD. As these subjects may not have yet progressed 
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to end stage disease with a large amount of irreversible emphysema, they may fall into a 

separate group where novel therapies and close monitoring may further improve their quality 

of life and clinical outcomes. FD subjects also had the greatest change in FEV1 at nearly a 

50 mL/year drop; however, this was not significantly different compared to the other groups. 

This indicates PFT metrics may not be able to capture overall global functional changes in 

a short interval, as emphysema develops locally from regions of fSAD and these regions of 

fSAD also evolve from healthy lung tissue.

The discovery with the greatest potential clinical utility is arguably the FT subtype, cluster 

3. These clusters had even larger regional increases in emphysema over this 5-year follow up 

period—nearly 58%–the largest among all the groups (see Supplemental Results for cluster 

analysis). The FT subtype comprised of subjects with predominantly little emphysema or 

fSAD as measured using volume density. In contrast, χfSAD was found to be elevated, 

suggesting the presence of fSAD pockets already present within healthy lung parenchyma 

at study enrollment [32]. Many prior studies have shown that GOLD 0 subjects consistently 

have both clinical and radiologic evidence of smoking-related disease [33]; however, it 

remains difficult to identify these changes with currently available tools. FT subjects’ 

pulmonary function testing revealed that their FEV1/FVC ratio and FEV1% predicted were 

largely preserved at baseline, again consistent with the at-risk label. FEF25–75% decline 

in the FT subtype was also the greatest of all the subtypes, supporting the theory that it 

may be an early marker of COPD development [32, 34]. These at-risk subjects still have 

a significant symptom burden despite normal spirometry, which may be reflected in the 

pockets of abnormal airway remodeling we visualized in this study.

This large-scale study was the first to use tPRM across Phases 1 and 2 of COPDGene, 

which was comprised of a cohort of diverse subjects across the country. One of the strengths 

of this work is our strategy to evaluate tPRM readouts in lung regions with confirmed 

emphysema progression over 5 years. This allowed us to identify new emphysema 

phenotypes, particularly our description of a unique transitional stage between healthy 

lung and development of fSAD (i.e., FT), which has not been previously discussed in 

the literature. Furthermore, we have shown that these different clinical phenotypes both 

correlate with and add insight to available PFT data that may allow clinicians to phenotype 

patients earlier in their disease courses. One of the intriguing possibilities of tPRM is 

the ability to quantify regional risk of emphysema progression over time in a way that 

global PFT metrics cannot do. Even in subjects with advanced COPD, resulting in severe 

obstruction and gas exchange impairment, there may be regions in the lung with reversible 

damage (such as in FT clusters with pockets of fSAD) that can be potential therapeutic 

targets for intervention.

This current study has several limitations. We identified unique disease subtypes based on 

the topology of PRM classification maps generated from high-resolution CT data from a 

well-controlled multi-center observational COPD trial. However, different reconstruction 

kernels and scanner systems are known to result in variations in HU values, which affect 

the PRM classification maps and resulting topology calculations [35]. In addition, image 

resolution is critical for topological comparisons, as lower resolution intrinsically appears 

more clustered, biasing the feature patterns in the CT image. Minimal variation in image 
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resolution was found between data sets for this study. Nevertheless, care was taken to 

account for image noise and registration errors while assessing our metrics [35]. Despite 

these limitations, our results have physiologic and clinical correlates that still allow us to 

draw important conclusions.

More remains to be explored to extend this work. Our future directions include three main 

research domains. First, while we hope our findings are generalizable to the broader COPD 

population, we must establish that our radiologic signatures of disease are distinguishing 

clinical phenotypes with actionable, therapeutic implications. As it currently stands, the 

FT subtype we described is not yet clinically well-defined and further characterization of 

whether this phenotype is truly on a spectrum of disease between healthy and development 

of fSAD and emphysema remains to be confirmed. While many FT GOLD 0 subjects 

may be at increased risk of developing COPD, the link between the pathophysiology of 

this disease progression as it relates to radiologic changes needs to be further studied. We 

aim to accomplish this by validating our work in external cohorts and by using blood 

biomarkers that could support the link between radiologic and pathophysiologic changes. 

Secondly, we hope to correlate these findings to other clinically significant, patient-centered 

outcomes, including risk of functional decline, morbidity metrics, COPD exacerbations 

(especially hospitalizations and healthcare utilization), and mortality. Finally, longer-term 

studies are needed, because it remains difficult to appreciate small but meaningful changes 

in lung function between groups over the short time frame of a few years in studies such 

as this one. Novel imaging modalities such as tPRM may provide evidence showing earlier 

patterns of disease progression in different lung regions; however, we also acknowledge this 

may not consistently correspond to global PFT changes. Thus, studying outcomes beyond 

the 5-year follow up we look at here will allow us to better understand the longer-term 

implications of this novel subtype in a disease process that we are increasingly appreciating 

as heterogenous.

