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Abstract
Large-scale association analyses using whole-genome sequence data have become feasible, but understanding the functional 
impacts of these associations remains challenging. Although many tools are available to predict the functional impacts of 
genetic variants, it is unclear which tool should be used in practice. This work provides a practical guide to assist in select-
ing appropriate tools for variant annotation. We conducted a MEDLINE search up to November 10, 2023, and included 
tools that are applicable to a broad range of phenotypes, can be used locally, and have been recently updated. Tools were 
categorized based on the types of variants they accept and the functional impacts they predict. Sequence Ontology terms 
were used for standardization. We identified 118 databases and software packages, encompassing 36 variant types and 161 
functional impacts. Combining only three tools, namely SnpEff, FAVOR, and SparkINFERNO, allows predicting 99 (61%) 
distinct functional impacts. Thirty-seven tools predict 89 functional impacts that are not supported by any other tool, while 
75 tools predict pathogenicity and can be used within the ACMG/AMP guidelines in a clinical context. We launched a web-
site allowing researchers to select tools based on desired variants and impacts. In summary, more than 100 tools are already 
available to predict approximately 160 functional impacts. About 60% of the functional impacts can be predicted by the 
combination of three tools. Unexpectedly, recent tools do not predict more impacts than older ones. Future research should 
allow predicting the functionality of so far unsupported variant types, such as gene fusions.
URL: https://​cardio-​care.​shiny​apps.​io/​VEP_​Finder/.
Registration: OSF Registries on November 10, 2023, https://​osf.​io/​s2gct.

Introduction

Whole-genome sequencing (WGS) has become precise 
and affordable on a large scale, and several cohorts now 
involve hundreds of thousands of subjects (Halldorsson et al. 
2022; Taub et al. 2022; The All of Us Research Program 

Investigators 2019). Statistical analyses have associated dis-
eases with common and rare variants (Povysil et al. 2019), 
and the GWAS Catalog currently contains more than half a 
million associations (Sollis et al. 2023). However, the causal 
mechanism behind most genetic associations is unclear and 
can take a long time to understand. For example, even for 
the best-replicated locus in cardiovascular disease, it took 
four years to unravel its function (Harismendy et al. 2011; 
Wellcome Trust Case Control Consortium 2007). To accel-
erate the understanding of biological function, a series of 
computational tools have been proposed in recent years.

In this work, we consider Variant Effect Predictors 
(VEPs) to be databases or software packages that predict the 
functional impacts of genetic variants. Each VEP is usually 
specialized in annotating one or a few categories of variants, 
such as single nucleotide variations (SNVs), indels, missense 
variants, or structural variants (SVs) (Geoffroy et al. 2018; 
Pagel et al. 2019; Rentzsch et al. 2019; Vaser et al. 2016). 
The variety of VEPs and their functionalities poses the chal-
lenge of choosing the appropriate tool for a specific task, 
a topic that has been addressed in non-systematic reviews 
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(Katsonis et al. 2022; Tabarini et al. 2022). Some reviews 
summarize VEPs for one type of variant only (Abramowicz 
and Gos 2018; Glusman et al. 2017). Other articles focus 
on variation relevant to the American College of Medical 
Genetics and Genomics/Association of Molecular Pathol-
ogy (ACMG/AMP) guidelines (Ghosh et al. 2017; Kassahn 
et al. 2014). All reviews have in common that their summary 
tables group functional information into a few categories, 
usually SNVs, indels, and SVs only. This categorization lim-
its the search for VEPs suitable for other categories of vari-
ants, such as missense mutations or copy number variation.

This work aims to provide a systematic overview of the 
broad range of variant types and their functional impacts 
across VEPs. To this end, we systematically searched MED-
LINE and investigated the possible input and output of each 
tool. The efficient selection of the most appropriate tool for 
a specific task can easily be accomplished using an interac-
tive website.

Methods

A systematic review was performed in accordance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines (Page et al. 2021). The 
protocol was registered in OSF Registries on November 10, 
2023 (https://​doi.​org/​10.​17605/​OSF.​IO/​S2GCT).

Literature search

The literature search was conducted in the MEDLINE data-
base. The search was restricted to articles published in Eng-
lish after January 1, 2014. This date was chosen to coincide 
with two milestones in genomics: the launch of the GRCh38 
reference genome in December 2013 and the release of 
higher-throughput sequencing machines (Guo et al. 2017; 
Sheridan 2014). The search was performed on November 
10, 2023, and results up to that date were included. The 
search query combined groups of terms related to variant, 
effect, prediction, and tools. Within each group, the terms 
were combined using the logical operator OR. The complete 
query is provided in Supplementary Table S1.

