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Abstract We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covari-
ates in observational or nonrandomized research. Additionally, we offer advice to help investigators, 
editors, reviewers, and readers make more informed decisions about conducting and interpreting 
research where the influence of covariates may be at issue. We primarily address misperceptions in 
the context of statistical management of the covariates through various forms of modeling, although 
we also emphasize design and model or variable selection. Other approaches to addressing the 
effects of covariates, including matching, have logical extensions from what we discuss here but are 
not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accu-
rate representation of covariates, effects of measurement error, overreliance on covariate categoriza-
tion, underestimation of power loss when controlling for covariates, misinterpretation of significance 
in statistical models, and misconceptions about confounding variables, selecting on a collider, and 
p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct 
common errors and improve research quality in general and in nutrition research specifically.

Introduction
In observational or nonrandomized research, it is common and often wise to control for certain vari-
ables in statistical models. Such variables are often referred to as covariates. Covariates may be 
controlled through multiple means, such as inclusion on the ‘right-hand side’ or ‘predictor side’ of 
a statistical model, matching, propensity score analysis, and other methods (Cochran and Rubin, 
1961; Streeter et al., 2017). Authors of observational research reports will frequently state that they 
controlled for a particular covariate and, therefore, that bias due to (often phrased as ‘confounding 
by’) that covariate is not present (Box 1). However, authors may write ‘We controlled for…’ when in 
fact they did not because of common misstatements, misperceptions, and mistakes in controlling for 
covariates in observational research.

Herein, we describe these multiple misperceptions, misstatements, and mistakes involving the use 
of covariates or control variables. We have discussed misperceptions that in our collective years of 
experience as authors, reviewers, editors, and readers, in areas including but not limited to aging 
and geroscience, obesity, nutrition, statistical teaching, cancer research, behavioral science, and 
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other life-science domains have observed to prevail in the literatures of these fields. Determining 
the frequency with which these misperceptions are held would require very extensive and rigorous 
survey research. Instead, we offer them as those we find pertinent and readers may decide for them-
selves which they wish to study. We now make this clear in the manuscript. Some terms we use are 
defined in the Glossary in Box 2. Because of the critical role of attempting to minimize or eliminate 
biases in association and effect estimates derived from observational research, as recently pointed 
out elsewhere (Brown et al., 2023), we primarily focus on misperceptions, misstatements, or mistakes 
leading to decisions about whether and how to control for a covariate that fails to actually control for 
and minimize or eliminate the possibility of bias. We also consider other errors (Brenner and Loomis, 
1994) in implementation, interpretation, and understanding around analyses that involve covariate 
adjustment.

We sometimes use the words confound, confounder, confounding, and other variants by conven-
tion or for consistency with the literature we are citing. However, because of the difficulty and incon-
sistency in defining confounding (Pearl and Mackenzie, 2018), we will minimize such use and try to 
refer primarily to potentially biasing covariates (PBCs). We define PBCs as variables other than the 
independent variable (IV) or dependent variable (DV) for which decisions about whether and how to 
condition on them, including by incorporation into a statistical model, can affect the extent to which 
the expected value of the estimated association of the IV with the DV deviates from the causal effect 
of the IV on the DV.

Misperception 1. Construct validity
Simply because we believe an observed variable (e.g. highest educational degree earned) is a measure 
of a construct (e.g. socioeconomic status), it does not mean that that the observed variable accu-
rately measures that construct or that it has sufficient validity for the elimination of it as a source of 
covariation biasing estimation of a parameter. This scenario is a misperception attributed to construct 
validity, which is defined as the extent to which a test or measure accurately measures what it is 
intended to measure. This misperception is conceptually defined as the assumption that a measure 
or set of measures accurately measures the outcome of interest; however, associations between 
tested variables may not adequately or appropriately represent the outcome of interest. This specific 

Figure 1. Agree (a) vs. disagree (b) with the interpretation of Misperception 5a. Demonstrates a nonlinear and 
non-monotonic association between body mass index (BMI) and mortality among U.S. adults aged 18–85 years old. 
This figure suggests that BMI ranging between 23–26 kg/m2 formed the nadir of the curve with the best outcome 
while persons with BMI levels below or above the nadir of the curve experienced increased mortality on average. 
Source: (Fontaine et al., 2003).  

https://doi.org/10.7554/eLife.82268
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type of construct validity is perhaps best exemplified through the use of proxy variables, or variables 
believed to measure a construct of interest while not necessarily holding a strong linear relationship 
with that construct. In psychology, the Patient Health Questionaire-9 (PHQ-9) is a highly reliable, 
nine-item psychological inventory for screening, diagnosing, and monitoring depression as an inter-
nalizing disorder. Although these nine items have been extensively tested as an appropriate measure 
for depression and other internalizing disorders (Bell, 1994), it is not uncommon for researchers to 
modify this scale for shorter surveys (Poongothai et al., 2009). However, because the PHQ-9 has 
been empirically tested with a specific item set, any modification may not effectively measure depres-
sive symptomology as accurately as when the PHQ-9 is used as intended. This problem is also salient 
in nutritional epidemiology for food categorization (Hanley-Cook et al., 2023). For example, ongoing 
debate remains about ‘food addiction’ as a measurable construct despite limited evidence to suggest 
such a phenomenon exists and can be empirically measured (Fletcher and Kenny, 2018).

Why misperception 1 occurs
This misperception persists simply because issues with construct validity are difficult to identify. First, 
owing to continuous scientific innovations, we are finding new ways to measure complex behaviors. 
However, the production of new instruments or tests remains greatly outpaced by such innovation. 
As such, scientists may rely on old, established instruments to measure problems germane to the 21st 
century. However, the use of these instruments has not been tested in such scenarios, i.e., measuring 
screentime as a predictor/construct/measure of depression and other internalizing disorders. Second, 
although it is easy to create a new test or instrument, testing the instrument to ensure construct 
validity is time-consuming and tedious. If a new instrument is not tested, then no certainty exists as 
to whether the construct measures what it is intended to measure. Additionally, outcomes measured 
from old, adapted, and new measures may only be marginally incorrect. Thus, any ability to identify 
unusual metrics or outcomes becomes impeded, allowing this misperception to continue.

How to avoid misperception 1
We offer two practical recommendations to avoid this misperception. First, if using an established 
test or instrument that measures many constructs, then the instrument should be used in its entirety. 
Any alteration to the instrument (particularly relating to question wording, format, and question omis-
sion) may alter response patters to a large enough degree that the construct no longer appropriately 
measures what it is intended to measure. However, in cases where measures are adapted, tailored to 
specific populations, or created anew, the instrument will ideally be empirically tested using a variety 
of psychometric analyses (e.g. confirmatory factor analysis) to compare factor weights and loadings 
between new and adapted measures. Ideally, adaptations to an existing instrument will perform the 
same such that scores reflect the outcome of interest equally across versions. Other options beyond 
a confirmatory factor analysis include test/retest reliability—a measure of how consistently a measure 
obtains similar data between participants—as a secondary metric to again test the reliability and 
validity of an instrument relative to a measured construct.

Misperception 2. Measurement error in a covariate only 
attenuates associations or effect estimates and does not 
create apparent effects
Measurement errors can take many forms (Fuller, 2009; Carroll et al., 2006) and are not limited 
to random, independent, or normally distributed errors. The errors themselves may be correlated, 
or the errors in measurement may be correlated, with true values of the covariate or with true 
values of other variables or errors in other variables. The distribution of a covariate’s measurement 
errors, including their variance and their associations with other variables, can greatly influence the 
extent to which controlling for that error-contaminated covariate will reduce, increase, or have no 
appreciable impact on the bias of model parameter estimation and significance testing. That is, the 
extent to which including a PBC will eliminate, reduce, not effect, or even potentially increase bias 
in estimating some elements of the model is also influenced by the measurement error distribu-
tions. Indeed, a recent review by Yland et al., 2022 delineates seven ways in which even so-called 

https://doi.org/10.7554/eLife.82268
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‘non-differential’ measurement error can lead to biases away from the null hypothesis in observa-
tional epidemiologic research. We do not include all of them here but refer the reader to this cogent 
paper.

A frequent misleading statement in the epidemiologic literature is that ‘classical’ measurement 
error only attenuates effects. For example, Gibson and Zezza state, “Classical measurement errors 
provide comfort …since they don’t cause bias if on the left-hand side, and just attenuate if on the 
right-hand side, giving a conservative lower bound to any estimated causal impacts” (Gibson and 
Zezza, 2018). That this is untrue is knowable from theory (Fuller, 2009; Carroll et al., 2006) and has 
been demonstrated empirically on multiple occasions. While it is well known that the presence of 
measurement error in simple linear regression models leads to attenuation, the influence of measure-
ment errors in more complex statistical models depends on the outcomes and the statistical models. 
Therefore, measurement error and covariates, as well as outcomes, need to be considered (Tosteson 
et al., 1998; Buonaccorsi et al., 2000; Yi et al., 2012; Tekwe et al., 2014; Tekwe et al., 2016; Tekwe 
et al., 2018; Tekwe et al., 2019).

Measurement error in the covariates is often ignored or not formally modeled. This may be the 
result of a general lack of awareness of the consequences on estimation and conclusions drawn 
regarding the covariates in regression models. This may also be the result of insufficient informa-
tion regarding the measurement error variance to be included in the modeling. Yet, as a field, we 
should move toward analyses that account for measurement error in the covariates whenever possible 
(Tekwe et al., 2019).