CONCLUSIONS

Local topological parametric response maps identified three distinctive radiologic tissue 

patterns that can be used to identify corresponding individual subjects characterized by 

unique clinical features. This work highlights the discovery of the fSAD transition (FT) 

subtype, characterized by high χ of fSAD, which may help identify individuals without 

spirometrically-defined COPD who remain at-risk. Further work is needed to better 

understand this novel phenotype and its clinical implications in the context of emphysema 

development and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Bar plots for (A) Volume Density (V) and (B) Euler-Poincaré Characteristic (χ) of all PRM 

classifications across all clusters. Data are presented as mean and SD. PRM classifications 

include Norm, normal lung parenchyma (green); fSAD, functional small airways disease 

(yellow); Emph, emphysema (red); and PD, parenchymal disease (magenta).
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Figure 2: 
Volume Density (V) and Euler-Poincaré Characteristic (χ) for PRMNorm and PRMfSAD in 

all determined subtypes. For each subtype, representative coronal slices are provided for 

the aligned inspiration CT scan acquired at baseline with overlays of PRM, VNorm, VfSAD, 

χNorm and χfSAD. The fSAD-transition (FT) case is a female, 55 years of age at enrollment 

with FEV1% predicted of 105% identified as at-risk (i.e., GOLD 0). The fSAD-dominant 

(FD) case is a 55-year-old female with FEV1% predicted of 84% diagnosed with GOLD 1 

COPD. The emphysema-dominant (ED) case is a 60-year-old male with FEV1% predicted 

of 31% diagnosed with GOLD 3.
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Figure 3: 
Box and whisker plots for Phase 1 and 2 measurements of the percent volume of PRM 

classifications (A) Norm (normal parenchyma; color coded green), (B) fSAD (functional 

small airways disease, color coded yellow), (C) emphysema (color coded red) and (D) PD 

(parenchymal disease; color coded magenta). Box represents the 25th and 75th percentiles, 

line represents median, and whiskers represent minimum and maximum values. Circles and 

stars represent outliers and extreme values. * indicates significant difference between time 

intervals at p<0.05.
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Table 1:

Subject Characteristics

Total COPD Subtype

FT FD ED P-Value

Patient Characteristics

 Population (n) 1495 189 551 755

 Age (years) 62 (8) 59 (9) 62 (8) 64 (8) <0.0001

 Sex (male) 903 (60) 105 (56) 323 (59) 475 (63) 0.101

 BMI (kg/m2) 27 (5) 27 (5) 29 (6) 26 (5) <0.0001

Pulmonary Function

 FEV1% predicted (%) 70.4 (24.4) 88.9 (18.1) 78.2 (20.6) 60 (23.5) <0.0001

 FEV1 (L) 2.1 (0.9) 2.7 (0.8) 2.4 (0.8) 1.8 (0.8) <0.0001

 FVC (L) 3.5 (1) 3.7 (1) 3.6 (1) 3.3 (1) <0.0001

 FEV1/FVC 0.59 (0.14) 0.72 (0.09) 0.65 (0.11) 0.53 (0.14) <0.0001

 FEF25–75 (L) 1.21 (0.95) 2.01 (1.05) 1.41 (0.92) 0.86 (0.77) <0.0001

GOLD

 PRISm 78 (5) 21 (11.1) 35 (6.4) 22 (2.9)

<0.0001

 At-Risk 367 (25) 114 (60.3) 163 (29.6) 90 (11.9)

 1 189 (13) 22 (11.6) 104 (18.9) 63 (8.3)

 2 488 (33) 28 (14.8) 191 (34.7) 269 (35.6)

 3 317 (21) 4 (2.1) 52 (9.4) 261 (34.6)

 4 56 (4) 0 (0) 6 (1.1) 50 (6.6)