Articles containing the term “cancer” in the title were 
excluded to reduce the number of irrelevant hits and to find 
VEPs applicable across several diseases. We scanned the ref-
erence lists of review and benchmarking articles to retrieve 
additional eligible articles.

Study selection

Included articles described a VEP, i.e., a tool accepting 
human genetic variants and predicting functional impacts. 
The list of exclusion criteria was made to ensure that tools 

were reliable, broadly applicable, accessible, scalable, and 
reproducible (Table 1). In cases where a tool appeared to be 
discontinued, generally indicated by a non-functional URL 
in the publication, we contacted the corresponding author 
for confirmation. Some authors supplied a working URL, 
which allowed us to reassess the publication against the 
other exclusion criteria. We removed tools not applicable to 
humans or without any documentation.

Review and benchmarking articles were used to find 
additional eligible articles. However, only original work 
describing a VEP was included in this review. Web-only 
and GUI-only tools were deemed insufficiently reproduc-
ible and scalable and were thus excluded. In line with our 
accessibility requirement, tools requiring a fee were also 
excluded. Additionally, given the fast pace of progress in 
the field, we included only tools that support the GRCh38 
genome build and were updated at least once since January 
1, 2020. Tools that were specific to a small number of genes 
or a specific disease were excluded, as we were interested 
in the application of VEPs to a broad range of studies. If 
several versions of the tool existed, we only included the 
latest version, regardless of whether the latest version had 
an associated publication. Nevertheless, significant updates 
often coincided with a publication, such as dbNSFP v4 (Liu 
et al. 2020).

One author (CR) selected the studies based on the exclu-
sion criteria (Table 1). First, titles were screened for eligi-
bility. Second, articles were filtered based on the abstract. 
Third, the full text of the remaining articles was examined. 
Reasons for exclusion were recorded for each round.

Data extraction

First, one author (CR) extracted the tool name, variant types, 
functional impacts, and operating system requirements from 

Table 1   Exclusion criteria

Not a database, tool, or score
Discontinued tool
Newer version available
Not applicable to humans
Not a VEP
No documentation
Preprint
Review or benchmarking publications
Not easily downloadable, e.g., web-only or GUI-only tool
Not completely free
Not supporting the GRCh38 genome build
Specific to a small number of genes
Specific to a disease
Not updated since January 1, 2020

https://doi.org/10.17605/OSF.IO/S2GCT
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the included publications and their latest documentation. 
The URLs of tools with online capabilities were retrieved. 
Tools that required a high-performance computer were iden-
tified. Second, another author (LG) reviewed the extracted 
data to confirm the accuracy of the information from the 
publications and documentation. Divergences were resolved 
through discussion. For each article, the following charac-
teristics were automatically retrieved: PubMed ID, title, 
authors, citation, first author, journal, year of publication, 
date of PubMed entry creation, PMCID, NIHMS ID, and 
digital object identifier.

Sequence Ontology terms were used to describe the vari-
ant types and functional impacts wherever applicable (Eil-
beck et al. 2005). In case a Sequence Ontology term was 
unavailable to describe a particular variant type or functional 
impact, a new term was coined. For terms consistent with 
the structure of the Sequence Ontology, a request to create 
the new term was made on the Sequence Ontology GitHub 
page (https://​github.​com/​The-​Seque​nce-​Ontol​ogy/​SO-​Ontol​
ogies/​issues). Eighteen new terms were requested and are 
awaiting approval. Examples include “enhancer variant” and 
“promoter variant”. The full list of Sequence Ontology terms 
is provided in Supplementary Table S2.

Data synthesis

Descriptive statistics were calculated for each tool, includ-
ing the number of variant and functional impact categories. 
Linear regression was used to study the relationship between 
the number of functional impacts predicted by each tool and 
the date it was uploaded to the MEDLINE database.

Software

All analyses used R version 4.2.2; all R scripts are attached 
as supplementary files and were uploaded to Zenodo (see 
section Code availability). A website was created with the 
shiny package (Chang et al. 2023).

Results

The MEDLINE query yielded 7273 records, of which 6514 
were excluded after title screening (Fig. 1). Abstract screen-
ing excluded an additional 542 records, leaving 217 full-
text articles for eligibility assessment. Detailed reading led 
to the exclusion of 120 articles. The most frequent reasons 
for exclusion were the fact that the work did not describe 
a VEP and the lack of maintenance. Examining references 
from benchmarking and review articles added 21 relevant 
publications. In total, this review encompasses 118 original 
articles, each covering a unique VEP, and references to all 
118 articles are provided in Supplementary Table S3 

Overview of VEPs

The 118 VEPs differed in both the accepted variant types 
and the predicted functional impacts (Fig. 2). The number 
of accepted variant types per VEP ranged from one to seven. 
Seventy-three VEPs specialized in a single variant type, and 
two tools, Ensembl VEP and DECIPHER, accepted seven 
types (Bragin et al. 2014; McLaren et al. 2016). The num-
ber of predicted functional impacts per tool ranged from 
1 to 58, and approximately two thirds (n = 82) predicted a 
single functional impact. SnpEff stood out as the VEP with 
the most predicted functional impacts (Cingolani et  al. 
2012). Some databases achieved many predicted impacts 
by aggregating predictions from multiple sources. For exam-
ple, FAVOR and WGSA aggregated 48 and 40 annotations, 
respectively (Liu et al. 2016; Zhou et al. 2023).

The implementation of VEPs varied substantially. For 
example, AbraOM was a simple text file that lists variants 
and their functional impacts, while SparkINFERNO was a 
complex software package requiring a high-performance 
computing environment for execution (Kuksa et al. 2020; 
Naslavsky et al. 2017).

Variant types

A total of 36 distinct variant types were accepted by VEPs, 
such as SNVs, indels, CNVs (Supplementary Table S4, Ding 
et al. 2023). Other acceptable inputs included variants fall-
ing in specific regions, such as splice sites, introns, exons, 
untranslated regions (UTRs), promoters, or enhancers. 
Despite the diverse range of variants being accepted across 
tools, some clinically and biologically important variants 
were missing. Gene fusions were unsupported by VEPs, 
both as input and predicted functional impacts. Furthermore, 
variant types were not equally represented across the tools 
(Fig. 3). While 69 VEPs accepted SNVs as input, 19 other 
variant types were accepted by only one VEP. For example, 
DECIPHER was the only database containing inversions and 
translocations (Bragin et al. 2014).

Functional impacts

VEPs predicted 161 distinct functional impacts (Supple-
mentary Table S5). Pathogenicity was the most common 
functional impact, predicted by 75 VEPs, because of its 
clinical relevance and use within ACMG/AMP guidelines 
(Fig. 3; Richards et al. 2015). Variant frequency, stop gain, 
and missense variant were the next most commonly pre-
dicted functional impacts (Fig. 3). Although variant fre-
quency technically is not a functional impact, it has been 
reported by some databases and can provide insight into 
the evolutionary context and potential benignity of certain 
variants. Functional impacts are generally classified into 

https://github.com/The-Sequence-Ontology/SO-Ontologies/issues
https://github.com/The-Sequence-Ontology/SO-Ontologies/issues
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several categories, and effects on the protein sequence, 
such as missense variants and frameshift indels, formed 
one well-studied class. Effects on splicing and regula-
tory elements, e.g., transcription factor-binding sites and 
enhancers, formed additional categories. Some tools pre-
dicted functional impacts not supported by other tools. 
For example, UTRannotator was the sole predictor of five 
specific changes in the open reading frames of 5′ UTRs 
(Zhang et al. 2021). Eighty-nine functional impacts were 
predicted by only one tool, making these tools indispensa-
ble for a study aiming to interpret those impacts.

Only Ensembl VEP, SnpEff, and VAGrENT used a con-
trolled vocabulary, the Sequence Ontology, to describe func-
tional impacts (Cingolani et al. 2012; McLaren et al. 2016; 
Menzies et al. 2015). However, none of the tools used the 
Sequence Ontology to describe variant types. Controlled 
vocabularies may also be used for phenotypes, such as the 

Experimental Factor Ontology in the GWAS Catalog or 
Human Phenotype Ontology for DECIPHER.

Figure 4 displays the number of functional impacts by 
date of publication. While two aggregators (FAVOR and 
Ensembl VEP) had a publication in the last two years, 
SnpEff and WGSA were published more than seven years 
ago. The slope of the linear regression line was –1.03 (95% 
confidence interval –1.68, –0.37) functional impacts/year, 
which was significantly different from 0 (p = 0.002). As the 
assumption of linearity in this regression model is question-
able, we also ran a quantile regression for the median. The 
quantile regression revealed a slope of 0 (95% confidence 
interval 0, 0) and an intercept of 1, indicating no change 
in the median number of predicted functional impacts over 
time. This result is due to the 82 VEPs that predict only 
one functional impact. The number of functional impacts 
presented in Fig. 4 does not necessarily correspond to the 

Fig. 1   PRISMA flow diagram of the literature search and selection process
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number predicted in that year. This discrepancy can occur 
because tools are updated, and we extracted data from the 
most recent documentation.

Supplementary Fig. S1 shows the number of variant types 
supported for the first time each year. There was no statisti-
cally significant upward or downward trend (p = 0.212).

A Shiny app to find VEPs

To identify suitable VEPs, a Shiny app website can be used. 
The website features a searchable table listing the tools along 
with the specific variant types and functional impacts they 
address. Users can filter this table using Sequence Ontol-
ogy terms relevant to their needs. They can also enter the 
number of VEPs they wish to implement. The site will then 
display the tools that maximize the number of impact pre-
dictions. For example, the top three tools, SnpEff, FAVOR, 
and SparkInferno, predict 99 different impacts, thus cover 
61% of all possible impacts. In this combination, SnpEff 
covers 54 functional impacts covering changes in the cod-
ing sequence, UTRs, gene structure, regulatory regions, 
splicing, and others. FAVOR adds 36 annotations related 
to histone modifications, pathogenicity scores, and disease 
associations. SparkINFERNO adds 9 annotations related to 
non-coding RNAs and regulatory regions. Users may also 
filter VEPs according to the supported operating system and 
the availability of an online version of the tool. The web-
site also includes a bibliography of review and benchmark 
articles. Benchmark studies that compare the performance 
of various tools provide valuable assistance in refining tool 
selection. One study's results, including sensitivity, specific-
ity, positive predictive value, and negative predictive value, 
are accessible in a searchable table. REVEL is the best per-
former according to all four metrics (Ghosh et al. 2017). A 
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recent benchmark study identified ClinPred and REVEL as 
the top pathogenicity predictors in this review, with the rank-
ing of all 55 evaluated predictors accessible via the Shiny 
app (Livesey and Marsh 2023). While some tools performed 
better than ClinPred and REVEL, they were excluded from 
our review for not meeting the inclusion criteria. For exam-
ple, ESM-1v was not peer-reviewed (Meier et al. 2021), and 
EVE and DeepSequence did not accept genetic variants 
(Frazer et al. 2021; Riesselman et al. 2018).

Discussion

This systematic review identified 118 VEPs that together 
accepted 36 variant types and predicted 161 functional 
impacts. The functionalities of these numerous VEPs exhib-
ited considerable diversity. Some VEPs accepted only one 
variant type, while others accepted up to 7. Similarly, some 
VEPs predicted a single functional impact, while others 
predicted up to 58. About half of these tools were highly 
specialized and predicted a single functional impact for one 
variant type. In contrast, SnpEff, FAVOR, and SparkIN-
FERNO, could predict more than 40 functional impacts 

each. Using only these three VEPs covered 61% of the pre-
dictable functional impacts. Additionally, 75 tools predicted 
pathogenicity, making them usable as supporting diagnostic 
evidence according to the ACMG/AMP guidelines (Richards 
et al. 2015). To facilitate the selection of VEPs, we launched 
an interactive website that presents a list of tools according 
to user needs.

Out of 217 full-text articles analyzed, 38 VEPs have 
been completely discontinued, and another 14 have not been 
updated since 2019. The lack of maintenance of biologi-
cal databases and tools is a recurring issue (Imker 2018), 
which causes difficulty for researchers who depend on these 
resources. Financial constraints and limited value may jus-
tify the discontinuation of a database. However, the database 
should be archived in a repository to ensure reproducibility 
(Imker 2018).

Our search was limited to MEDLINE and English lan-
guage articles, potentially missing relevant studies in other 
databases or languages. To mitigate these limitations, we 
examined the references in review and benchmarking articles 
found by our search to find missed publications. Further-
more, we note that two recent reviews on rare non-coding 
variant annotation tools encompass 40 and 30 tools, respec-
tively (Kuksa et al. 2022; Tabarini et al. 2022). One bench-
marking paper covers 55 VEPs (Livesey and Marsh 2023). 
Thus, our review stands as the most comprehensive with 118 
VEPs described.

In the screening process, we removed tools that were 
disease-specific, gene-specific, web-only, not updated since 
2019, or rely on the hg19 genome build. While some tools 
may still be useful in specific contexts, we excluded them 
from our review to focus on broadly applicable, up-to-date, 
and scalable tools. While web-only databases are easily 
accessible, they lack the reproducibility, scalability, and 
privacy of downloadable VEPs.

Another limitation of our review is that it does not pro-
vide the total number of annotated variants for each tool. 
For example, while CADD scored each of the possible ∼ 9 
billion human SNVs, the ABraOM database contained only 
2.3 million variants. In fact, it is difficult to provide the pre-
cise number of annotated variants for each tool, as databases 
are subject to constant updates. Any number reported in the 
original publication is most likely outdated.

Adoption of a common standardized vocabulary would 
improve the comparison, integration, and discoverability 
of VEPs (Brookes and Robinson 2015). Only Ensembl 
VEP, SnpEff, and VAGrENT used a controlled vocabu-
lary to describe functional impacts (Cingolani et al. 2012; 
McLaren et al. 2016; Menzies et al. 2015). In this review, we 
standardized the input and output terms used by each tool 
according to the Sequence Ontology (Eilbeck et al. 2005). 
This approach facilitates the search for tools in VEP Finder. 
For example, users interested in VEPs that accept 5′ UTR 
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variants can choose ‘5_prime_UTR_variant’ from a drop-
down menu, thereby avoiding confusion over non-standard 
terms. VEP Finder will then display all the tools that accept 
variants in 5' UTRs. The term ‘pathogenicity’ is widely used 
across the 75 pathogenicity predictors to describe variant 
impact, usually on a scale from ‘benign’ to ‘pathogenic.’ 
However, the inconsistent scale and vocabulary across tools, 
with some using terms like ‘neutral,’ ‘tolerated,’ or ‘delete-
rious,’ complicates direct comparisons. While most tools 
focus on disease relevance, some, such as SIFT, assess the 
effect on protein function (Vaser et al. 2016). The ACMG/
AMP guidelines provide a standardized framework for defin-
ing pathogenicity concerning disease, but no similar classi-
fication guidelines exist for protein function. Thus, authors 
must clearly define what they mean by “pathogenicity” and 
how to interpret the scores.

Selecting suitable VEPs requires considering parameters 
beyond the accepted input and predicted output. Metrics, 
such as accuracy and precision, help in identifying tools with 
higher analytical performance (Livesey and Marsh 2023; 
Pejaver et al. 2022). Once the selection of VEPs has been 
made, guidance exists to interpret their outputs (Cheng et al. 
2020). For diagnostic purposes, clinicians are advised to 
consult the ACMG/AMP guidelines to use VEPs (Richards 
et al. 2015), and for a limited number of genes, more detailed 
guidance on variant interpretation is available (Fortuno et al. 
2021; Lee et al. 2018).

Future research

This review revealed that no VEP accepts gene fusions as 
input. This gap may be due to their lower frequency in the 
human population and because of the limitations of second-
generation sequencing technologies. However, their clinical 
importance calls for support soon (Nelson et al. 2017). New 
variant types were regularly supported (Fig. S1). Should this 
trend continue, more variant types will likely receive support 
in the coming years.

The absence of a benchmarking study assessing all 75 
pathogenicity predictors highlights the difficulty of this 
endeavor. A meta-analysis of existing studies could shed 
light on the best-performing VEPs and might discriminate 
between the many pathogenicity predictors. This analysis 
would need to account for the variability in the sets of tools 
and testing datasets used across different studies.

To maximize the utility of VEPs for clinical and research 
purposes, further advancements are required to extend pre-
dictions specific to isoforms, tissues, and traits to more vari-
ants. Such functionality will enhance our understanding of 
variant effects and facilitate their experimental validation. 
Moreover, developing trait-specific pathogenicity scores is 
essential because certain variants may be pathogenic for 
one disease but benign or even advantageous for another 

(Taylor et al. 2012). Furthermore, to facilitate interoper-
ability between different tools, we also advocate the use 
of controlled vocabularies to describe phenotypes (Kohler 
et al. 2021; Malone et al. 2010). We aim to perform a bigger 
update of the VEP Finder once per year and to do regular 
update after user input and evidence.

VEPs predicting many functional impacts, such as 
SnpEff, FAVOR and WGSA, represent a potential solution 
to the problem of tool choice. Nevertheless, the rapid evo-
lution of the field necessitates continuous updates to keep 
them up to date. Furthermore, we expect specialized tools to 
be continuously released (Fig. 4). Consequently, systematic 
reviews on VEPs will be needed regularly.

Conclusion

A staggering 118 tools were available to predict approxi-
mately 160 functional impacts that ranged from molecular 
to phenotypic effects. About 60% of these impacts could 
be predicted by combining just three tools. Unexpectedly, 
recent tools did not necessarily predict more impacts than 
older ones. Despite the vast diversity of VEPs, some genetic 
variants were not yet supported and should be the object of 
future research.

The abundance of available options can complicate the 
tool selection process. However, this challenge is mitigated 
by the Shiny app developed in this review. The app enables 
users to filter tools based on their specific needs, narrowing 
down the list of suitable options.
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