Why misperception 2 occurs
The influence of measurement error depends on the regression model. Therefore, it cannot be 
generalized that measurement error always attenuates covariate effects. In some models, the pres-
ence of measurement error does lead to attenuation, while in others, it leads to inflated effects of 
the covariates. A simple way to think about how measurement error can lead to bias is by exploring 
the nature of random measurement error itself. Let us assume that the random measurement error 
in our covariate exists. By random we mean that all the errors are independent of each other and 
of all other factors in the model or pertinent to the model. We know that under such circumstances, 
the variance in the measured values of the covariate will simply be the sum of the true variance 
of the construct the covariate represents plus the variance of the random measurement errors. As 
the ratio of the variance of the random errors over the variance of the true construct approaches 
infinity, the proportion of variance due to the true value of the construct approaches zero and the 
covariate itself is effectively nothing more than random noise. For example, we wouldn’t expect 
that simply controlling for the random noise generated from a random number generator would 
reduce the bias of the IV–DV relationship from any PBC. Although this is an extreme and exagger-
ated hypothetical, it makes the point that the greater the error variance, the less that controlling 
for the covariate actually controls for the PBC of interest. Because we know that many PBCs in the 
field of nutrition and obesity, perhaps most notably those involving self-reported dietary intake, 
are measured with error, we cannot assume that when we have controlled for a covariate, we 
have eliminated its biasing influence. If we allow for the possibility—indeed the virtual certainty 
(Dhurandhar et al., 2015; Gibney, 2022; Gibney et al., 2020)—that the errors are not all random 
but in some cases will be correlated with important factors in the model, then ‘all bets are off.’ We 
cannot predict what the effect on the model will be and the extent to which biases will be created, 
reduced, or both by the inclusion of such covariates without fully specifying the nature of the error 
structure relative to the model.

How to avoid misperception 2
One way to reduce the concerns of such measurement error is through measurement error correction 
methods. Fully elucidating them is beyond the scope of this article, but thorough discussions are avail-
able (Fuller, 2009). Of course, the best way of dealing with measurement error is not to have it, but 
that is unachievable, particularly in observational studies. Nevertheless, we should continue to strive 
for ever better measurements in which measurement error is minimized (Westfall and Yarkoni, 2016) 
to levels that plausibly have far less biasing capacity.

https://doi.org/10.7554/eLife.82268
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Misperception 3 (two parts)
Misperception 3a. Continuous covariates divided into polychotomous 
categories for better interpretation are still well-controlled
Why misperception 3a occurs
Another way in which controlling for PBCs can fail involves the intersection of residual confounding 
and nonlinearity discussed later (see Misperception 5B).

An astute investigator may recognize the potential for nonlinearity and, therefore, choose to allow 
for nonlinear effects or associations of the covariate with the outcome by breaking the covariate into 
categories that could also allow for easier interpretation (Blas Achic et al., 2018).

This is most commonly done through the use of quantiles (on a terminological note, the adjacent 
bins into which subjects can be placed when the covariate is ‘chopped up’ in this manner might 
better be termed ‘quantile-defined categories’ and not as quantiles, quintiles, quartiles, etc). The 
quantiles are the cut points, not the bins formed by the cutting (Altman and Bland, 1994). Yet doing 
so yields, as many have explained (Veiel, 1988; Fitzsimons, 2008; Hunter and Schmidt, 1990; Irwin 
and McClelland, 2003; Naggara et al., 2011), ‘coarse categorization’ that effectively creates addi-
tional measurement error in the covariate. This is true even if there was no measurement error to 
begin with, unless the true relationship between the covariate and the outcome miraculously happens 
to be exactly a series of step functions with the stepping occurring exactly at the points of cutting. 
In contrast, if the true association is more monotonic, then this categorization loses information and 
increases the likely residual bias (aka ‘residual confounding’). The result is an apparent control for the 
covariate of interest that does not truly eliminate bias from the PBC.

How to avoid misperception 3a
For optimal analysis, it is advisable for researchers to avoid dichotomizing continuous covariates as 
much as possible, as this approach may lead to unnecessary suboptimal analysis.

Misperception 3b. Covariates categorized in coarse rather than fine 
categories are more reliable in the presence of measurement error
Why misperception 3b occurs
A similar misperception to 3 a is that in the presence of certain forms of measurement error, coarse 
categorization will make the covariate data more reliable because the original data cannot support 
fine-grained distinctions. As described by MacCallum et al., 2002:

In questioning colleagues about their reasons for the use of dichotomization, we have often 
encountered a defense regarding reliability. The argument is that the raw measure of X is viewed as 
not highly reliable in terms of providing precise information about individual differences but that it can 
at least be trusted to indicate whether an individual is high or low on the attribute of interest. Based 
on this view, dichotomization, typically at the median, would provide a ‘more reliable’ measure.

Box 1. 

“Since both tickets had an equal probability of winning the same payoff, uncertainty about the 
true value of the goods exchanged could not confound results.” (Arlen and Tontrup, 2015)
“In our study population, NSAIDs other than Aspirin was not associated to PC risk and, 
therefore, could not confound result.” (Perron et al., 2004)
“Most of the demographic, social, and economic differences between patients in different 
countries were not associated significantly with acquired drug resistance and, therefore, could 
not confound the association.” (Cegielski et al., 2014)
“Furthermore, study time, as well as self-expectation regarding educational achievements 
(another potential confounder), could be controlled in the IV models. Therefore, these 
potential channels could not confound our analysis.” (Shih and Lin, 2017)

https://doi.org/10.7554/eLife.82268
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Box 2. Terminology/Glossary

Bias. Here, we define bias as either bias in coefficients in a model or bias in frequentist 
statistical significance tests. Frequentist statistical significance tests, or the ordinary tests of 
statistical significance using p values, are commonly reported in this journal and are described 
more fully here (Mayo and Cox, 2006). Under the null hypothesis that there is no true 
association or effect to detect in a situation, a proper unbiased frequentist test of statistical 
significance with continuous data and a continuous test statistic yields a uniform sampling 
distribution of p values (i.e. rectangular) on the interval zero. The distribution is such that the 
probability of observing any p value less than or equal to a, where a is the preset statistical 
significance level (i.e. most often 0.05), is a itself. Any statistical significance test that does 
not meet this standard can be said to be biased. With respect to coefficients or parameter 
estimates, we can say that bias is equal to the expected value of the coefficient or parameter 
estimate minus the actual value of the parameter or quantity to be estimated. In an unbiased 
estimation procedure, that quantity will be zero, meaning that the expected value of the 
estimate is equivalent to the value to be estimated.
Replicability. The National Academies of Sciences uses the following working definition 
for replicability: “Obtaining consistent results across studies aimed at answering the same 
scientific question, each of which has obtained its own data” (National Academies of 
Sciences, Engineering, and Medicine, 2019).
Reproducibility. The National Academies of Sciences uses the following working definition 
for reproducibility: “Obtaining consistent results using the same input data; computational 
steps, methods, and code; and conditions of analysis. This definition is synonymous with 
‘computational reproducibility” (National Academies of Sciences, Engineering, and 
Medicine, 2019). Disqualifying reproducibility criteria include nonpublic data and code, 
inadequate record keeping, nontransparent reporting, obsolescence of the digital artifacts, 
flawed attempts to reproduce others’ research, and barriers in the culture of research 
(National Academies of Sciences, Engineering, and Medicine, 2019).
Confounder. There are many definitions of confounder and not all are equivalent. One 
definition is “(…) A pre-exposure covariate C [can] be considered a confounder for the effect 
of A on Y if there exists a set of covariates X such that the effect of the exposure on the 
outcome is unconfounded conditional on (X, C) but for no proper subset (X, C) is the effect of 
the exposure on the outcome unconfounded given the subset. Equivalently, a confounder is a 
member of a minimally sufficient adjustment set” (VanderWeele and Shpitser, 2013).
Collider. “A collider for a certain pair of variables is any variable that is causally influenced by 
both of them” (Rohrer, 2018).
Covariate. We utilize the word covariate to indicate a variable which could, in principle, be 
included in a statistical model assessing the relations between an independent variable (IV) 
and a dependent variable (DV).
Residual. The difference between the observed and fitted value of the outcome (Bewick 
et al., 2003).
Independent Variable. “Independent variables (IVs) generally refer to the presumed causes 
that are deliberately manipulated by experimenters” (Chen and Krauss, 2005) or observed in 
non-interventional research.
Dependent Variable. “Dependent variables (DVs) are viewed as outcomes that are affected 
by the independent variables” (Chen and Krauss, 2005).
Association. Two variables are associated when they are not independent, i.e., when the 
distribution of one of the variables depends on the level of the other variable (Hernán, 2004).
Related. We say that two variables are related; when the distribution of one variable depends 
on the level of the other variable. In this context, we use the words ‘related’, ‘associated’, and 
‘dependent’ as interchangeable and a complement of independent (Dawid, 1979).

continued on next page
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[The 4 highlighted variables merit different and better definitions] Causal effect: “A 
difference between the counterfactual risk of the outcome had everybody in the population 
of interest been exposed and the counterfactual risk of the outcome had everybody in the 
population been unexposed” (Hernán, 2004).
Statistical Model: A model used to represent the data-generating process embodying a set 
of assumptions, and including the uncertainties about the model itself (Cox, 2006).
Precision: How dispersed the measurements are between each other (ISO, 1994).
Mediator: Variable that is on the causal pathway from the exposure to outcome 
(VanderWeele and Vansteelandt, 2014).
*We have used some definitions as phrased in this glossary in some of our other manuscripts 
currently under review, published, or in-press articles.

It may be true that for some communication purposes, data measured with low precision merit 
being communicated only in broad categories and not with more precise numbers. Yet, as MacCallum 
et al. explains after studying dichotomization (a special case or ‘the lower limit’ of polychotomiza-
tion or categorization), “...​the foregoing detailed analysis shows that dichotomization will result in 
moderate to substantial decreases in measurement reliability under assumptions of classical test 
theory, regardless of how one defines a true score. As noted by Humphreys, 1978, this loss of reliable 
information due to categorization will tend to attenuate correlations involving dichotomized variables, 
contributing to the negative statistical consequences described earlier in this article. To argue that 
dichotomization increases reliability, one would have to define conditions that were very different 
from those represented in classical measurement theory” (MacCallum et al., 2002).

How to avoid misperception 3b
Researchers are advised to refrain from dichotomizing covariates that have low reliability because this 
can have a negative impact on the analysis. Claiming dichotomization will improve reliability would 
require defining conditions that deviate significantly from classical measurement theory (MacCallum 
et al., 2002), which is simply difficult to verify in real application.

Misperception 4. Controlling for a covariate reduces the 
power to detect an association of the IV of interest with the 
DV of interest
Why misperception 4 occurs
Investigators are often reluctant to control for covariates because they believe that doing so will reduce 
the power to detect the association or effective interest between the IV and the DV or outcome. 
Therefore, if they perceive that the covariate is one that has a bivariate unadjusted correlation of zero 
with the IV, they may seize upon this as an opportunity to dismiss that nonsignificant covariate from 
further consideration. Ironically, this is the very situation in which controlling for the covariate may be 
most helpful for detecting a statistically significant association between the IV and the DV. This is most 
clearly recognized by statistical methodologists in randomized experiments or randomized controlled 
trials, but is frequently misunderstood by non-statistician investigators.

If a covariate is correlated (especially if it is strongly correlated) with the outcome of interest but 
uncorrelated with (orthogonal to in linear models) the IV (e.g. treatment assignment in a randomized 
experiment), then controlling for that covariate reduces residual variance in the DV without affecting 
the parameter estimate for the association or effect of the IV with the DV. Unless the sample size is 
extremely small such that the loss of a degree of freedom by including the covariate in the analysis 
makes an important difference (again, it rarely will in observational studies of any size), then this 
increases power, often quite substantially, by reducing the residual variance and thereby lowering 
the denominator of the F-statistic in a regression or ANOVA context or related statistics with other 
testing. Omission of orthogonal covariates has been well described in the literature (Allison et al., 
1997; Allison, 1995). Although omission of orthogonal covariates is ‘cleanest and clearest’ in the 

https://doi.org/10.7554/eLife.82268
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Figure 2. Association between body mass index and hazard ratio for death among U.S. adults aged 18–85 years 
old.

context of randomized experiments, conditions may prevail in observational studies in which a vari-
able is strongly related to the DV but minimally related to the IV or exposure of interest.

Such covariates are ideal to help the investigator explore his or her hypothesis, or better yet, to 
formally test them with frequentist significance testing methods. Doing so will increase statistical 
power and precision of estimation (i.e. reduced confidence intervals on the estimated associations or 
effects of interest).

How to avoid misperception 4
When conducting an analysis, it is important to base the decision to control for covariates on the 
scientific knowledge of the problem at hand, rather than solely on the desire for a powerful test. 
Researchers should keep in mind that the main purpose of adjusting for covariates is to eliminate 
any influence of PBCs that may distort the estimate of the desired effect. To finish, we also note that 
including too many variables in the model can be detrimental because one runs the risk of inducing 
excessive multicollinearity and overfitting.

Misperception 5 (two parts)
Misperception 5 a. If when controlling for X and Z simultaneously in a 
statistical model as predictors of an outcome Y, X is significant with Z 
in the model, but Z is not significant with X in the model, then X is a 
‘better’ predictor than Z
Why misperception 5a occurs
Investigators may also incorrectly conclude that X has a true causal effect on Y and that Z does not, 
that X has a stronger causal effect on Y than does Z, or that Z may have a causal effect on Y but only 
through X as a mediating variable. None of the above conclusions necessarily follow from the stated 
conditions. An example of a context in which these misperceptions occur was discussed recently in 
a podcast in which the interlocutors considered the differential associations or effects of muscle size 
versus muscle strength on longevity in humans (Attia, 2022). After cogently and appropriately noting 
the limitations of observational research in general and in the observational study under consider-
ation in particular, the discussants pointed out that when a statistical model was used in which both 
muscle size and muscle strength measurements were included at the same time, muscle size was not 

https://doi.org/10.7554/eLife.82268
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a significant predictor of mortality rate conditional upon muscle strength, but muscle strength was a 
significant predictor of mortality rate conditional upon muscle size. The discussants thus tentatively 
concluded that muscle strength had a causal effect on longevity and that muscle size either had no 
causal effect, conditional upon muscle strength, or had a lesser causal effect.

While the discussants’ conclusions may be entirely correct, as the philosophers of science say, the 
data are underdetermined by the hypotheses. That is, the data are consistent with the discussants’ 
interpretation, but that interpretation is not the only one with which the data are consistent. Therefore, 
the data do not definitively demonstrate the correctness of the discussants' tentative conclusions. 
There are alternative possibilities. In Figure 1, we show two DAGs consistent with the discussants’ 
conclusions. Yet they imply a completely different causal association between X and Y. Figure 1a is a 
simple DAG and agrees with the discussants’ conclusion. Figure 1b also agrees with the discussants’ 
conclusion, but X has no causal relationship with Y (no arrows). Yet, in some settings and some level 
of correlation between X and Z, X appears significant in a regression model with Z’ included in the 
model in lieu of Z.

First, there is tremendous collinearity between muscle mass and muscle strength. Given that almost 
all the pertinent human studies have non-experimental designs, the collinearity makes it especially 
difficult to determine whether there is cause and effect here and, if so, which of the two variables has 
a greater effect. With such strong multicollinearity between the strength and the mass measurements, 
any differential measurement error could make it appear that the more reliably measured variable 
had a greater causal effect over the less reliably measured variable, even if the opposite were true. 
Similarly, any differential nonlinearity of the effects of one of the two variables on the outcome relative 
to the others, if not effectively captured in the statistical modeling, could lead one variable to appear 
more strongly associated or effective than the other. In fact, the variable may just be more effec-
tively modeled in this statistical procedure because of its greater linearity or greater conformity of its 
nonlinear pattern to the nonlinear model fit. We note that variance inflation factors are often used to 
diagnose multicollinearity in regressions.

Finally, even in linearly related sets of variables, the power to detect an association between a 
postulated cause and a postulated effect is highly dependent on the degree of variability in the causal 
factor in the population. If the variance were to be increased, the significance of the relationship 
would likely be accentuated. Thus, without an understanding of the measurement properties, the 
variability in the population, the variability which could exist in the population, and the causal struc-
ture among the variables, such analyses can only indicate hypotheses that are provisionally consistent 
with the data. Such analyses do not demonstrate that one variable does or does not definitively have 
a greater causal effect than the other or that one variable has a causal effect and the other variable 
does not. Note, regression coefficients within a model can be tested for equivalence in straightfor-
ward manners. Tests for non-trivial (non-zero) equivalence of some regression parameters can be done 
when it makes sense. In the linear regression model, testing for equivalence between parameters 
amounts to comparing the reduction in the sum of square error between a larger (in terms of number 
of parameters) model and a smaller model (with selected parameters constrained to be equal) relative 
to the large model sum of squares. The test then has an F distribution from which we can obtain the 
critical values and compute the p value (Neter et al., 1996).

How to avoid misperception 5a
Researchers should ensure that the variables to be adjusted for in the model are not too correlated to 
avoid multicollinearity issues. Variance inflation (VIF) tests available in most statistical software can be 
used to diagnose the presence of multicollinearity. Additionally, if measurement error or low covariate 
reliability is suspected, measurement error correction should be considered if possible.

Misperception 5b. Controlling for the linear effect of a covariate is 
equivalent to controlling for the covariate
Why misperception 5b occurs
This assumption is not necessarily true because the relationships between some variables can be 
nonlinear. Thus, if one controls for only the linear term (which is typical) of a quantitative variable, 
say Z, as a PBC, then one does not effectively control for all the variance and potential bias induced 
by Z. The extent to which any residual bias in Y due to controlling Z only in its linear effects or 
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Figure 3. Causal relationships of health outcome, 
dietary fat consumption, and the belief that 
consumption of dietary fat is not dangerous. Direction 
of arrows represents causal directions and λA, λB, βA, 
and βB are structural coefficients.

association may be large or small depending on 
the degree of nonlinearity involved. In practice, 
much nonlinearity is monotonic. However, this is 
not true in all cases. For many risk factors such as 
body mass index (BMI), cholesterol, and nutrient 
intakes like sodium, there are often U-shaped (or 
more accurately concave upward) relationships 
in which persons with intermediate levels have 
the best outcomes and persons with covariate 
levels below or above the nadir of the curve 
have poorer outcomes, on average. An example 
of the nonlinear and non-monotonous relation-
ship between BMI (the explanatory variable) and 
mortality (the outcome variable) is illustrated in 
Figure 2; Fontaine et al., 2003. In this example, 
mortality was treated as a time-to-event outcome 
modeled via survival analysis. This relationship has 
often been demonstrated to be U- or J-shaped 
(Fontaine et al., 2003; Flegal et al., 2007; Flegal 
et  al., 2005; Pavela et  al., 2022). Thus, when 
BMI is modeled linearly, the estimates will likely 

be potentially highly biased compared to when it is non-linearly modeled.

How to avoid misperception 5b
It is important that one assesses for residual relationships (the relationships between nonlinear func-
tions of Z and the model residuals after controlling for a linear function of Z) or chooses to allow for 
nonlinearity from the onset of the analysis. Nonlinearity can be accommodated through models that 
are nonlinear in the parameters (e.g. having parameters be exponents on the covariates) (Meloun 
and Militký, 2011; Andersen, 2009) or through use of techniques like the Box-Tidwell method trans-
formations (Armstrong, 2017), splines (Schmidt et al., 2013; Oleszak, 2019), knotted regressions 
(Holmes and Mallick, 2003), categorical values (although see the next section for caveats around 
course categorization) (Reed Education, 2021), or good old-fashioned polynomials (Oleszak, 2019; 
Reed Education, 2021; Hastie et al., 2017) or in some cases factional polynomials (Sauerbrei et al., 
2020; Binder et al., 2013; Royston and Altman, 1994; Royston and Sauerbrei, 2008).

Misperception 6. One should check whether covariates are 
normally distributed and take corrective action if not
Why misperception 6 occurs
This is not true. It is a common misperception that variables included in a parametric statistical model 
must be normally distributed. In fact, there is no requirement that any variable included in standard 
parametric regression or general linear models (Allison et al., 1993), either as a predictor or as a DV, 
be normally distributed. What is embedded in the Gauss Markov Assumptions (Berry, 1993), the 
assumptions of ordinary least-squares regression models (the models typically used in this journal), is 
that the residuals of the model be normally distributed. That is, the differences between the observed 
value of a DV for each subject and the predicted value of that DV from the model (and not any 
observed variable itself) are assumed to be normally distributed.

Moreover, this assumption about residuals applies only to the residuals of the DV. No assump-
tion about the distribution of the predictor variables, covariates, or IV is made other than that they 
have finite mean and variance. Therefore, there is no need to assess the distributions of predictive 
variables, to take presumed corrective action if they are not normally distributed, or to suspect that 
the model is violated or biased if predictor variables are not normally distributed. One might be 
concerned with highly skewed or kurtotic covariates in that such distributions may contain extreme 
values, or outliers, that may serve as leverage points in the analysis, but that is a different issue. For 
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an overview of outlier detection and the influence detection statistics best for managing concerns in 
this domain, see Fox, 2019.

How to avoid misperception 6
This misperception can be avoided by recalling that in the regression model, the analysis is done 
conditional on the IVs (or covariates), which are assumed to be fixed. Thus, their distributions are irrel-
evant in the analysis. However, it is required that the residuals be uncorrelated with the IVs.

Misperception 7. If the relation between a plausible 
confounder and the IV of interest is not statistically 
significant, the plausible confounder can be excluded with no 
concern for bias
In this misperception, the emphasis is on a relation that is not statistically significant instead of merely 
not related. This strategy is often implemented through stepwise regression techniques that are avail-
able in most statistical software. Statistical-significance-based criteria for including covariates can, 
if the predictor variable in question is actually a confounder (we rely on the word ‘confounder’ here 
for consistency with much of the scientific literature), lead to bias in both coefficient estimates and 
tests of statistical significance (Maldonado and Greenland, 1993; Greenland, 1989; Lee, 2014). As 
Greenland has pointed out, this “too often leads to deletion of important confounders (false negative 
decisions)” (Greenland, 2008). This is because the statistical-significance-based approach does not 
directly account for the actual degree of confounding produced by the variable in question.

Why misperception 7 occurs
There could be confusion in understanding the nature of the question asked when selecting a variable 
for its confounding potential and the question asked in usual statistical significance testing (Dales and 
Ury, 1978). These two questions are fundamentally different. Even though a plausible confounder 
may not have a statistically significant association with the IV or the DV, or a statistically significant 
conditional association in the overall model, its actual association may still not be zero. That non-zero 
association in the population, even though not statistically significant in the sample, can still produce 
sufficient biases to allow false conclusions to occur at an inflated frequency. Additionally, a motiva-
tion for significance testing to select confounders may be to fit a more parsimonious final model 
in the large number of covariates and relatively modest sample size setting (VanderWeele, 2019). 
That is, false-positive decisions (i.e. selecting a harmless nonconfounder) are considered more delete-
rious than false-negative decisions (deleting a true confounder). It has been argued that the opposite 
applies: deleting a true confounder is more deleterious than including a harmless nonconfounder. The 
reason is that deleting a true confounder introduces bias and is only justified if the action is worth 
the precision gained. Whereas, including a harmless nonconfounder reduces precision, which is the 
price of protection against confounding (Greenland, 2008). We note that in not all circumstances is 
including a nonconfounder ‘harmless’ (Pearl, 2011).

How to avoid misperception 7
Selection of confounders may be best when relying on substantive knowledge informing judgments 
of plausibility, the knowledge gained from previous studies in which similar research questions were 
examined, or a priori hypotheses and expectations for relationships among variables. If a variable is 
plausibly a confounder, it should be included in the model regardless of its statistical significance. As 
an additional approach, one can conduct the analysis with and without the confounder as a form of 
sensitivity analysis (VanderWeele and Ding, 2017; Rosenbaum, 2002) and report the results of both 
analyses. Such an approach is often referred to as the approach of the wise data analyst, who is willing 
to settle for, as Tukey defines, “an approximate answer to the right question, which is often vague, 
[rather] than an exact answer to the wrong question, which can always be made precise” (Tukey, 
1962). We note that serious criticisms have been leveraged against the use of E-values in a sensitivity 
analysis as they tend to understate the residual confounding effect (Greenland, 2020; Sjölander and 
Greenland, 2022). However, attending to those critics is not within the scope of the current review.
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Figure 4. Causal relationships of outcome, covariate, and potentially biasing covariate (PBC). Direction of arrows 
represents causal directions and λz, αz, αx, βz, and βx are structural coefficients. The error terms e1 and e2 have 
variances chosen so Y1 and Y2 have variances 1 (see the Appendices for more details).

Misperception 8. Analyzing the residuals of an analysis in 
which a DV is regressed on the PBC is equivalent to including 
the PBC in an overall statistical model with the IV of interest
Why misperception 8 occurs
This is untrue. As Maxwell pointed out several decades ago, the effects of analyzing residuals as 
opposed to including the PBC of interest in the model will depend on how those residuals are calcu-
lated (Maxwell et al., 1985). As Maxwell puts it, ANOVA on residuals is not ANCOVA. Maxwell shows 
that if the residuals are calculated separately for different levels of the IV, bias may accrue in one 
direction. In contrast, if residuals are calculated for the overall sample, bias may accrue in a different 
manner.

Although this conceptualization of an equivalence between the two procedures [ANOVA on resid-
uals vs ANCOVA] may be intuitively appealing, it is mathematically incorrect. If residuals are obtained 
from the pooled within-groups regression coefficient (bw), an analysis of variance on the residuals 
results in an inflated a-level. If the regression coefficient for the total sample combined into one group 
(bT) is used, ANOVA on the residuals yields an inappropriately conservative test. In either case, analysis 
of variance of residuals fails to provide a correct test, because the significance test in analysis of cova-
riance requires consideration of both bw and bT, unlike analysis of residuals (Maxwell et al., 1985).

Notably, this procedure can introduce bias in the magnitude of the coefficients (effect sizes) charac-
terizing the effects or associations of the IV of interest, and not just the test of statistical significance.

How to avoid misperception 8
As Maxwell points out, there are ways to use residualization that do not permit these biases to occur. 
Hence, in some situations where models become so complex that residualizing for covariate effects 
beforehand makes the analysis that would otherwise be intractable tractable, this may be a reason-
able approach. Nevertheless, additional concerns may emerge (Pain et al., 2018) and under ordinary 
circumstances, it is best to include PBCs in the model instead of residualizing for them first outside 
the model.
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Misperception 9. Excluding a covariate that is not associated 
with the outcome of interest does not affect the association 
of the IV with the outcome
Why misperception 9 occurs
This is referred to as the suppressor effect. Adenovirus 36 (Ad36) infection provides an example of a 
suppressor effect. Although Ad36 increases adiposity, which is commonly linked to impaired gluco-
regulatory function and negative lipid profiles, Ad36 infection surprisingly leads to improved gluco-
regulatory function and serum lipid profiles (Akheruzzaman et al., 2019).

To illustrate the point, we set  ‍βA‍ = 0.5, ‍βB‍ = –0.24, ‍λA‍ = 0.8 and ‍λB‍ = 0.6 implying zero-order 
correlation between the intake of fats of type B and Y would be zero. Yet, by controlling for fats of 
type B in the model, we would obtain an unbiased estimate of the effect of fats of type A on Y as 

‍βA‍ , whereas if we did not control for fats of type B, we would mistakenly calculate the correlation 
between fats of type A and Y to be ‍λAβB‍ . This example demonstrates that failing to control for the 
suppressor variable, or the PBC that creates omitted variable bias, could result in a biased estimate 
of IV effects on the outcome, even when the suppressor variable has no correlation with the outcome. 
This disputes the premise that a covariate uncorrelated with the outcome cannot be biasing the results 
of an association test between another variable and the outcome as an indicator of a causal effect, 
thus undermining the original assumption. Whereas in the psychometrics literature, such patterns 
have commonly been termed suppressor effects, in a nutrition epidemiology paper they were referred 
to as negative confounders (Choi et al., 2008). We provide both theoretical and empirical justifica-
tions for these observations in Appendix A in the supplementary text file.

How to avoid misperception 9
This misperception is easily avoided if we refrain from only relying on marginal correlation to select 
covariates to include in the model and instead apply a backdoor criterion (Pearl and Mackenzie, 
2018) to help decide which variables to adjust for and which to not adjust for. Provided that the 
directed acyclic diagram (DAG) in Figure 3 conforms to the true DAG, intake of fats B meets the 
backdoor criterion and must be adjusted for when estimating the effect of intake of fats, A on the 
outcome Y.

Figure 3 shows a simple causal model. On the left side of the figure is a variable representing an 
individual’s belief about the danger of dietary fat consumption. This belief affects their consumption 
of two types of fats, A and B. Fat type A is harmful and has a negative impact on health, while fat type 
B has a positive effect and improves health outcomes. The Greek letters on the paths indicate the 
causal effects in the model. Without loss of generality, we assume all variables have been standardized 
to have a variance of 1.0. From the rules of path diagrams (Alwin and Hauser, 1975; Bollen, 1987; 
Cheong and MacKinnon, 2012), we can calculate the correlations between Y and intake of fats of 
type B to be ‍ρYB=βB+λBλAβA‍. This correlation is zero when ‍λAλB = −βB

βA ‍.

Misperception 10. If a plausible confounding variable is one 
that has a bivariate unadjusted correlation of zero with the 
IV, then it does not create bias in the association of the IV 
with the outcome
Why misperception 10 occurs
This misperception is based on the same premises as stated above but manifests differently. Let 
us replace ‘confounding variable’ with ‘PBC,’ which we defined earlier. For Misperception 10, the 
presumption is that a PBC, if not properly included and controlled for in the design or analysis, will 
only bias the extent to which the association between the IV and the DV represents the cause or effect 
of the IV on the DV if the PBC is related to both the IV and the DV.

Under those assumptions, if we consider a PBC and find that it is one that has a bivariate unad-
justed correlation of zero with the IV, then it cannot be creating bias. Yet, this is not true. Multiple 
circumstances could produce a pattern of results in which a biasing variable has a correlation of zero, 
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as well as no nonlinear association with the outcome, and yet creates a bias if not properly accom-
modated by design or analysis. Moreover, there may be circumstances in which statistically adjusting 
for a variable does not reduce the bias even though in other circumstances such adjustment would. 
Consider the causal model depicted in Figure 4, which follows the same notational conventions as 
Figure 3.

In this case, both X and Z have a causal effect on Y1. Y1 can then be referred to as a ‘collider’ (see 
Glossary). It is well established that conditioning on a collider will alter the association between joint 
causes of it. Most often, collider bias is discussed in terms of creating associations. For example, in the 
figure shown here, if Z and X were not correlated, but both caused increases in Y1, then conditioning 
on (i.e. ‘controlling for’) Y1 would create a positive or negative correlation between X and Z. However, 
as Munafò et al., 2018 explain, collider bias need not simply create associations, but can also reduce 
or eliminate associations: “Selection can induce collider bias… which can lead to biased observa-
tional… associations. This bias can be towards or away from any true association, and can distort a 
true association or a true lack of association.”

In Figure 4 Appp, there is an association between X and Z, and Z would be the PBC (confounding 
variable in conventional terminology) of the relationship between X and Y1 and Y2. But, if we set up the 
coefficients to have certain values, selecting on Y1 (for example, by studying only people with diag-
nosed hypertension defined as a systolic blood pressure greater than 140 mm Hg) could actually drive 
the positive association between X and Z to zero. Specifically, for these coefficient values [βx = 0.1857, 
, βz = 0.8175, λz = 0.4, αx = 0.0, αx = 0.6], if all variables were normally distributed (in the derivation 
in Appendix 2, we assume that all variables have a joint multivariate normal distribution. Whether 
this applies to cases in which the data are not multivariate normal is not something we have proven 
one way or another). with mean zero and standard deviation 1 (this would be after standardization of 
the variables), then using a cutoff of approximately 1.8276 standard deviations above the mean of Y1 
would cause the correlation in that subsample between X and Z to be zero (Arnold and Beaver, 2000; 
Azzalini and Capitanio, 2013).

Furthermore, let us assume that all the relations in this hypothetical circumstance are linear. This 
can include linear relationships of zero, but no nonlinear or curved relationships. Here, when we 
control for the PBC Z in the selected sample of persons with hypertension, it will have no effect on 
the estimated slope of the regression of Y2 on X. The collider bias has altered the association between 
Z and X such that controlling for Z in a conventional statistical model, i.e., an ordinary least-squares 
linear regression, no longer removes the bias. And yet, the bias is there. We justify this through math-
ematical arguments along with a small simulation to elucidate the manifestation of this misperception 
in Appendix 2.

More sophisticated models involving missing data approaches and other approaches could also 
be brought to bear (Groenwold et al., 2012; Yang et al., 2019; Greenwood et al., 2006), but this 
simple example shows that just because a PBC has no association with a postulated IV (i.e. cause), 
this does not mean that the variable cannot be creating bias (confounding) in the estimated relation-
ship between the postulated IV and the postulated result or outcome. In the end, as Pedhazur put it, 
quoting Fisher, “If…we choose a group of social phenomena with no antecedent knowledge of the 
causation or the absence of causation among them, then the calculation of correlation coefficients, 
total or partial, will not advance us a step towards evaluating the importance of the causes at work…
In no case, however, can we judge whether or not it is profitable to eliminate a certain variate unless 
we know, or are willing to assume, a qualitative scheme of causation” (Fisher, 1970).

In the end, there is no substitute for either randomization or, at a minimum, informed argument and 
assumptions about the causal structure among the variables. No simple statistical rule will allow one 
to decide whether a covariate or its exclusion is or is not creating bias.

How to avoid misperception 10
Selecting or conditioning on a collider can bias estimated effects in unforeseeable ways. Given a 
causal DAG, the use of the backdoor criterion can help the analyst identify variables that can safely 
be adjusted for and those that can bias (confound) the effect estimate of interest. In Figure 4, for 
example, Y1 does not meet the backdoor criterion from Y2 to X, and adjusting for it or selecting on it 
will bias the estimate of the effect estimate.
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Misperception 11. The method used to control for a 
covariate can be assumed to have been chosen appropriately 
and other methods would not, on average, produce 
substantially different results
This is, in essence, a statement of the unbiasedness of an analytic approach. By this we mean that 
the method of controlling for the covariate is not chosen, intentionally or unintentionally, to achieve 
a particular study finding, and that the answer obtained does not deviate from the answer one would 
get if one optimally controlled for the covariate. By ‘optimally controlled,’ we mean using a method 
that would eliminate or reduce to the greatest extent possible any effects of not controlling for the 
covariate and that is commensurate with the stated goals of the analysis (which is more important than 
the interests of the investigator).

Unfortunately, we have substantial evidence from many sources that many investigators instead 
choose analytical approaches, including the treatment of covariates, that serve their interests (e.g. 
Head et al., 2015; Wicherts et al., 2016; Bruns and Ioannidis, 2016). Conventionally, this is termed 
‘p-hacking’ (Simonsohn et  al., 2014), ‘investigator degrees of freedom’ (Simmons et  al., 2011), 
‘taking the garden of forking paths’ (Gelman and Loken, 2013), and so on. If such methods are used, 
that is, if investigators try multiple ways of controlling for which, how many, or form of covariates 
until they select the one that produces the results most commensurate with those they wish for, the 
results will most certainly be biased (Sturman et al., 2022; Kavvoura et al., 2007; Banks et al., 2016; 
O’Boyle et  al., 2017; Simmons et  al., 2011; Christensen et  al., 2021; Stefan and Schönbrodt, 
2022; Austin and Brunner, 2004).

Why misperception 11 occurs
To our knowledge, surveys do not exist describing the extent to which authors are aware of the 
consequences of intentionally choosing and reporting models that control for covariates to obtain a 
certain result. Some evidence exists, however, that suggests authors do sometimes intentionally select 
covariates to achieve statistical significance, such as a survey by Banks et al. of active management 
researchers (Banks et al., 2016). O’Boyle et al. observed changes in how control variables were used 
in journal articles compared with dissertations of the same work, with the final publications reporting 
more statistically significant findings than the dissertations (O’Boyle et al., 2017). Research on the 
motivations of these practices may help to focus preventive interventions.

How to avoid misperception 11
This concern with P-hacking is one of the major impetuses behind those in our field encouraging inves-
tigators in observational studies to preregister their analyses (; Dal Ré et al., 2014). Many steps in the 
model-building process could consciously or unconsciously influence the probability of type I error, 
from the conceptualization of the research question (e.g. the quality of prior literature review, discus-
sions with collaborators and colleagues that shape modeling choices), to any prior or exploratory anal-
ysis using that dataset, or to the numerous analytical decisions in selecting covariates, selecting their 
forms, accounting for missing data, and so on. Future theoretical and empirical modeling is needed to 
inform which decisions have the least likelihood of producing biased findings.

However, that is not to say that investigators should not limit their flexibility in each of these steps, 
engage in exploratory analyses, or change their minds after the fact—or that we do not do that 
ourselves. But this should be disclosed so that the reader can make an informed decision about what 
the data and results mean. Within our group, we often say colloquially, we are going to analyze the 
heck out of these data and try many models, but then we are then going to disclose this to the reader. 
Indeed, transparency is often lacking for how the inclusion or form of adjustment is determined in 
observational research (Lenz and Sahn, 2021). In situations where authors want to explore how 
covariate selection flexibility may affect results, so-called multiverse-style methods (Steegen et al., 
2016) (also called vibration of effects Patel et al., 2015) or specification curve analysis (Simonsohn 
et al., 2020) can be used, although careful thought is needed to ensure such analyses do not also 
produce misleading conclusions (Del Giudice and Gangestad, 2021).
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Misperception 12. p values derived from implementing 
statistical methods incorporating covariates mean exactly 
what they appear to mean and can be interpreted at face 
value
Why misperception 12 occurs
This is not necessarily true. An article from many years ago discusses the problem of a reproducible 
‘Six Sigma’ finding from physics (Linderman et al., 2003). A Six Sigma finding is simply a finding 
whose test statistic is six or more standard deviations from the expectation under the null hypoth-
esis. Six Sigma findings should be indescribably rare based on known probability theory (Actually, 
they are exactly describably rare and should occur, under the null hypothesis, 10e-10 proportion of 
the time.). However, it seems that all too often, Six Sigma findings, even in what might be seen as a 
mature science like physics, are regularly overturned (Harry and Schroeder, 2005; Daniels, 2001). 
Why is this? There are likely multiple reasons, but one is plausible that the assumptions made about 
the measurement properties of the data, the distributions of the data, and the performance of the test 
statistics under violations of their pure assumptions were not fully understood or met (Hanin, 2021). 
This issue involving violations of assumptions of statistical methods (Greenland et al., 2016) may be 
especially important when dealing with unusually small alpha levels (i.e. significance levels) (Bangalore 
et al., 2009). This is because a test statistic that is highly robust to even modest or large violations of 
some assumptions at higher alpha levels such as 0.05 may be highly sensitive to even small violations 
of assumptions at much smaller alpha levels, such as those used with Six Sigma results in physics. 
Another example is with the use of multiple testing ‘corrections’ in certain areas like genetic epide-
miology with genome-wide association testing in nutrition and obesity research, where significance 
levels of 10e-8 are commonly used and p values far, far lower than that are not infrequently reported.

How to avoid misperception 12
In short, robustness at one significance level does not necessarily imply robustness at a different 
significance level. Independent replication not only takes into account purely stochastic sources of 
error but also potentially allows one to detect the inadvertent biasing effects of other unknown and 
unspecifiable factors beyond stochastic variation.

Discussion
We have discussed 12 issues involving the use of covariates. Although our description of each misper-
ception is mostly done in a linear model setting, we note that these issues also remain in the nonlinear 
model. We hope that our attention to these issues will help readers better understand how to most 
effectively control for potential biases, without inducing further biases, by choosing how and when to 
include certain covariates in the design and analysis of their studies. We hope the list is helpful, but 
we wish to note several things. First, the list of issues we provide is not exhaustive. No single source, 
that we are aware of, will necessarily discuss them all, but some useful references exist (Cinelli et al., 
2020; Gelman et al., 2020; Ding and Miratrix, 2015). Second, by pointing out a particular analytical 
approach or solution, we do not mean to imply that these are the only analytic approaches or solu-
tions available today or that will exist in the future. For example, we have not discussed the Bayesian 
approach much. Bayesian approaches differ from their non-Bayesian counterparts in that the researcher 
first posits a model describing how observable and unobservable quantities are interrelated, which is 
often done via a graph. Many of the misconceptions detailed here are related to covariate selection 
bias and omitted or missing covariates bias, which can be corrected for in a Bayesian analysis provided 
it is known how the unobserved variables are related to other model terms (see (McElreath, 2020) for 
an accessible and concise introduction to Bayesian analysis and its computation aspects). Third, most 
of the misconceptions discussed here and ways to avoid them have a direct connection with causal 
inference. Namely, assuming a DAG depicting the data-generating process, we can use the front-door 
or front-door criterion derived from the do-calculus framework of Pearl and Mackenzie, 2018; Pearl 
et al., 2016. Determination of the adjusting set in a DAG can sometimes be challenging, especially 
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in larger DAGs. The freely available web application dagitty (https://www.dagitty.net/) allows users to 
specify their DAGs and the application provides the set of controlling variables (Textor et al., 2016).

We encourage readers to seek the advice of professional statisticians in designing and analyzing 
studies around these issues. Furthermore, it is important to recognize that no one statistical approach 
to the use or nonuse of any particular covariate or set of covariates in observational research will 
guarantee that one will obtain the ‘right’ answer or an unbiased estimate of some parameter without 
demanding assumptions. There is no substitute for the gold standard of experimentation: strictly 
supervised double-blind interventional experiments with random selection and random assignment. 
This was aptly illustrated in a study by Ejima et al., 2016. This does not mean that one should not try to 
estimate associations or causal effects in observational research. Indeed, as Hernán effectively argues 
(Hernán, 2018), we should not be afraid of causation. When we do much observational research, we 
are interested in estimating causal effects. But we must be honest: what we are actually estimating 
is associations, and we can then discuss the extent to which those estimates of associations may 
represent causal effects. Our ability to rule out competing explanations for the associations observed, 
other than causal effects, strengthens the argument that the associations may represent causal effects, 
and that is where the wise use of covariates comes in. But such arguments used with covariates do 
not demonstrate causal effects, they merely make more or less plausible in the eyes of the beholder 
that an association does or does not represent causation. In making such arguments, as cogently 
noted on the value of epistemic humility and how to truly enact it, “Intellectual humility requires more 
than cursory statements about these limitations; it requires taking them seriously and limiting our 
conclusions accordingly” (Hoekstra and Vazire, 2021). That is, consideration of arguments about the 
plausibility of causation from association should not be given in such a way as to convince the reader, 
but rather to truly give a fair and balanced consideration of the notion that an association does or 
does not represent a particular causal effect. As Francis Bacon famously said, “Read not to contradict 
and confute; nor to believe and take for granted; nor to find talk and discourse; but to weigh and 
consider” (Bacon, 2022).
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Appendix 1
Misperception 9. Excluding a covariate that is not associated with the 
outcome of interest does not affect the association of the IV with the 
outcome
Consider a simple causal model depicted in Appendix 1—figure 1 (Figure 2 in the main text). At the 
left side of Appendix 1—figure 1, we have a variable that is the degree of one’s belief that dietary 
fat consumption is not dangerous or, conceived alternatively, one minus the strength of belief that 
dietary fat consumption is dangerous or should be avoided. Suppose this variable relates to dietary 
consumption of two kinds of dietary fats, and , where dietary fat of type A decreases some health 
outcome of interest (i.e. is harmful). In contrast, dietary fat of type B decreases the negative health 
outcome (i.e. is helpful).

We can use the following linear model to describe the causal effects in Appendix 1—figure 1:

	﻿‍ MF : Y = β0 + βAXA + βBXB + ϵ‍� (1)

where Y is the response variable, ‍XA‍ and ‍XB‍ are IVs representing the fat consumptions of dietary 
fat types A and B, respectively, and ε is an independent error term with the variance ‍σ

2
ε‍ . Of the 

two covariates, we suppose XA is the exposure of interest that is correlated with Y and XB is a 
confounding variable that is correlated with Y, resulting in the correlations ‍ρ(XA, Y) ̸= 0‍, ‍ρ(XB, Y) = 0‍, 
respectively. Following the causal diagram in Appendix 1—figure 1, we generate XA and XB from a 
latent variable Z, where

	﻿‍

XA = λAZ + η

XB = λBZ + γ‍�

where ‍λA ̸= o,λB ̸= 0‍ and η and γ are independent error terms with variances ‍σ
2
η‍ and ‍σ

2
γ‍, respectively. 

Without loss of generality, we assume that variables XA, XB, and Z have been standardized to 
unit variance, and the additional regression parameters are chosen so that the Y also has unit 
variance. This then implies the causal effects ‍ρ(Y, XA) = βA + βAλA,λB‍, ‍ρ(Y, XB) = βB + βAλA,λB‍, and 
‍ρ(XA, XB) = λA,λB‍ .

Consider the following reduced model where the confounding variable, XB, is excluded from the 
full model (1):

	﻿‍ MR : Y = β0 + βAXA + ε‍� (2)

and ‍ε ≡ βBXB + ε‍. The least-squares estimate for βA under the reduced model (2) is

	﻿‍

β̂A = Cov(Y, XA)
Var(XA)

= Cov(β0 + βAXA + ϵ∗, XA)

= βA + Cov(ϵ∗, XA)

= βA + Cov(βBXB + ϵ, XA)

= βA + βBCov(XB, XA)

= βA + βB + λAλB ‍�

Under the assumption that ‍ρ(Y, XB) = 0‍, we have ‍βB = −βAλAλB‍. Plugging this into equation ‍̂βA‍, 
we have

	﻿‍ β̂A = βA + βAλAλB = βA(1 − λ2
A + λ2

B) ̸= βA‍�

Since ‍λA ̸= 0‍, ‍λB ̸= 0‍. The above derivation demonstrates that omitted variable bias cannot be 
avoided under the imposed assumption in the causal model of Appendix 1—figure 1. However, 
those requirements contradict the imposed assumption in the causal model of Appendix 1—figure 
1 indicating that the omitted variable bias cannot be avoided.

Despite the theoretical justification, we conducted simulation studies to illustrate our points. To 
generate simulated data under the imposed assumptions, we select regression parameters following 
the restrictions:

https://doi.org/10.7554/eLife.82268
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	﻿‍ βA + βBλAλB ̸= 0‍� (3)

	﻿‍ βB + βAλAλB = 0‍� (4)

	﻿‍ λ2
A + σ2

η = 1‍� (5)

	﻿‍ λ2
B + σ2

γ = 1‍� (6)

	﻿‍ β2
A + β2

B + σ2
ϵ + 2βAβBλAλB = 1‍� (7)

where restrictions (5), (6), and (7) are required to have ‍Var(XA) = 1‍, ‍Var(XB) = 1‍, and ‍Var(Y) = 1‍, 
respectively. Plugging (5) and (6) into (3) yields ‍σ

2
γ + σ2

η − σ2
γσ

2
η ̸= 0‍. We consider simulation settings 

based on the parameter specifications presented in Appendix 1—table 1, where variables ‍Z, ε, η‍, 
and γ were generated from independent normal distributions with zero means. For all scenarios 
considered, the empirical Pearson’s correlations between ‍Y ‍ and ‍XB‍ are close to zero. With the 
simulated data, we examined the bias of least-squares estimator for ‍βA‍ under the full model of (1) and 
the reduced model (2). With 10,000 replications and three levels of sample sizes ‍n ϵ

{
500, 1000, 2000

}
‍, 

the summary of bias is presented in Appendix 1—table 2. As expected, the bias of ‍βA‍ is virtually 
zero when controlling for ‍XB‍ in the full model. On the contrary, failing to control for ‍XB‍ in the model, 
one would mistakenly estimate the causal effect between ‍XA‍ and ‍Y ‍ resulting in a bias that agrees 
closely to ‍βAλAλB‍. Our simulation results confirm that excluding confounding variables from the 
model could bias the coefficient estimates, hence introducing omitted variable biases. In addition, 
our results dispute the premise that a covariate that is uncorrelated with the outcome cannot be 
biasing the results of an association test between another variable and the outcome as an indicator 
of a causal effect and disputes the premise we began with. Whereas in the psychometrics literature 
such patterns have usually been termed suppressor effects, in a nutrition epidemiology paper they 
were referred to as negative confounders (Choi et al., 2008).

Appendix 1—table 1. Parameters used to generate simulated data for the simulation studies under 
Misperception 9.

Scenario βA βB λA λB ‍σ
2
ϵ ‍ ‍σ

2
η‍ ‍σ

2
γ‍

I –0.4 0.3 ‍
√

3/2‍ ‍
√

3/2‍ 0.93 0.25 0.25

II 0.4 –0.3 ‍
√

3/2‍ ‍
√

3/2‍ 0.93 0.25 0.25

III –0.5 0.24 0.8 0.6 0.8076 0.36 0.64

IV 0.5 –0.24 0.8 0.6 0.8076 0.36 0.64

Appendix 1—table 2. Summary of bias when fitting the full model (𝑀𝐹) and the reduced model 
(MR).
The bias is defined as ‍̂β − βA‍, where ‍̂β‍ is the least-squares estimate under the corresponding model.

Scenario n=500 n=1000 n=2000

MF MR MF MR MF MR

I –0.0007 0.2248 0.0001 0.2251 –0.0001 0.2249

II 0.0005 –0.2249 0.0003 –0.2249 0.0002 –0.2248

III –0.0001 0.24 0.0003 0.2405 –0.0003 0.2399

IV 0.0004 –0.2396 –0.0002 –0.24 –0.0005 –0.2402

https://doi.org/10.7554/eLife.82268
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Appendix 1—figure 1. Causal relationships of health outcome, dietary fat consumption, and the belief that 
consumption of dietary fat is not dangerous. Direction of arrows represents causal directions and 𝜆A, 𝜆B, 𝛽A, and 𝛽B 
are structural coefficients.

https://doi.org/10.7554/eLife.82268
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Appendix 2
Misperception 10. If a plausible confounding variable is unrelated to 
the IV, then it does not create bias in the association of the IV with the 
outcome
To illustrate this misconception, let’s consider the causal diagram shown in Appendix 2—figure 1.

	﻿‍ Θ2 = β2
z + β2

xλ
2
z + β2

x + 2βzβxλz‍�

where
Data-generating model:
Let us consider the setting we had in the description of Misconception 9 in Appendix 1. 

Furthermore, ‍Y1‍ and ‍Y2‍ are the outcomes or DVs, X is the covariate of primary interest, and Z is the 
confounder in the casual association of the covariate with each response. We have the following 
model:

	﻿‍ Y1 = βxX + βzZ + ϵ1‍�

	﻿‍ Y2 = αxX + αzZ + ϵ2‍�

	﻿‍ X = λzZ + ϵx‍�

We further assume that Z has a Gaussian distribution with mean 0 and variance 1; ‍ϵx‍ has a normal 
distribution with mean zero and variance ‍σ

2
x ‍ ; ‍e1‍ has a normal distribution with mean zero and variance 

‍σ
2
ϵ,1‍ ; and ‍e2‍ has a normal distribution with mean zero and variance ‍σ

2
ϵ,2‍ . Without loss of generality, 

we select the variance term so that the outcomes ‍Y1‍ and ‍Y2‍ and the exposure X and the confounder 
Z all have unit variance. The joint distribution of (Z, X, ‍Y2, Y1‍) is a multivariate normal distribution with 
mean zero vector and the correlation matrix provided in Appendix 2—table 1.

Where 
‍
σ2
ϵ,1 = 1 −

(
β2

z + β2
xλ

2
z + 2βzβxλz + β2

x

)
;σ2

ϵ,2 = 1 −
(
α2

z + α2
xλ

2
z + 2αzαxλz + α2

x

)
‍
 ; 

‍σ
2
x = 1 − λ2

z ‍ . Thus, ‍Var
(
Y1

)
= Var

(
Y2

)
= 1‍. This clearly implies the following constraints on the 

parameters ‍0 < βz <
√

1 − β2
x − λzβx‍, ‍0 < αz <

√
1 − α2

x − λxαx‍.

	﻿‍ 0 ≤ βz ≤
√

1 − β2
x − λzβx‍� (8)

	﻿‍
0 ≤ β2

x ≤ 1/
(

1 + λ2
z

)
‍� (9)

	﻿‍ 0 ≤ αz ≤
√

1 − α2
x − λxαx‍� (10)

	﻿‍
0 ≤ α2

x ≤ 1/
(

1 + λ2
z

)
‍� (11)

Appendix 2—table 1. The correlation matrix among Z, X, Y2, and Y1 without selecting on Y1.

‍Σ‍ Z X Y2 Y1

Z 1 ‍λz‍ ‍αz + αxλz‍ ‍βz + βxλz‍

X ‍λz‍ 1 ‍αx + αzλz‍ ‍βx + βzλz‍

Appendix 2—table 1 Continued on next page
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‍Σ‍ Z X Y2 Y1

Y2 ‍αz + αxλz‍ ‍αx + αzλz‍ 1 ‍(αz + αxλz)βz + βx(αx + αzλz)‍

Y1 ‍βz + βxλz‍ ‍βx + βzλz‍ ‍(αz + αxλz)βz + βx(αx + αzλz)‍ 1

Suppose we restrict the sample to values of ‍Y1 > E
(
Y1

)
+ τσY1‍ and ‍var

(
Y1
)

= 1‍. This will 
ultimately perturb the joint distribution of ‍

(
Z, X, Y2

)
‍ . We can analytically derive the joint distribution 

of ‍
(
Z, X, Y2

)
∨ Y1 > τ ‍. Using results from (2), the joint distribution of ‍

(
Z, X, Y2

)
∨ Y1 > τ ‍ is an extended 

multivariate skew-normal. Namely, the density of the vector is

	﻿‍
f
(
υ|Y1 > τ

)
=

Φ
(
αTυ + α0

)

Φ
(
−τ

) ϕ(υT
−1∑
12

υ)
‍�

Where ‍ϕ
(
.
)
‍ and ‍Φ

(
.
)
‍ denote the density function and the cumulative density function of the 

normal distribution. After selecting on values of ‍Y1 > τ ‍

	﻿‍
E
(
υ
)

=
ϕ
(
−τ

)

Φ
(
−τ

)ρ
‍�

(12)

	﻿‍
σ2

ij = σ12,ij +
ϕ
(
−τ

)

Φ
(
−τ

)
(
τ −

ϕ
(
−τ

)

Φ
(
−τ

)
)
ρiρj

‍�
(13)

where

	﻿‍ ρ =
{
βz + βxλz,βx + βzλz,βz + βx(αx + αzλz)

}
‍�

and ‍ρi‍ is the ith element of ‍ρ‍ and ‍σ
2
ij‍ is the entry of the matrix in Appendix 2—table 1 at row i and 

column j. To find ‍τ ‍ so that ‍σ
2
12 = cor

(
X, Z|Y1 > τ

)
= 0‍, we need to solve the following equation for ‍τ ‍

	﻿‍
λz +

ϕ
(
−τ

)

Φ
(
−τ

)
(
τ −

ϕ
(
−τ

)

Φ
(
−τ

)
) (

βz + λzβx
) (

βx + λβz
)

= 0
‍�

Since the quantity on the right-hand side is non-negative and takes on a value between 0 
and 1, then for any choices of the triplet ‍

(
λz,βx,βz

)
‍ , where ‍λz <

(
βz + βxλz

) (
βx + βxλz

)
‍ , we 

can find a ‍τ ‍ so that ‍corr
(
X, Z

)
= 0‍ based on the data for which ‍Y1 > τ .‍ Let’s further assume that 

for a given 
‍
λx,βx = a√

1+λ2
x
∧ βz = b

(√
1+λ2

x +a2−λxa√
1+λ2

x

)
= b

aβx
(√

1 + λ2
x + a2 − λxa

)
,
‍
 for fixed 

‍0 < λz < 1,∧0 ≤ a, b ≤ 1.‍ Thus for any pair ‍
(
a, b

)
with 0 ≤ a, b < 1,‍ we have a set of possible values of 

‍λz‍ that satisfies all the constraints enumerated above. In the setting, ‍βx ∧ βz‍ involve the constants 

‍a, b,∧λz‍ in a nonlinear fashion. We rely on numerical approaches to identify values of ‍λz‍ consistent 
with the values of ‍a ∧ b‍. We illustrate this with the case where ‍a, b ∈

{
0.2, 0.9

}
‍, which results in four 

possible pairs ‍
(
0.2, 0.2

)
‍ , ‍
(
0.2, 0.9

)
‍ , ‍
(
0.9, 0.2

)
‍ , and ‍

(
0.9, 0.9

)
.‍ In Appendix 2—figure 2, we show the 

set of possible values of ‍λz‍ , combined with the value of ‍βx,βz‍ for which we can find a value of ‍τ ‍.
Selecting on Y1 affects the joint dependence between these variables. To this consider 

Appendix 2—table 1, the correlation matrix among X, Z, Y1, and Y2 without selecting on Y1. Contrast 
this with A1, the correlation matrix among X, Z, Y1, and Y2 with selecting on Y1.

	﻿‍

Σ̃ =


 Σ̃12 Cov

{
(Z, X, Y2), Y1 | Y1 > a

}

Cov
{

(Z, X, Y2), Y1 | Y1 > a
}

Var(Y1 | Y1 > a)



‍�

(A1)

Where:

	﻿‍
Σ̃12 = Σ12 +

ϕ
(
−α

)

Φ
(
−α

)
(
α−

ϕ
(
−α

)

Φ
(
−α

)
)
ρρT

‍� (14)

Appendix 2—table 1 Continued
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	﻿‍

Σ12 =




1 λz αx + αxλz

λz 1 αx + αxλz

αz + αxλx αx + αzλz 1



‍�

	﻿‍
Var

(
Y1|Y1 > a

)
=

{
1 +

ϕ
(
−a

)

Φ
(
−a

)
(

a −
ϕ
(
−a

)

Φ
(
−a

)
)}

σ2
y,1

‍�
(15)

	﻿‍
Cov

{(
Z, X, Y2

)
, Y1|Y1 > a

}
=

{
1 +

ϕ
(
−a

)

Φ
(
−a

)
(

a −
ϕ
(
−a

)

Φ
(
−a

)
)}

ρ
‍�

(16)

Let 
‍
a0 = ϕ

(
−α

)
Φ
(
−α

)
(
α− ϕ

(
−α

)
Φ
(
−α

)
)
‍
, ‍a1 = αz + αxλz, a2 = αx + αzλz‍, ‍ρ1 = βz + βxλz‍, ‍ρ2 = βx + βzλz‍, and 

‍ρ3 = (αz + αxλz)βz(αx + αzλz)‍

	﻿‍

Σ̃12 =




1 + a0ρ
2
1 λz + a0ρ1ρ2 a1 + a0ρ1ρ3

λz + a0ρ1ρ2 1 + a0ρ
2
2 a2 + a0ρ2ρ3

a1 + a0ρ1ρ3 a2 + a0ρ2ρ3 1 + a0ρ
2
3



‍�

From the elements of Appendix 2—table 1 and , we can derive the elements of Appendix 2—
table 2, which shows the squared (partial or zero-order) correlation and (partial or univariable) slope 
of the regression of Y2 on X with and without controlling for Z and with and without selecting on Y1.

Appendix 2—table 2. The squared correlation and slope of regression.

Quantity of interest Without selection on Y1 With selection on Y1

Squared (zero-order) correlation of X and Y2
‍
(
λzαz + αx

)2
‍ ‍

(
σ̃23√

σ̃22
√

σ̃33

)2

‍

Squared (partial) correlation of X and Y2, controlling for Z
‍

(
−σ̃23

)2

σ̃22σ̃33 ‍ ‍

(
σ̃∗

23√
σ̃∗

22
√

σ̃∗
33

)2

‍

Slope of univariable regression of Y2 on X
‍
(
λzαz + αx

)
‍ ‍

σ̃23
σ̃22 ‍

Partial slope of regression of Y2 on X, controlling for Z

‍

αx+αxλ
2
z

1−λ2
z ‍

‍

(√
σ̃33√
σ̃22

)(
ρ̃23−ρ̃13ρ̃12

1−ρ̃2
12

)
‍

‍̃σ12, σ̃13, σ̃23, σ̃11, σ̃22, σ̃33‍ are the entries of the matrix ‍̃Σ12‍ and ‍̃ρ‍ are entries of the correlation 
matrix obtained from ‍̃Σ12‍ .

When ‍αx = 0,‍ then ‍a1 = αz‍, ‍a2 = αzλz‍, ‍ρ3 = αzρ1‍, ‍̃σ12 = λz + a0ρ1ρ2‍

	﻿‍ σ̃13 = αz + a0αzρ
2
1, σ̃23 = αz

(
λz + a0ρ1ρ2

)
, σ̃11 = 1 + a0ρ

2
1,‍�

	﻿‍ σ̃22 = 1 + a0ρ
2
2, σ̃33 = 1 + a0α

2
zρ

2
1‍�

Namely,

	﻿‍
ρ̃23 =

(
σ̃23√

σ̃22
√
σ̃33

)2
, ρ̃13 =

(
σ̃13√

σ̃11
√
σ̃33

)2
, ρ̃12 =

(
σ̃12√

σ̃11
√
σ̃22

)2

‍�

and ‍̃σ
∗
23, σ̃∗

22, σ̃∗
33‍ are coming from the inverse of ‍̃Σ12‍

	﻿‍ σ̃∗
23 = λza1 + a0λzρ1ρ2 + a0a1ρ1ρ3 − a2 − a0ρ2ρ3 − a0a2ρ

2
1‍�

	﻿‍ = a0λzρ1ρ2 + a0α
2
zρ

2
1 − a0αzρ1ρ2 − a0αzλzρ

2
1‍�
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	﻿‍ σ̃∗
22 = 1 + a0ρ

2
1 + a0ρ

2
3 − a2

1 − 2a0a1ρ1ρ3‍�

	﻿‍ = 1 + a0ρ
2
1 − α2

z − a0α
2
zρ

2
1‍�

	﻿‍ σ̃∗
33 = 1 + a0ρ

2
1 + a0ρ

2
2 − λ2

z − 2a0λzρ1ρ2‍�

In all, our derivations show that selecting on Y1 can have some impact on the causal estimate of 
the effect of covariate X on Y2. To bring our point home, we perform a simulation study where we 
randomly select a data set of 1000 according to our data generating above. We consider the eight 
pairs (a, b) discussed above, and for each pair, we chose two values of ‍τ ‍ (high and low). To each 
value of ‍τ ,‍ we have an associated value of ‍λz,βx,βz‍ . We choose the value of ‍αx = 0‍ and ‍αz = 0.6‍. The 
sample size for each data set simulated is 50,000 and we report the average bias for the adjusted 
(controlling for the confounder Z) and unadjusted causal effect of the covariate X on the response 

‍Y2‍ based on the full data (All Data) and the data obtained after selecting on ‍Y1
(
SelectonY1 > τ

)
‍.  

We report our findings in Appendix 2—table 3. Adjusting for the confounder yields an unbiased 
estimate of the causal effect of X on ‍Y2.‍ Under both full and selected data scenarios, that estimated 
effect is biased. However, the estimated causal effect is biased for the full data and unbiased for the 
selected data when omitting the confounder.

Appendix 2—table 3. Estimated Average Bias of ‍αx‍ Under Various Scenarios.
Where ‍τ ,βx,βz‍ are selected to Induce a Zero Correlation Between ‍X ‍ and ‍Z ‍ After Selecting on ‍Y1‍ . 
Results are based on sample size of n=50,000 and 1000 samples obtained from the data-generating 
model described above.

‍a‍ ‍b‍ ‍λz
(
max

)
‍ ‍βx‍ ‍βz‍ ‍λz‍ ‍τ ‍

All data Select on ‍Y1 > τ ‍

‍αx.z‍ ‍αx‍ ‍αx.z‍ ‍αx‍

0.2 0.2 0.0422 0.2000 0.1952 0.0200 –0.5774 –0.0000 0.0118 –0.0002 –0.0002

0.2 0.2 0.0422 0.1999 0.1946 0.0350 1.3809 –0.0001 0.0208 –0.0004 –0.0008

0.2 0.9 0.5519 0.1931 0.8361 0.2700 0.4647 –0.0001 0.1620 –0.0002 –0.0001

0.2 0.9 0.5519 0.1857 0.8175 0.4000 1.8276 –0.0001 0.2398 –0.0002 –0.0003

0.9 0.2 0.2277 0.8936 0.0683 0.1200 0.6717 0.0001 0.0721 0.0005 0.0009

0.9 0.2 0.2277 0.8842 0.0598 0.1900 3.0584 0.0001 0.1140 –0.0080 –0.0118

0.9 0.9 0.5156 0.8710 0.2383 0.2600 –0.1627 –0.0002 0.1556 –0.0001 –0.0003

0.9 0.9 0.5156 0.8207 0.1818 0.4500 2.3590 –0.0002 0.2699 0.0011 –0.0005

Appendix 2—figure 1. Causal relationships of outcome, covariate, and confounding. Direction of arrows 
represents causal directions and 𝜆z, 𝛼z, 𝛼x, 𝛽z, and 𝛽x are structural coefficients.
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Appendix 2—figure 2. Possible values of ‍λz‍ based on each choice of the pairs of a, b. The area shaded in green 
denotes the area for which a ‍λz‍ value has a value τ that makes Equation 13 equal zero.
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	Misstatements, misperceptions, and mistakes in controlling for covariates in observational research
	Introduction
	Misperception 1. Construct validity
	Why misperception 1 occurs
	How to avoid misperception 1

	Misperception 2. Measurement error in a covariate only attenuates associations or effect estimates and does not create apparent effects
	Why misperception 2 occurs
	How to avoid misperception 2

	Misperception 3 (two parts)
	Misperception 3a. Continuous covariates divided into polychotomous categories for better interpretation are still well-controlled
	Why misperception 3a occurs
	How to avoid misperception 3a

	Misperception 3b. Covariates categorized in coarse rather than fine categories are more reliable in the presence of measurement error
	Why misperception 3b occurs
	How to avoid misperception 3b


	Misperception 4. Controlling for a covariate reduces the power to detect an association of the IV of interest with the DV of interest
	Why misperception 4 occurs
	How to avoid misperception 4

	Misperception 5 (two parts)
	Misperception 5﻿ ﻿a. If when controlling for ﻿X﻿ and ﻿Z﻿ simultaneously in a statistical model as predictors of an outcome ﻿Y﻿, ﻿X﻿ is significant with ﻿Z﻿ in the model, but ﻿Z﻿ is not significant with ﻿X﻿ in the model, then ﻿X﻿ is a ‘better’ predictor th
	Why misperception 5a occurs
	How to avoid misperception 5a

	Misperception 5b. Controlling for the linear effect of a covariate is equivalent to controlling for the covariate
	Why misperception 5b occurs

	How to avoid misperception 5b

	Misperception 6. One should check whether covariates are normally distributed and take corrective action if not
	Why misperception 6 occurs
	How to avoid misperception 6

	Misperception 7. If the relation between a plausible confounder and the IV of interest is not ﻿statistically significant﻿, the plausible confounder can be excluded with no concern for bias
	Why misperception 7 occurs
	How to avoid misperception 7

	Misperception 8. Analyzing the residuals of an analysis in which a DV is regressed on the PBC is equivalent to including the PBC in an overall statistical model with the IV of interest
	Why misperception 8 occurs
	How to avoid misperception 8

	Misperception 9. Excluding a covariate that is not associated with the outcome of interest does not affect the association of the IV with the outcome
	Why misperception 9 occurs
	How to avoid misperception 9

	Misperception 10. If a plausible confounding variable is one that has a bivariate unadjusted correlation of zero with the IV, then it does not create bias in the association of the IV with the outcome
	Why misperception 10 occurs
	How to avoid misperception 10

	Misperception 11. The method used to control for a covariate can be assumed to have been chosen appropriately and other methods would not, on average, produce substantially different results
	Why misperception 11 occurs
	How to avoid misperception 11

	Misperception 12. p values derived from implementing statistical methods incorporating covariates mean exactly what they appear to mean and can be interpreted at face value
	Why misperception 12 occurs
	How to avoid misperception 12

	Discussion
	Data availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs

	References
	﻿Appendix 1﻿
	Misperception 9. Excluding a covariate that is not associated with the outcome of interest does not affect the association of the IV with the outcome

	﻿Appendix 2﻿
	Misperception 10. If a plausible confounding variable is unrelated to the IV, then it does not create bias in the association of the IV with the outcome