Clinical Measures

 Smoking Status (former) 852 (57) 81 (43) 306 (56) 465 (62) <0.0001

 6 min Walk Distance (ft) 1412 (378) 1525 (370) 1449 (373) 1357 (375) <0.0001

 SGRQ Score 26.8 (21) 19.3 (18.6) 22.2 (20) 32 (21) <0.0001

 TLC (L) 6.2 (1.4) 5.7 (1.4) 6 (1.4) 6.4 (1.4) <0.0001

 FRC (L) 3.7 (1) 2.9 (0.8) 3.3 (0.8) 4.1 (1.1) <0.0001

PRM

 Normal 49 (16) 63 (14) 57 (10) 41 (14) <0.0001

 fSAD 22 (12) 8 (7) 17 (8) 29 (10) <0.0001

 Emph 7 (9) 3 (7) 3 (4) 11 (10) <0.0001

 PD 19 (7) 24 (11) 20 (7) 17 (6) <0.0001

Note: Subject characteristics separated total and subsets of those designated fSAD-transition (FT), fSAD-dominant (FD) and emphysema-dominant 
(ED). Values are displayed as mean (standard deviation). BMI, body mass index; FEV1, forced expiratory volume in one second; FVC, forced vital 

capacity; FEF25–75, forced expiratory flow at 25–75% of FVC; GOLD, Global Initiative for Chronic Obstructive Lung Disease; PRISm, preserved 

ratio impaired spirometry; At-risk, at-risk smokers with normal spirometry; TLC, total lung capacity; FRC, functional residual capacity; SGRQ, St. 
George’s Respiratory Questionnaire; PRM, parametric response map; Norm, Normal; fSAD, functional small airways disease; Emph, emphysema; 
PD, parenchymal disease.
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Table 2:

Lobar-Based Cluster Analysis of CT Regions to Identify Unique Imaging Patterns

Clusters

1 2 3 P-Values

Total (N) 1761 1711 631

Emphysema

 Volume (L) at year 5 0.05 (0.07) 0.13 (0.13) 0.02 (0.05) <0.0001

VEmph at year 5 0.35 (0.06) 0.43 (0.1) 0.36 (0.08) <0.0001

 ΔVEmph relative to VEmph at 5 (%) −49.9 (21.2) −33.1 (17.8) −57.5 (27) <0.0001

Percentage of Lobe Observations per Cluster (%)

 RUL 18 21 22

 RLL 21 16 22

 RML 20 24 14

 LUL 21 23 23

 LLL 19 16 19

Note: Lobar-based cluster results are presented as counts or means (SD). Each lobe was considered an independent observation such that each 

individual may have up to 5 observations. Continuous variables include VEmph, volume density of PRMEmph; ΔVEmph relative to VEmph at 5 

(%), difference of VEmph from baseline to year 5 normalized to year 5 values [100*(VEmph baseline – VEmph at year 5)/ VEmph at year 5]; and 
Percentage of Lobe Observations per Cluster, the sum of a cluster in a lobe normalized to the sum of the same cluster in all lobes*100. RUL, right 
upper lung; RLL, right lower lung; RML, right middle lung; LUL, left upper lung; and LLL, left lower lung.
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Table 3:

Change in Whole-Lung PRM and Pulmonary Function Measurements

Subtypes

FT FD ED P-Value

Parametric Response Map [%]

 Norm −8.4 (14.6) −5.2 (10) −4.3 (8.3) 0.027

 fSAD 9 (13.7) 5.7 (8.9) 1.4 (7.8) <0.0001

 Emph 1.2 (2.4) 1.8 (3.2) 3.8 (4.9) <0.0001

 PD −1.6 (7.8) −1.9 (5.1) −0.7 (3.7) <0.0001

Pulmonary Function [mL/yr]

 FEV1 −45.2 (61.2) −50.7 (60.6) −47.7 (58.5) 0.101

 FVC −45.6 (84.7) −62.1 (85.1) −67.9 (104) 0.014

 FEF25–75 −54.9 (116.5) −36.1 (98.1) −23.3 (68.1) <0.0001

Note: Change in whole-lung PRM and pulmonary function measurements separated by subsets of those designated fSAD-transition (FT), fSAD-
dominant (FD) and emphysema-dominant (ED). Values are displayed as mean (standard deviation). Norm, Normal; fSAD, functional small airways 
disease; Emph, emphysema; PD, parenchymal disease; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; FEF25–75, 

forced expiratory flow at 25–75% of FVC.

Acad Radiol. Author manuscript; available in PMC 2024 May 16.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Study Sample
	Subject Characteristics, Spirometry and CT Imaging
	Parametric Response Map PRM
	Topology Analysis of PRM
	Alignment of Regional Emphysema at Year 5 to Baseline tPRM
	Data and Statistical Analysis
	Lobar Cluster Analysis of Emphysema Regions
	Subject Subtype Analyses
	Institutional Review Board Approval Statement

	RESULTS
	Lobar-Based Cluster Analysis of CT Regions
	Subject Subtype Analyses

	DISCUSSION
	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:
	Table 3:

