
Nature Biotechnology | Volume 42 | May 2024 | 803–812 803

nature biotechnology

https://doi.org/10.1038/s41587-023-01873-xArticle

Single-nucleotide variant calling in 
single-cell sequencing data with Monopogen

Jinzhuang Dou1, Yukun Tan    1, Kian Hong Kock2, Jun Wang3, Xuesen Cheng3, 
Le Min Tan    2, Kyung Yeon Han4, Chung-Chau Hon    5, Woong-Yang Park    4, 
Jay W. Shin2,6, Haijing Jin1, Yujia Wang    1, Han Chen7,8, Li Ding9,10,11,12, 
Shyam Prabhakar    2, Nicholas Navin    13, Rui Chen3 & Ken Chen    1,13 

Single-cell omics technologies enable molecular characterization of diverse 
cell types and states, but how the resulting transcriptional and epigenetic 
profiles depend on the cell’s genetic background remains understudied. 
We describe Monopogen, a computational tool to detect single-nucleotide 
variants (SNVs) from single-cell sequencing data. Monopogen leverages 
linkage disequilibrium from external reference panels to identify germline 
SNVs and detects putative somatic SNVs using allele cosegregating 
patterns at the cell population level. It can identify 100 K to 3 M germline 
SNVs achieving a genotyping accuracy of 95%, together with hundreds of 
putative somatic SNVs. Monopogen-derived genotypes enable global and 
local ancestry inference and identification of admixed samples. It identifies 
variants associated with cardiomyocyte metabolic levels and epigenomic 
programs. It also improves putative somatic SNV detection that enables 
clonal lineage tracing in primary human clonal hematopoiesis. Monopogen 
brings together population genetics, cell lineage tracing and single-cell 
omics to uncover genetic determinants of cellular processes.

Defining the precise cellular contexts in which risk-associated variants 
affect cellular processes will help to better understand the molecular 
mechanisms of disease risks and to inform therapeutic strategies. This 
is important because recent studies have shown that many genetic 
variants affect tissue traits in a cell-type-specific manner1,2. Traditional 
bulk RNA analysis is usually biased toward abundant cell types defined 
by a limited set of marker genes3.

Single-cell sequencing has enabled comprehensive estimation of 
cellular composition and acquisition of cell-type-specific molecular 
profiles4, including rare cell types5. As opposed to bulk data, single-cell 
data allow linking genetics to cellular molecular traits such as variabil-
ity in cellular expressions6, cell type abundance7 and gene regulatory 
networks8. As such, single-cell analyses in a population-based setting 
are becoming mainstream9.
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a support vector machine (SVM) module is designed to distinguish 
SNVs from sequencing errors (Fig. 1c and Supplementary Fig. 1a, step 
2). Briefly, the SVM module uses a series of variant calling metrics as 
features. The germline SNVs are set as the positive set, and consecutive 
de novo SNV chunks (>2 SNVs) are set as the negative set. We extend 
the machinery of LD refinement from the human population level to 
the cell population level to detect somatic SNVs that are only present 
in subpopulations of cells. Briefly, for de novo SNVs passing the SVM 
filtering, we statistically phase the observed alleles with adjacent 
germline alleles to estimate the degree of LD in the cell population 
(Fig. 1d and Supplementary Fig. 1a, steps 3–4; Methods). We assume 
that only two alleles are present in the cell population and examine 
only the gain of heterozygosity SNVs. We calculate a probabilistic 
LD refinement score that quantifies the degree of LD, considering 
widespread sparseness and allelic dropout in single-cell sequencing 
data (Methods). The LD refinement score ranges from 0 to 0.5. It is 
closer to 0 for a germline SNV as it has strong LD with the adjacent 
germline SNVs, that is, sharing the same two haplotypes in all the cells 
(Supplementary Fig. 1b). The score is greater than 0 for a somatic 
SNV as the recently gained somatic allele cosegregates with germline 
alleles in only a subpopulation of cells (Fig. 1d, Supplementary Fig. 1a, 
step 4, and Supplementary Fig. 1b). SNVs with larger LD refinement 
scores are classified as putative somatic SNVs. Their genotypes at 
single cell or cluster level are further inferred using Monovar (Sup-
plementary Fig. 1a, step 5)18. The germline SNVs from Fig. 1b can be 
used for global or local ancestry inference (Fig. 1e) or cellular quan-
titative trait mapping when the sample size is sufficient (Fig. 1f), and 
the putative somatic SNVs can be used for lineage tracing at cellular 
or clonal resolution (Fig. 1g).

Monopogen is implemented in Python, automatically splitting the 
genome into small chunks (defined by the users), performing variant 
scan and LD refinement in massive parallelization for individual chunks 
and merging the results (Supplementary Note).

Benchmarking of Monopogen performance on germline SNV 
calling
We used three single-cell sequencing datasets (snRNA-seq from four 
retina tissue samples, sci-ATAC-seq from two colon tissue samples and 
scDNA-seq from one triple-negative breast cancer (TNBC) sample) 
having matched WGS data to evaluate SNV calling performance. In all 
these samples, the overall accuracy (Methods) of the Monopogen calls 
was higher than 95% for the germline SNVs present in the 1KG3 panel, 
97% for 5/7 of the samples (Fig. 2a and Supplementary Table 1). The 
high accuracy is largely due to the LD-based genotyping refinement. 
The overall accuracy without LD-based refinement for bulk-based SNV 
callers, such as calls from Samtools, GATK, FreeBayes and Strelka2, was 
less than 73% on snRNA-seq and sci-ATAC-seq (Supplementary Table 
2). Further examination shows that over 85% of the genotyping errors 
from Monopogen misclassified 0/1 as 1/1 (Supplementary Table 1), due 
partly to allele drop artifacts in the single-cell data.

In the retina snRNA-seq data, Monopogen detected 827–905 K 
germline SNVs, achieving a recall of 21% (Fig. 2a and Supplementary 
Table 1). GATK, Samtools and FreeBayes achieved a recall of 11–20% 
at the expense of lower accuracy (<73%). Although Strelka2 detected 
~25% SNVs, the accuracy was lower than 25%. Most (70.4%) SNVs from 
Monopogen were detected in intronic regions, only less than 7% in 
exonic regions (Fig. 2b). As expected, sequencing depth was higher in 
genes than in intergenic regions. Off-target reads appear sufficiently 
leveraged to derive accurate genotypes through LD-based refinement.

In addition, Monopogen detected ~100 K new SNVs in the retina 
snRNA-seq data that are not presented in the 1KG3 panel, after perform-
ing sequencing depth filtering (>100) and sequencing error model cali-
bration. The overall accuracy of this set is 35% and is 86% for the subset 
detected in more than 90% of the transcriptomic clusters determined 
by Seurat19 (Supplementary Table 3).

Although single-cell omics projects are increasingly profiling 
cell types/states on diverse tissue samples, such as those collected 
by the ancestry networks of the human cell atlas (HCA)10 and human 
tumor atlas network (HTAN)11, the genetic ancestry of the samples and 
its contribution to cellular molecular traits are largely unexplored. 
To acquire an accurate genetic profile, it is often necessary to rese-
quence the study samples using bulk whole-genome sequencing 
(WGS)/whole-exome sequencing, which requires additional sequenc-
ing efforts and costs.

A potential cost-effective approach is to call genetic variants 
directly from single-cell sequencing data, akin to previous studies using 
low-pass WGS12,13 or bulk RNA sequencing14. A systematic comparison 
shows that traditional tools for bulk analysis, such as Samtools15 and 
GATK16, detected less than 8% of variants from full-length SMART-seq2 
data and considerably less from droplet-based data17. Possible rea-
sons for low variant detection are as follows: (1) the single-cell RNA 
sequencing (scRNA-seq) reads are usually enriched in specific genomic 
regions, such as 5′ or 3′ end of genes; (2) genes are usually expressed 
in cell-type/state-specific patterns and thus are highly variable across 
genome regions, leading to uneven sequencing depth distribution; 
(3) coverage is likely affected by allelic imbalance inherent in RNA 
profiles and (4) sequencing reads tend to have many errors due to 
technological infidelity.

To fill in this gap, we developed Monopogen, a computational 
framework that enables researchers to detect single-nucleotide vari-
ants (SNVs) from a variety of single-cell transcriptomic and epigenomic 
sequencing data. To achieve sensitive germline SNV detection and accu-
rate genotyping, Monopogen uses high-quality haplotype and linkage 
disequilibrium (LD) data from an external reference panel to overcome 
uneven sequencing coverage, allelic dropout and sequencing errors in 
single-cell sequencing data. To enable accurate somatic SNV calling, 
Monopogen further conducts LD scoring at the cell population level 
within each sample, leveraging the expectation that most alleles are 
identical and in perfect LD with neighboring alleles across the genome, 
except for those that are somatically altered in a subpopulation of 
cells. A statistical algorithm that tests against the above expectation, 
combined with error-suppressing machine learning algorithms, is 
developed to detect putative somatic SNVs. Monopogen thus brings 
together population genomics, single-cell genomics and cellular line-
age tracing analysis to uncover genetic drivers of cellular processes 
in ongoing single-cell sequencing studies from various platforms, 
including scRNA-seq, single-nucleus RNA sequencing (snRNA-seq), 
scATAC-seq and scDNA-seq10,11.

Results
Workflow of Monopogen
Monopogen includes germline and putative somatic SNV calling 
from single-cell sequencing data. It starts from individual bam files 
of single-cell sequencing data, produced by scRNA-seq, snRNA-seq, 
single-nucleus assay for transposase-accessible chromatin using 
sequencing (snATAC-seq), single-cell DNA-seq, etc. (Fig. 1a). Monopo-
gen leverages LD patterns at the human population level to enhance 
germline SNV detection and LD patterns at the cell population level 
to enhance putative somatic SNV detection. Sequencing reads with 
high alignment mismatches (default four mismatches) are removed. 
Putative SNVs are detected from pooled (across cells) read alignment 
wherever an alternative allele is found in at least one read. For SNVs 
that are present in an external haplotype reference panel, such as 
the 1000 Genomes phase 3 (1KG3) panel, the input genotype likeli-
hoods (GL) estimated by Samtools are further refined by leveraging 
LD from the reference panel to account for genotyping uncertainty 
in sparse sequencing data. The loci showing persistent discordance 
after LD refinement are used to estimate a sequencing error model for 
de novo SNV calling (Fig. 1b). For the remaining loci satisfying mini-
mal total sequencing depth and alternative allele frequency cutoffs, 
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In the colon sci-ATAC-seq data, Monopogen detected 752 K to 
1.1 M germline SNVs, achieving a recall of 25%. In contrast, the recall 
for Samtools, GATK and FreeBayes was less than 12%. Strelka2 detected 
~30% SNVs with an accuracy lower than 40%. Most (57.4%) of the SNVs 
from Monopogen were found in intergenic regions and 38.6% in gene 
regions (Fig. 2c). We also included two SNV callers cellSNP and scAllele  
that were designed for single-cell sequencing data. cellSNP had the 

lowest SNV detection (<5%), and scAllele had the lowest accuracy (<10%) 
across three benchmarking datasets.

Given single-cell sequencing is highly sparse, sequencing cover-
age is one of most key factors affecting SNV detection (Supplementary 
Fig. 2a–c). We evaluated Monopogen’s performance on downsampled 
retina snRNA-seq data containing random subsets of 200–20,000 
cells (~29.4 K reads per cell; Supplementary Table 1). We observed a 
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Fig. 1 | An overview of Monopogen workflow. Monopogen includes germline 
and putative somatic SNV calling modules. a, Monopogen starts from individual 
bam files produced by single-cell sequencing technologies, including scRNA-
seq, snRNA-seq, snATAC-seq and scDNA-seq. Sequencing reads with multiple 
alignment mismatches (default four) are removed. Putative SNVs are identified 
sensitively from pooled pileup containing at least one nonreference read. 
b, For SNVs present in the external reference panel (such as 1KG3), genotype 
likelihoods are further refined based on LD in the reference panel. The loci 
showing persistent discordance are used to estimate a sequencing error model. 
c, For the remaining loci, we identify putative somatic SNVs by focusing on 
ones if there is sufficient sequencing depth and alternative allele frequency 
(calibrated by a sequencing error model). The SVM module is designed to 
remove low-quality SNVs. The variant calling metrics including the QS for 
calling, VDB for filtering splice-site artifacts, Mann–Whitney U test of RPB, 
Mann–Whitney U test of BQB, Mann–Whitney U test of ratio of MQSB, SGB and 

BAF. The germline SNVs are considered as the positive training sets, while the 
continuous de novo SNV chunks (>2 SNVs) that do not include any germline 
SNV are set as the negative sets. The remaining de novo SNVs are considered as 
the test set. d, The alleles observed at a de novo SNV site are statistically phased 
together with adjacent germline alleles to calculate an LD refinement score that 
estimates the percentage of cells in which the alleles do not cosegregate with 
neighboring germline alleles. De novo SNVs with high LD refinement scores are 
classified as the putative somatic SNVs, and their genotypes at the single cell/
cluster level are inferred using Monovar. e, Projection of study samples onto the 
HGDP enables genetic ancestry inference. f, Genome-wide association study of 
cellular quantitative traits can be performed when there is sufficient sample size. 
g, Lineage tracing at single cell or clonal level. QS, quality score; VDB, variant 
distance bias; RPB, read position bias; BQB, base quality bias; MQSB, mapping 
quality and strand bias; SGB, segregation-based metric; HGDP, Human Genome 
Diversity Project.
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linear relationship between the number of SNVs and cell numbers in 
a logarithmic scale (Fig. 2d; Pearson correlation coefficient is 0.9). 
Monopogen detected ~100 K SNVs from only 200 cells and 500 K SNVs 
from 1,000 cells (Fig. 2d). Despite downsampling, the overall accuracy 
of Monopogen remained robust to cell number and was always higher 
than 94% (Fig. 2e). The downsampling sequencing coverage scheme 
showed a similar pattern to the downsampling cell scheme (Supple-
mentary Fig. 2d,e). The performance of Monopogen was robust to 
sequencing depth and errors. The overall accuracy had only slight 
decreases when sequencing error rates were less than 2.5%. Even at an 
exceedingly high sequencing error rate of 5%, Monopogen still achieved 
~85% genotyping accuracy (Supplementary Fig. 2e), demonstrating 
the efficiency of LD-based genotyping refinement on challenging 
scenarios.

We further evaluated Monopogen in four other cohorts, which 
are as follows: human breast cell atlas (HBCA; 20 donor samples), 
peripheral blood mononuclear cells from Asian Immune Diversity 
Atlas (AIDA; 20 donor samples), genotype-tissue expression project 
(GTEx; seven donor samples) and human heart left ventricle atlas  
(65 samples). These datasets have a variety of cell numbers, number of 
reads per cell and read length (Supplementary Table 4). To make a fair 
comparison across datasets, we investigated the relationship between 

sequencing coverage and number of SNVs. As expected, Monopo-
gen detected more SNVs from single-cell epigenomics sequencing 
data than from single-cell transcriptomics sequencing data (Fig. 2f). 
Although these samples do not have matched WGS profiles, there are 54 
human left ventricle samples having paired scRNA-seq and scATAC-seq. 
The genotyping concordance between the two modalities was also 
as high as 97% (Supplementary Table 5 and Supplementary Fig. 5a), 
further demonstrating the robustness of Monopogen SNVs calling on 
various sequencing platforms.

Accurate global and local ancestry inference from single-cell 
sequencing data
We performed genetic ancestry inference using genotypes called 
from Monopogen. We projected the Monopogen-called snRNA-seq 
genotypes and the matched WGS genotypes of the four retina sam-
ples, respectively, onto a map, consisting of source samples with 
East Asia, America, Middle East, Europe, Oceania, Africa and Central/
South Asia in the Human Genome Diversity Project (HGDP)20. We 
found that the PC coordinates were highly consistent between the 
WGS genotypes and the single-cell genotypes called by Monopogen 
(Fig. 3a,b). The mapping results were consistent with self-reported 
ethnicities for all the samples, including three Europeans and a 
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self-reported Hispanic sample. We further performed local ancestry 
inference using RFMix21. On all the samples, the chromosomal paint-
ing results based on single-cell data (Fig. 3c–f and Supplementary  
Fig. 3) appeared highly consistent with self-reported ethnicities and 
with those obtained from the WGS data. For example, the source con-
sistency across genomic bins was as high as 0.96 for one of the European 

samples (19D013; Fig. 3g) and 0.90 for the Hispanic sample (19D015;  
Fig. 3h). We did observe some genomic bins showing discrepant sources, 
due largely to sparseness of single-cell-derived SNVs in those regions. 
The global ancestry inference results remained largely unchanged 
when downsampling the data to only 200 cells (~29.4 K reads per cell;  
Supplementary Fig. 4).
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Fig. 3 | Global and local ancestry inference using single-cell genotypes 
derived by Monopogen. a,b, Genetic ancestry of the four retina samples using 
Monopogen genotypes derived from snRNA-seq data (a) and genotypes from 
matched WGS data (b). Colored dots represent individuals in the HGDP reference 
panel, and black crosses represent the retina samples. The variance explained by 
PC1 and PC2 from the HGDP panel was labeled. c,d. Local ancestry inference of a 
European sample 19D013 using genotypes from the snRNA-seq (c) and the WGS 
(d) data. The 3,202 phased genotypes from 1KG3 were used as the reference for 
local ancestry inference. Colors in each chromosome denote the inferred source 
ancestry with a bin size of 1 centimorgan (cM). e,f, Local ancestry results from 

an admixed sample 19D015. g,h, Local ancestry inference accuracy for 19D013 
(g, overall score: 0.96) and 19D015 (h, overall score: 0.90). Each dot denotes the 
ancestry accuracy for each segment (1 cM). i, PCA-projection analysis shows the 
ancestry of samples in the AIDA and the HBCA cohorts. j, UMAP of Korean and 
Japanese samples in the AIDA using genotypes called Monopogen. The UMAP 
was constructed based on the top five PCs of Korean and Japanese genotypes 
(on 584,164 SNVs). k, Concordance between Illumina GSAv3 genotyping array 
data and Monopogen calls across the AIDA samples. Darker colors denote a 
higher level of concordance between two data modalities. Calculation of the 
concordance scores is detailed in Methods.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | May 2024 | 803–812 808

Article https://doi.org/10.1038/s41587-023-01873-x

We also performed projection analysis on another 40 samples in 
the HBCA and the AIDA cohorts that do not have matched WGS data. 
Again, the global ancestry inferred from single-cell sequencing was con-
sistent with self-reported ethnicities except for one putative admixed 
sample in the AIDA cohort (Fig. 3i). In the AIDA cohort, it is difficult to 
separate Japanese and Korean samples by PCA-projecting them onto 
the HGDP panel. However, these two populations can be well separated 
by performing independent UMAP analysis using Monopogen-derived 

genotypes (Fig. 3j). Furthermore, Monopogen shows consistent per-
formance in identifying donor-specific SNVs in the AIDA samples, 
based on the concordance of Monopogen-derived genotypes and 
Illumina GSAv3 genotypes (Fig. 3k), demonstrating the possibility of 
distinguishing individuals from the same ancestry. This indicates that 
the LD-based genotyping refinement from the commonly used 1KG3 
panel did not over-correct genotypes on subpopulation or individual 
levels, despite sparse sequencing coverage.
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Genome-wide association study of cellular quantitative traits
To demonstrate the utilization of Monopogen in establishing the link 
between genetic variants and cellular quantitative traits in a cell-type 
or cell-state-specific manner, we characterize the genetic contribu-
tion to metabolic processes (such as ATP production) and epigenetic 
programs in healthy cardiomyocytes. These relationships are usually 
disguised by previous bulk-based data analysis.

As a demonstration, we collected snRNA-seq and snATAC-seq data 
of ~4 M cells generated from a human heart left ventricle tissue samples 
of 65 donors, 54 of which have data from both modalities. Around 791 K 
SNVs in snRNA-seq and 2.59 M SNVs in snATAC-seq were identified from 
Monopogen (Supplementary Table 5 and Supplementary Fig. 5a). The 
variant calling consistency between two modalities was as high as 97% 
at overlapping loci (Supplementary Fig. 5b,c). Variant calls were further 
merged for samples of paired modalities.

Ancestry admixture analysis using inferred genotypes shows that 
this cohort contains samples with diverse ancestry, which are as fol-
lows: European (71.1%), Asian (10.2%) and African (8.5%). Six samples 
appeared admixed (Supplementary Fig. 6a).

To explore the cardiac metabolism process, we extracted car-
diomyocyte cells from each sample by annotating cells using the 
human heart Azimuth database (Fig. 4b and Supplementary Fig. 
6b). Using pathway expression level as a proxy for ATP metabolism 
level, we derived cardiac ATP metabolism level by aggregating the 
expression levels of 216 genes in GO_ATP_METBOLIC pathway (Meth-
ods). We performed association analysis using the GCTA tool22, 
including the top five ancestry PCs as covariates. P value of 10−5 was 
used as the threshold to identify potential associations due to the 
small sample size. The inflation factor of the Quantile–Quantile plot 
was close to 1 (0.983; Supplementary Fig. 7a). A total of 250 vari-
ants were associated with cardiac ATP metabolism score (P < 10−5), 
which can be further binned into 42 gene regions (Supplementary  
Table 6), including five genes (at least two variants supported) with  
P value < 10−6 (Fig. 4c). Among genes in the regions, IGFBP3 and FBXL22 
are well known to affect adult cardiac progenitor cells23 or cardiac 
contractile function24. ADO functions as an oxygen sensor involved 
in N-degron pathways25. These associations further confirm the tight 
coupling of ATP production and myocardial contraction, which is 
essential for normal cardiac function26. AGAP1, indicated by its tag 
SNV (rs6714660; Fig. 4d), is involved in cardiac ATP production in the  
Krebs cycle27.

We also derived transcription factor (TF) activity scores from the 
snATAC-seq data (Methods). We then scanned for genetic variants asso-
ciated with the activity level of GATA4, one of the most important TFs 
highly activated in cardiomyocytes at various developmental stages. 
The inflation factor of Quantile–Quantile plot was close to 1 (0.984; 
Supplementary Fig. 7b). A total of 257 variants were identified (P < 10−5), 
which can be further binned into 42 gene regions (Supplementary 
Table 7), six of which (at least two variants supported) with P < 10−6  
(Fig. 4e). Among the genes in the regions, TBX5–GATA4 and RUNX1–
GATA2 complexes are well known for their interdependence in coordi-
nating cardiogenesis28–31. ADAM12, indicated by its tag SNV (rs17745507; 
Fig. 4f), is known to have a key role in cardiac hypertrophy by blocking 
the shedding of heparin-binding epidermal growth factor32. These 
results indicate a potential association between GATA4 and cardiac 
hypertrophy through the mediation of ADAM12. Also identified were 
some variants (P < 10−5), located in the zinc-finger family genes, such as 
ZNF595 and ZNF750, that act as cofactors with the zinc-finger TF GATA4 
(Supplementary Table 7).

In summary, we were able to reveal potential genetic determi-
nants of cardiac health via metabolic and epigenomic trait mapping 
of cardiomyocytes, despite the relatively small sample size. Associa-
tions identified in this fashion may lead to a better understanding 
of the pathogenicity of noncoding variants in a cell-type-aware 
manner.

Putative somatic SNV detection on single-cell sequencing
To evaluate the somatic SNV detection module of Monopogen, we 
examined 1,534 cells from sample of one patient with TNBC sequenced 
using a single-cell DNA-seq platform33. From the matched normal and 
tumor bulk WGS data of around 87× coverage each, we identified a 
total of ~3.5 M germline SNVs and 19,766 somatic SNVs (Methods). 
We classified new SNVs detected by Monopogen into the follow-
ing three categories: somatic, germline and unknown in the bulk  
sample (Methods).

To conduct effective somatic SNV detection, we first examined the 
rational of applying two-locus and three-locus LD refinement models 
(Methods) using germline SNVs that had phased genotypes at the cell 
population level. The two-locus model showed low level of LD refine-
ment (<0.01) when the distance between two adjacent loci was less 
than 100 bp, which indicates physical phasing within the length of 
the reads. Genotype correlation between two adjacent loci decreased 
substantially when distance increases over 100 bp. Unlike the pattern 
in two-locus model, the three-locus model showed a gradual increase 
of LD refinement score with increased haplotype length. There are 
over 70% of cosegregated alleles when the length of haplotypes is less 
than 5 kb, providing rich information for phasing germline SNVs that 
do not exist in the 1KG3 panel. This pattern was consistent across all 
the chromosomes (Supplementary Figs. 8–10).

Initially, Monopogen identified 45,668 de novo SNVs, among which 
only 9.5% were classified as somatic, 56.0% germline and the remaining 
unknown. This highlighted the challenge of somatic SNVs detection 
from pooled single-cell profiles without using external information. 
The SVM module substantially reduced the number of unknown SNVs 
by 90%, while keeping 67.3% of the somatic SNVs and 63.8% of the ger-
mline SNVs (Fig. 5a), demonstrating the efficacy of the SVM module 
on distinguishing SNVs from sequencing errors. This could also be 
confirmed by examining the feature distribution difference between 
the positive and the negative labels (Supplementary Fig. 8)

The LD refinement module further removed 91% of the germline 
SNVs, leading to a total of 1,847 somatic SNVs and 1,447 germline SNVs 
that are validated by bulk WGS, in addition to 2,234 unknowns in the 
final de novo SNV call set (Fig. 5c). As expected, LD refinement score 
distribution for germline SNVs were skewed toward 0 (Fig. 5d). A frac-
tion of somatic SNVs also showed score closing to 0, partly due to the 
confounding B-allele frequency (BAF) effect (Fig. 5e). Somatic and 
germline SNVs become inseparable when BAF is close to 0.5. Among 
the putative somatic SNVs detected (Supplementary Table 8), there 
were 11 known oncogenes and 12 tumor suppressors. The unknown 
SNVs from Monopogen may contain low-abundance somatic SNVs that 
were missed by matched bulk sequencing.

We next evaluated the somatic SNV detection module on 9,346 
cells obtained from a bone-marrow sample with clonal hematopoiesis34. 
The cells were profiled using 10× single-cell sequencing combined 
with mitochondrial transcriptome enrichment (that is, MAESTER tech-
nology), leading to joint profiling of gene expressions and mtDNA 
mutations from the same cells. We also first examined the rational of 
the two-locus and three-locus LD refinement models from scRNA-seq 
profiles (Fig. 5g,h and Supplementary Figs. 12 and 13). Different from 
the single-cell DNA-seq data, the score remained low even though the 
distance between two adjacent loci was longer than 10 kb, which can be 
explained by allelic imprinting (or allelic expression) in the transcrip-
tomes. The three-locus LD refinement score showed a similar gradual 
increase with increased distance, with around 90% of cosegregated 
alleles when haplotype length is 10 kb. The germline LD refinement 
patterns examined in both single-cell RNA and single-cell DNA data 
proved the possibility of capturing both short-distance (within physical 
reads) and long-distance molecular linkage in single-cell populations 
even under sparse short-read sequencing. Similarly, feature distri-
butions between the positive and the negative labels were different 
(Supplementary Fig. 11), enabling SVM classification.
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Joint profiling of mtDNA and transcriptomics provided an opportu-
nity to validate the somatic SNVs via comparison of clonal architecture 
inferred orthogonally from mtDNA variants. We focused on 1,049 cells 
with both putative somatic SNVs and mtDNA variants detected. There 
were 391 putative somatic SNVs detected in at least two cells, and 69.6% 
(272/391) of them were significantly (P < 0.01, Wilcox test) enriched 
in at least one mtDNA clone (Fig. 5j), with around 12 somatic SNVs in 
each mtDNA clone. The average cellular concordance between the 
matched somatic SNV clones and mtDNA clones was 0.63 (Methods).  
These somatic SNVs allowed finer delineation of the clonal architec-
ture. For example, the most variable mtDNA variant 2593G>A was 
observed in most of the cell types in both myeloid and erythroid line-
ages (Fig. 5k,l and Supplementary Fig. 14). However, somatic SNVs such 
as chr3:196,047,84A:T appeared predominantly in erythroid lineage, 
while chr9:90891459T:C and chr6: 32,587,781A:T predominantly in 
myeloid lineage (Fig. 5m and Supplementary Fig. 14).

Joint profiling of T-cell antigen receptor (TCR) variable region and 
transcriptomics also provided an opportunity to validate somatic SNVs. 
We noted that 60.3% (284/471) of somatic SNVs were enriched in TRB 
regions and 52.7% (126/239) in TRA regions (Fig. 5n, Supplementary  
Fig. 15c), with average cellular concordance of 0.55 and 0.54 for the TRB 
and the TRA regions, respectively. In T cells and cytotoxic T lympho-
cytes, there are somatic SNVs localized in subregions of a cell type in 
the transcriptomic UMAPs (Fig. 5q,c). For example, chr20:2904623A:G 
clone was detected in the bottom of the cytotoxic T-cell cluster (similar 
pattern with TRB clone CASAPNFGQELTYEQYF in Fig. 5p and Supple-
mentary Fig. 15b). Some mutations (for example, chr1:91689518A:G) 
spanned across all the T cells (similar pattern with TRB clone CASSQA-
GAANTEAFF in Fig. 5r and Supplementary Fig. 15b), indicating these 
putative somatic SNVs may represent multiple T-cell clonotypes that 
have occurred from multipotent hematopoietic stem cells.

Discussion
In this study, we developed Monopogen, a computational tool enabling 
researchers to identify SNVs at high accuracy from sparse single-cell 
transcriptomic and epigenomic sequencing data. Single-cell sequenc-
ing technologies, like other targeted sequencing technologies13,35,36, 
can generate reads that map outside of the target regions, which has 
become a rich, under-used resource for genomic variant discovery. By 
leveraging these reads, in conjunction with the known LD patterns in 
major human populations, Monopogen identified around 100 K to 1 M 
SNVs in 10X Chromium single-cell or nucleus RNA-seq data, and 1–2.5 M 
SNVs in single-cell ATAC-seq data at genotyping accuracies higher than 
0.95. We found through downsampling experiments that Monopogen 
can be applied in most single-cell sequencing datasets, including those 
with low (~200) cell numbers. Although not evaluated in this work, there 
should be no barrier to apply Monopogen on data produced by other 
single-cell sequencing platforms such as the full-length smart-seq37. 
With SNVs called by Monopogen, global and local ancestry inference 
can be reliably performed in studies that have only single-cell sequenc-
ing but not bulk sequencing or array-based genotyping data, which 
greatly increases the chance of discovering genetic factors underlying 
diverse cellular quantitative traits and disease. In addition, leverag-
ing the power of having phased haplotypes from germline SNVs, the 
LD refinement models applied at cell population level enabled us to 
substantially increase the accuracy of somatic SNV detection in sparse, 
short-read, single-cell sequencing data.

Health disparity is a substantial socioeconomic challenge. Ongo-
ing large-scale single-cell studies (such as HCA and the CZI genetic 
ancestry network) are aiming at creating a genetically unbiased refer-
ence and avoiding the Eurocentric biases in previous human genetic 
studies38. Our study has clearly shown that single-cell sequencing data 
can potentially be used as a resource to not only determine the genetic 
ancestry of study samples but also expand the reference to further 
delineate human populations. For example, we found a clear separation 

of Japanese and Korean samples in the AIDA cohort based on vari-
ants and genotypes determined from single-cell data by Monopogen. 
Moreover, although our analysis and assessment were based on publicly 
available reference population databases such as 1KG3, we expect that 
the power of variant calling and ancestry inference will become greater 
when using local population panels39,40 or proprietary databases with 
larger population size and greater diversity.

Monopogen adds a genomic modality to current single-cell tran-
scriptomic and epigenomic assays9,41,42, which makes it possible to use 
these assays for functional genetics investigations. For example, we 
identified SNVs that are associated with the metabolism and epigenetic 
regulation of cardiomyocytes in heart samples. Many similar analyses 
can be performed, for example, identifying genetic determinants of 
cancer immune response using pan-cancer single-cell T-cell atlas data43.

Although the single-cell sequencing data is quite sparse, the 
LD-refinement models enable us to quantify if neighboring SNVs coseg-
regate in the entire population or only a subpopulation of cells, due to 
their colocalization on a DNA haplotype or RNA transcript. Phasing 
genotype profiles at the cell population level opens an opportunity 
to unravel the clonal affiliations of somatic SNVs that are buried in 
bulk-seq data. The current two and three loci LD refinement models 
can be further extended to include multiple loci, when sequencing 
dropout issues are alleviated, or the sequencing reads become longer 
in the future. We have shown that the combination of single-cell tran-
scriptomics with somatic SNVs detected by Monopogen can depict 
finer clonal architecture in a bone-marrow sample undergone clonal 
hematopoiesis, which may facilitate similar investigations, such as 
resolving clonal lineage in cancer evolution studies18,44,45.

Our study has several limitations. Although Monopogen can 
potentially detect putative somatic SNVs, it is challenging to sepa-
rate germline from truncal somatic SNVs whose BAFs are close to 0.5. 
However, those SNVs can be easily detected via bulk sequencing. In the 
human heart left ventricle analysis, we demonstrated the utilization of 
Monopogen-called genotypes to identify associations of ATP metabo-
lism and GATA4 activity levels in one cell type, cardiomyocytes. In the 
context of discovery, such analysis can be extended to other cell types 
and cellular quantitative traits of interest that could be objectively 
measured. However, such association analysis should be guided by 
strong prior knowledge to reduce the burden of multiple hypothesis 
testing.

In summary, we developed a computational tool Monopogen to 
maximize the genetic information from available single-cell sequenc-
ing data, which can lead to immediate benefits on genetic ancestry 
mapping, association analysis using current large-scale single-cell 
atlas data10,11 and somatic clonal lineage delineation45. In the long term, 
with the increasing generation of sparse single-cell sequencing data 
and expansion of data modalities, our work will become increasingly 
relevant for assessing the effects of genetic ancestry and discovering 
genetic mechanisms underlying complex traits in human populations 
and diseases.
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Methods
Monopogen workflow
Reads filtering. Monopogen starts from individual bam files of 
single-cell sequencing data. Reads with high alignment mismatches 
(default four mismatches) and lower mapping quality (default 20) 
are removed.

SNV discovering. We first scan the putative SNVs in a sensitivity way. 
Any loci are detected from pooled (across cells) read alignment from 
one sample wherever an alternative allele is found in at least one read. 
For each candidate SNV locus m with observed sequencing data infor-
mation d, we record its genotype likelihoods (GL) that incorporate 
errors from base calling and alignment as

GL (m|d) = {GL (g = i|d) , i ∈ 0, 1, 2} , (1)

where g = 0 denotes homozygous reference allele, g = 1 denotes  
heterozygous and g = 2 denotes homozygous alternative allele. Calcula-
tion of GL(g│d) is performed using Samtools mpileup tool15.

Germline variant calling refinement. Given that scRNA-seq data has 
high genotyping uncertainties and is quite sparse, we leverage the LD 
from the 1KG3 database to further refine the GL, including 3,202 sam-
ples with a total of ~80 M phased SNVs after quality control. We focus 
only on putative SNVs existing in both the 1KG3 panel and the single-cell 
sequencing data. Denotes H the set of reference haplotypes 
(|H| = 6,404). The Beagle hidden Markov model46,47 is used to identify 
the target haplotype of SNV m with its adjacent loci, including (1) defini-
tion of state space; (2) initial probabilities, (3) transmission probabili-
ties and (4) emission probabilities. Equation (1) is further updated as 
the genotype probabilities conditioning on the haplotypes in the refer-
ence panel as

GP (m|H,d) = {P (g = i|d,H) , i ∈ 0, 1, 2} . (2)

Sequencing error modeling. For each locus m, we calculate the 
observed genotype as the one with the highest posterior probability 
from Eqs. (1) and (2), respectively. Denote

Gm|d = argmax
i

GL( g = i|d),

and

Gm|H,d = argmax
i

GP(g = i|d,H).

The final genotype of locus m is set as Gm|H,d  if Gm|H,d = Gm|d . The 
heterozygous loci that are imputed to homozygotes are considered as 
sequencing errors (that is, Gm|H,d = 0 and Gm|d = 1, 2). We classify this 
discordance into 12 categories:

C = { AT → AA,AT → TT,CT → CC,CT → TT,GT → GG,GT → TT,AC →

AA,AC → CC,AG → AA,AG → GG,CG → CC,CG → GG }

The median BAF across all inconsistent loci in each category c is 
denoted as BAFc. This is considered the threshold to separate the 
sequencing error from the true heterozygous. SNVs with Gm|H,d = Gm|d  
are retained as the germline SNVs (that is, SNVs). Others are only used 
to build the sequencing error model and are not included in the final 
genotyping call set.

De novo SNV scanning. For putative SNVs absent in the 1KG3, we 
implement the following two filters: (1) the total sequencing depth 
filtering (default 100); and (2) BAF less than the threshold from the 
above sequencing error model. For example, one putative SNV  
genotyped as A/T with its BAF lower than max {BAFAT→AA,BAFAT→TT}  is  

removed due to difficulties in separating true heterozygotes from  
sequencing errors.

Putative somatic SNV calling. The somatic SNVs calling includes the 
following two major modules: (1) removing low-quality SNVs using 
an SVM and (2) distinguishing somatic from germline SNVs using LD 
refinement models at the cell population level.

Remove low-quality SNVs using SVM. In the SVM module, all 
detected germline SNVs overlapped with 1KG3 are considered as the 
positive set. We define de novo SNVs found consecutively (default >2 
SNVs) in genomic chunks that do not contain any germline SNV as the 
negative set. This is because the chance of only detecting multiple 
somatic SNVs in one region without any germline SNVs is typically 
low due to the low average somatic mutation rate in most datasets. 
SNVs calling quality metrics including quality score for calling, vari-
ant distance bias for filtering splice-site artifacts, Mann–Whitney U 
test of read position bias, Mann–Whitney U test of base quality bias, 
Mann–Whitney U test of ratio of mapping quality and strand bias, 
segregation-based metric and BAF are selected as features. The model 
is trained using the svm function implemented in R package e1071. 
The de novo SNVs with a predicted probability of positive labels less 
than 0.5 are set as sequencing errors and excluded from downstream  
analysis.

Estimate LD refinement score from germline SNVs. The de novo 
SNVs passing the SVM filtering are further interrogated using the LD 
refinement models. The LD refinement models assume that only two 
alleles are present in the cell population. We first estimate the LD refine-
ment scores on germline SNVs that quantify the degree of their LD, 
taking into consideration widespread sparseness and allelic dropout 
in single-cell sequencing data. We then implement germline LD pat-
terns to statistically phase the observed alleles of de novo SNVs in the  
cell population.

We assume that the germline SNV block includes nm SNVs  
with genotype vector being {G1,G2,⋯ ,Gnm }. Denote Gi = A1

i |A
2
i , where  

∙|∙ represents the phased genotype. The cell level genotype matrix G on 
these germline SNVs can be represented as

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c111||c
2
11 c112||c

2
12

c121||c
2
21 c122||c

2
22

⋯ c11C||c
2
1C

⋯ c12C||c
2
2C

⋮ ⋮

c1nm1
||c2nm1 c1nm2

||c2nm2

⋮ ⋮

⋯ c1nmC
||c2nmC

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦nm×C

where nm is the number of germline SNVs and C is the number of cells. 
c1ij  and c2ij  denote the number of reads supporting allele A1

i  and A2
i  in  

cell j, respectively. If no reads are detected in allele Ah
i (h = 1, 2), chij  is  

set to 0. It is noted that G is quite sparse and the majority of its elements 
are zero (that is, c1ij = 0 and c2ij = 0). Even for an element with reads 
detected, rarely can both alleles be captured (one example can be seen 
in Supplementary Fig. 1a, step 3).

Due to the sparsity of single-cell data, not all adjacent germline 
SNVs are informative for LD refinement. Here we first define a two-locus 
neighborhood index in cell j to identify informative germline SNV 
pairs as

Neighb2 (k, i, j) = {
1, if c1kj+c

2
kj > 0, c1ij+c

2
ij > 0, and c1lj + c2lj = 0 for k < l < i

0, others
.

(3)

Illustration of two-locus neighborhood index can be seen in  
Supplementary Fig. 1b. Denote ℋ2 as the set including all two-locus 
neighborhoods, we have
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ℋ2 = {(c1kj ||c
2
kj, c

1
ij
|| c2ij) s.t.Neighb2 (k, i, j) = 1, 1 ≤ k < i ≤ nm, 1 ≤ j ≤ C}

We next group elements in ℋ2 based on the distance of SNVs as

ℋℋℋd
2 = {(c1kj ||c

2
kj, c

1
ij
|| c2ij) s.t. (c

1
kj
||c2kj, c

1
ij
|| c2ij) ∈ ℋℋℋ2 and ||dk − di|| = d} .

The two-locus haplotype in ℋ2 with allele cosegregated can be 
represented as

ℋℋℋ d(cosegregated)
2

= {(c1kj ||c
2
kj, c

1
ij
|| c2ij) s.t. (c

1
kj
||c2kj, c

1
ij
|| c2ij) ∈ ℋℋℋ d

2 , (c1kjc
1
ij > 0or c2kjc

2
ij > 0)} .

Thus, the two-locus LD refinement score with physical distance 
being d is calculated as

p(ℋℋℋ d
2 ) = 1 − |

|ℋℋℋ
d(cosegregated)
2

|
| / ||ℋℋℋ

d
2 || . (4)

Regarding the three-locus mode, we first define the three-locus 
neighborhood index in cell j as

Neighb3 (k, i, l, j) = {
1, ifNeighb2 (k, i, j) = 1, Neighb2 (i, l, j) = 1, c1kjc

1
lj > 0

0,others
.

(5)

The three-locus neighborhood means that the upper and lower 
SNVs detect the same allele. Illustration of three-locus neighborhood 
index can be seen in Supplementary Fig. 1b. Denote ℋ3 as the set includ-
ing all three-locus neighborhoods, we have

ℋℋℋ3 = {(c1kj ||c
2
kj, c

1
ij
|| c2ij, c

1
lj|c

2
lj) s.t.Neighb3 (k, i, l, j)

= 1, 1 ≤ k < i < l ≤ nm, 1 ≤ j ≤ C}

We next group ℋ3 based on the length of haplotype as

ℋℋℋd
3

= {(c1kj ||c
2
kj, c

1
ij
|| c2ij, c

1
lj|c

2
lj) s.t. (c

1
kj
||c2kj, c

1
ij
|| c2ij, c

1
lj|c

2
lj) ∈ ℋℋℋ3 and ||dk − di|| = d} .

The three-locus haplotype in ℋ3 with allele cosegregated can be 
represented as

ℋℋℋd(cosegregated)
3

= {(c1kj ||c
2
kj, c

1
ij
|| c2ij, c

1
lj|c

2
lj) s.t. (c

1
kj
||c2kj, c

1
ij
|| c2ij, c

1
lj|c

2
lj) ∈ ℋℋℋd

3 and c1ij > 0} .

Thus, the three-locus LD refinement score with physical distance 
being d is defined as

p(ℋℋℋd
3) = 1 −

|
|ℋℋℋ

d(cosegregated)
3

|
|

||ℋℋℋ
d
3 ||

. (6)

The two-locus and three-locus LD refinement scores p(ℋd
2 ), p(ℋd

3 ) 
can largely represent the colocalization for neighboring SNVs on a DNA 
haplotype or RNA transcript at the cell population level. In real data 
analysis, the physical distance d is grouped into 13 bins with <100 bp, 
(100 bp, 250 bp), (250 bp, 500 bp), (500 bp, 1 kb), (1 kb, 2.5 kb), (2.5 kb, 
5 kb), (5 kb, 10 kb), (10 kb, 25 kb), (25 kb, 50 kb), (50 kb, 100 kb), (100 kb, 
250 kb), (250 kb, 500 kb) and >500 kb.

Phase de novo SNVs. We next phase the de novo SNVs based on ger-
mline SNVs. Assume the genotype of de novo SNV s is A1

s/A2
s  and  

its adjacent germline SNV profile for cell j as follows:

SSSj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮

c1kj|c
2
kj

⋮

c1sj/c
2
sj

⋮

c1lj|c
2
lj

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Neighb2 (k, s, j) = 1 and Neighb2 (s, l, j) = 1. c1sj and c2sj are the number 
of reads supporting allele A1

s and A2
s, respectively. Due to the single-cell  

sparsity, it is difficult to detect allele A1
s  and A2

s  simultaneously in  
each cell.

Without loss of generality, we set ||dk − ds|| < ||ds − dl|| .The  
probability of phased genotype A1

s|A2
s  under two-locus model is

Pj (A1
s|A2

s ) = {
(ℋℋℋ||dk−ds ||

2 ) , if c1sjc
1
kj > 0or c2sjc

2
kj > 0

1 − p (ℋℋℋ||dk−ds ||
2 ) , others

. (7)

To derive the probability of haplotype A1
s|A2

s  under three- 
locus model, we need to search germline SNV k and l satisfying 
Neighb3 (k, s, l, j) = 1. Then, we have

Qj (A1
s|A2

s ) = {
p (ℋℋℋ||dk−ds ||

3 ) , if c1sj > 0

1 − p (ℋℋℋ||dk−ds ||
3 ) , others

. (8)

The probability of phased genotype A1
s|A2

s  by combining two  
models is

pj (A1
s|A2

s ) = 0.5 (Pj (A1
s|A2

s ) +Qj (A1
s|A2

s )) . (9)

Thus, the probability of phased genotype A1
s|A2

s  for de novo SNV s 
across the cell population is

p (A1
s|A2

s ) =
C
∑
j=1

pj (A1
s|A2

s ) /C (10)

Similarly, the probability of phased genotype A2
s |A1

s  for de novo 
SNV s across the cell population is

p (A2
s |A1

s) =
C
∑
j=1

pj (A2
s |A1

s) /C (11)

Based on the above definition, we have p (A1
s|A2

s ) + p (A2
s |A1

s) = 1 .  
The genotype of s is set A1

s|A2
s  if p (A1

s|A2
s ) > p (A2

s |A1
s) and A2

s |A1
s otherwise. 

The LD refinement score ps is defined as ps = min {p (A1
s|A2

s ) ,p (A2
s |A1

s)} . 
The LD refinement score ps ranges from 0 to 0.5. It is closer to 0 for a 
germline SNV as it has strong LD with the adjacent germline SNVs, that 
is, sharing the same two haplotypes in all the cells. The score is greater 
than 0 for a somatic SNV as the recently gained somatic allele cosegre-
gates with germline alleles in only a subpopulation of cells. SNVs with 
a larger LD refinement score are classified as putative somatic SNVs 
(default value 0.25).

Cell type/cluster-level genotyping using Monovar. Monovar18 is then 
used to perform SNV genotyping on putative somatic SNVs at cluster 
or cell type level. Briefly, cell cluster identification can be obtained 
either by clustering on single-cell profiles or using reference-based 
cell type annotation19. To reduce the computational time, only reads 
covering these candidate loci are extracted and then split into different  
bam files based on their cluster identities. Monovar can be run  
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on these bam files (each is one cluster or cell type) with default para
meter settings.

Genotyping calling evaluation
Seven single-cell samples in our study have matched WGS data that 
were treated as the gold standard. For each sample, only bi-allelic loci 
having at least one alternative allele (that is, genotype is 0/1 or 1/1) were 
extracted from the two call sets, denoting as N (Monopogen-called) 
and W (WGS-called). The sensitivity (recall) was defined as |N ∩W|/|W| 
and specificity (precision) as |N∩W|

|N|
. The genotyping accuracy was 

defined as the fraction of identical genotypes in the |N ∩W| overlapping 
SNVs. The overall accuracy was defined as the specificity multiplied by 
the genotype accuracy.

The genotype concordance of the Monopogen-called genotype 
data versus the AIDA Illumina GSAv3 genotype data was computed by 
first counting the number of matching alleles between the Monopogen 
and the Illumina GSAv3 results for loci found in both sets. The minimum 
possible concordance score per Monopogen calls (accounting for some 
match always being possible in the case of heterozygous genotypes) 
was subtracted, and the resulting scores were then normalized against 
the number of loci evaluated.

Global and local ancestry analysis
PCA-projection analysis. To identify the global ancestry of single-cell 
sequencing samples, we downloaded genotypes from Human Genotyp-
ing Diversity Panel (HGDP), which includes 938 individuals (covering 
53 populations worldwide) and 632,958 SNVs with MAF > 1%. Denote 
RRRn×L as genotypes of the HGDP samples (n = 938, L number of SNVs), 
and ggg1×L as the Monopogen-called genotype vectors from the single-cell 
sequencing samples (converting from GRCh38 to GRCh37 using Picard 
tool). Denote R̃RR(n+1)×K = [RRRn×L

ggg1×L
]. The LASER (Trace module)48 was used 

to project each sample to the HGDP. Briefly, two PCA coordinates were 

calculated as YYYn×K  and [ ỸYYn×K′̃yyy1×K′
] (K′ ≥ K) by applying eigenvalue decom-

position on the genetic relationship matrix (GRM) RRRRRRT  and R̃RRR̃RR
T

, respec-
tively. Projection procrustes analysis was used to find an orthonormal 
projection matrix AAAK′×K  and an isotropic calling factor ρ such that 

||||ρỸYYAAA − YYY||||
2

F
 is minimized, where ||.||2F  represents the square of Frobenius 

norm. Once AAAK′×K and ρ were solved, the sample-specific PCA-projection 
coordinates on HGDP panel can be calculated as yyy = ρỸYYAAA. The PC coor-

dinates of [YYYn×Kyyy1×K
] were used for PCA-projection visualization.

Fine-scale ancestry inference. The local ancestry components of 
single-cell sequencing samples were calculated using RFMix tool21 with 
the phased haplotypes from the 1,000 Genomes 3 as a reference source. 
Monopogen-called genotypes were input to the PopPhased module 
with the following flags: -w 0.2, -e 1, -n 5, --use-reference-panels-in-EM, 
--forward-backward EM. The RFMix output was collapsed into hap-
loid bed files, and ‘UNK’ or unknown ancestry was assigned where 
the posterior probability of a given ancestry was <0.90. These col-
lapsed haploid tracts were used for local ancestry component vis-
ualization (segment size was set as 1 cM). The RFMix tool was also 
run on WGS genotypes from matched samples. For each segment, 
the ancestry component percentage for each source population 
was recorded. The local ancestry consistency index was calculated 
as the correlation of the ancestry component vector between the  
two call sets.

GWAS on cellular quantitative traits
Variant calling on human heart left ventricle samples. There are 54 
donors sequenced with snRNA-seq and 65 with snATAC-seq, among 
which 54 are paired. For the downstream association study, SNV calling 
of 54 snRNA-seq and 65 snATAC-seq samples were performed separately 
using Monopogen, followed by removing MAF < 10%. Variant calls were 

further merged for samples of paired modalities (Supplementary 
Table 4).

Cell type annotation on snRNA-seq profiles. We also downloaded the 
matched snRNA-seq gene expression profiles and performed a series 
of filtering to remove cells expressing lower than 200 and higher than 
10,000 genes, and with mitochondrial gene percentages higher than 
15%, using Seurat V4 (ref. 19).

Cell type annotation was performed by uploading all the cells of 
each sample to the online Azimuth heart database in Seurat V4 (ref. 19). 
Cells with predicted cell type probability scores lower than 0.9 were 
removed. Only cells annotated as cardiomyocytes were extracted for 
the downstream association study.

Cell type annotation on snATAC-seq profiles. Starting from the 
fragment files of snATAC-seq samples, we used Signac pipeline49 to 
recall peaks in each sample and combine them into a unified set after 
removing peaks of width <20 bp and >10 kb, leading to a total of 488,652 
peaks. The gene-level chromatin accessibility was derived using Gene-
Activity module by aggregating peaks in gene promoters plus upstream 
2 kb. The cell type annotation was also performed using the online 
Azimuth heart database under the same quality control criteria as in 
the snRNA-seq analysis.

Calculation of cellular quantitative traits. We used pathway expres-
sion level as a proxy for ATP metabolism level. We downloaded 216 
genes from GO_ATP_METBOLIC pathway. We derived cardiac ATP 
metabolism level at single-cell resolution by aggregating the expres-
sion levels of 197 genes (197/216) detected in the snRNA-seq data. The 
calculation was performed using AddModuleScore module in Seurat. 
In snATAC-seq, TF GATA4 motif-based activity was calculated for each 
cell using ChromVAR50.

Association study. GCTA22 was used to calculate a GRM among 
single-cell sequencing samples. The association studies on ATP 
metabolism level and GATA4 activity level were performed using its 
fastGWA-mlm option with the input of GRM and covariates as the top 
five ancestry PCs. Only variants with MAF > 10% were considered for 
association studies. The inflation factor of Quantile–Quantile plots 
was calculated using the R package qqman to examine whether there 
is population stratification in our genome-wide scan. Manhattan plot 
was used to show the P value across the whole genome with P = 10−5 as 
potential significant associations with cellular traits. The significant 
loci were further grouped into bins based on their closest genes. The 
nearest genes to significant loci were annotated.

Comparison with other SNV callers
For a fair comparison with Monopogen, Samtools15 GATK51, FreeBayes52, 
Strelka2 (ref. 53), cellSNP54 and scAllele55 were run on bam files after the 
same filtering with Monopogen. For Samtools, the mpileup option was 
used to transform base calling and alignment information into the GL, 
followed by variant calling using Bcftools. The GATK was run using the 
HaplotypeCaller mode with default settings.

Putative somatic SNV detection in single-cell sequencing
The 1,534 single-cell DNA bam files of sample TN28 were from breast 
cancer study33. The genotypes of the matched bulk sample were called, 
including ~3.5 M germline SNVs from GATK and 19,766 somatic SNVs 
from Mutec2 (ref. 56). When running Monopogen, any de novo SNVs 
with a predicted probability of the positive label lower than 0.5 were 
considered as sequencing errors. We set the physical distance threshold 
as 100 bp and 10 kb for two-locus mode and three-locus mode, respec-
tively. At the evolution stage, for de novo SNVs that were not detected in 
bulk samples, we rechecked read alignments from bulk samples. They 
were not considered as sequencing errors if there was at least one read 
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supporting the mutation. The putative somatic SNVs were annotated 
using OpenCravat (2.3.0)57, and predicted classifications on oncogenic 
status were obtained CScape (1.0.1)58 (significance level of 0.5).

The fastq file of the bone-marrow study including 10,113 cells 
was downloaded from MAESTER technology study34. When running 
Monopogen, any de novo SNVs with predicted probability of the posi-
tive label lower than 0.5 were considered as sequencing errors. We 
set the physical distance threshold as 1 kb and 50 kb for two-locus 
mode and three-locus mode, respectively. The variable 875 somatic 
SNVs (detected in at least two cells) were considered for downstream 
evaluation. The single-cell multi-omics profile includes mtDNA vari-
ants and TCR variable region in the same cell. To compare putative 
somatic SNVs with mtDNA variants, we detected whether somatic 
SNVs showed enrichments in specific mtDNA clone using FindMarker 
function (Wilcox test) in Seurat V4 (ref. 19). The P value lower than 0.01 
was reported as enriched in the specific mtDNA clone. The putative 
somatic SNVs were grouped based on whether they were enriched in 
the same mtDNA clone. We then calculated the cellular concordance of 
each mtDNA clone as the number of cells detected in both the mtDNA 
clone and its matched somatic SNV group, divided by the total number 
of cells in the mtDNA clone. The overall concordance was the mean 
across all the mtDNA clones. The same scheme was used to compare 
somatic SNVs against TRB/A regions.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The sci-ATAC profiles from the two transverse colon samples were 
downloaded from ENCODE database at https://www.encodeproject. 
org/files/ENCFF354SCV/ and https://www.encodeproject.org/files/ 
ENCFF491HQL/. The dataset is partly from ENCODE study59. The 
matched VCF files for WGS genotypes were from accession https://
www.encodeproject.org/files/ENCFF944WLM/ and https://www. 
encodeproject.org/files/ENCFF907ASL/.

The snRNA-seq and snATAC-seq profiles from the human heart left 
ventricle tissues of 65 donors were downloaded from ENCODE study60 
at https://www.encodeproject.org/matrix/?type=Experiment&assay_ 
title=snATAC-seq&assay_title=scRNA-seq&biosample_ontology.
term_name=heart+left+ventricle.

The 12 scRNA-seq samples with matched WGS genotypes were  
downloaded from GTEx database60 with https://anvil.terra.bio/ 
#workspaces/anvil-datastorage/AnVIL_GTEx_V9_hg38.

The 1KG3 genotypes were from 1000 genome project61 and 
downloaded from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ 
d a t a _ c o l l e c t i o n s / 1 0 0 0 G _ 2 5 0 4 _ h i g h _ c ove r a ge / w o r k i n g / 
20201028_3202_phased/.

The HGDP panel62 genotypes were downloaded from http://csg.sph. 
umich.edu/chaolong/LASER/HGDP-938-632958.tar.gz.

The scDNA-seq from the TNBC sample was downloaded from 
breast cancer study33.

The single-cell RNA of bone-marrow sample used for somatic 
calling evolution was from MAESTER technology34. The fastq files were 
downloaded from the SRA database with SRR15598778, SRR15598779, 
SRR15598780, SRR15598781 and SRR15598782. The integrated single-cell 
multi-omics profiles including gene expressions, mtDNA variant calls 
and TCR profiles were downloaded from https://vangalenlab.bwh. 
harvard.edu/resources/maester-2021/

The single-cell profiles of 20 HBCA samples, 20 AIDA samples, and  
four retina samples were generated as part of the cell atlas and  
genetic ancestry networks organized by the Chan Zuckerberg  
Initiative. The 20 AIDA single-cell samples could be downloaded  
from https://data.humancellatlas.org/explore/projects/f0f89c14- 
7460-4bab-9d42-22228a91f185.

The four retina single-cell samples could be downloaded  
from https://data.humancellatlas.org/explore/projects/f0f89c14- 
7460-4bab-9d42-22228a91f185.

The 20 HBCA single-cell samples could be accessed through  
GSE195665 (https://navinlabcode.github.io/HumanBreastCellAtlas.
github.io/dataAccess.html).

Code availability
Monopogen is available in open source at https://github.com/KChen- 
lab/Monopogen. Scripts for reproducing key analysis results are also 
available at https://github.com/KChen-lab/Monopogen.
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samples.;Colon;single;cell;studies:;2;single;cell;samples;; GTEx;cohort:;7;single;cell;samples;;TNBC;study:;sample;size;1;;Our;study;focused;on;

SNV;calling;evaluation;and;each;sample;included;over;100K;SNVs.;Thus;one;sample;for;each;study;is;enough;for;SNV;calling;evaluation.

No;datasets;were;excluded

Each;sample;includes;over;100K;SNVs;for;SNV;calling;evaluation;and;replicates;are;not;necessary

Each;sample;includes;over;100K;SNVs;for;SNV;calling;evaluation;and;randomization;of;study;samples;is;not;necessary

There;is;no;clinical;trial;and;blinding;design;is;not;necessary
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