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Accelerated plasma-cell differentiation in Bach2-
deficient mouse B cells is caused by altered
IRF4 functions
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Abstract

Transcription factors BACH2 and IRF4 are both essential for anti-
body class-switch recombination (CSR) in activated B lymphocytes,
while they oppositely regulate the differentiation of plasma cells
(PCs). Here, we investigated how BACH2 and IRF4 interact during
CSR and plasma-cell differentiation. We found that BACH2 orga-
nizes heterochromatin formation of target gene loci in mouse
splenic B cells, including targets of IRF4 activation such as Aicda,
an inducer of CSR, and Prdm1, a master plasma-cell regulator.
Release of these gene loci from heterochromatin in response to
B-cell receptor stimulation was coupled to AKT-mTOR pathway
activation. In Bach2-deficient B cells, PC genes’ activation depen-
ded on IRF4 protein accumulation, without an increase in Irf4
mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B
cells promoted BACH2 function by inducing gene expression of
Bach2 and Pten, a negative regulator of AKT signaling. Elevated
AKT activity in Bach2-deficient B cells resulted in IRF4 protein
accumulation. Thus, BACH2 and IRF4 mutually modulate the
activity of each other, and BACH2 inhibits PC differentiation by
both the repression of PC genes and the restriction of IRF4 protein
accumulation.
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Introduction

A transcription factor (TF) orchestrates a gene regulatory network
(GRN) which is composed of its direct target genes and its
upstream factors that regulate the activity of the TF (Singh, 2014).

Each TF recognizes a unique DNA sequence (i.e., DNA motif), and
recruits chromatin regulators, such as chromatin remodelers and
histone modifying enzymes, to specific genomic regions for gene
regulation. In many cases, TF binds to composite DNA motifs
which consist of different TF DNA motifs; a variety of partner TFs
provides diversity in TF function in regulating GRNs. Some TFs
also interfere with the binding of other TFs to a shared DNA motif
by competition, or to an adjacent DNA motif by modulating
chromatin accessibility or steric hindrance. Overall, kinds and
combinations of TFs are distinct depending on cell types and stages
of cell differentiation. The state of TFs in a cell is unique to a given
cell and ultimately determines the fate of the cell by orchestrating
multiple GRNs.

A characteristic feature of B cell lies in its ability to proliferate
and to differentiate into antibody-producing plasma cell (PC) in
response to antigen. PC differentiation is initiated by signaling
from the antigen receptor (i.e., BCR; B-cell receptor), and the
differentiation process is driven by various TFs which function
collaboratively, competitively or independently. In particular,
BLIMP-1 which is encoded by the Prdm1 gene has been established
as a master TF of PC differentiation (Shapiro-Shelef et al, 2003),
and functions in both gene activation and repression (Minnich
et al, 2016). The activation targets of BLIMP-1 include Xbp1, a
regulator of the endoplasmic reticulum maturation for antibody
production (Shaffer et al, 2004), and Myc, a critical TF for cell
proliferation (Lin et al, 1997). Its repression target genes include
Pax5, the master TF for B-cell identity (Lin et al, 2002), and Aicda
encoding the cytidine deaminase AID. Prior to PC differentiation,
activated B cells undergo somatic hypermutation (SHM) and class-
switch recombination (CSR) of the antibody genes to acquire
affinity maturation and functional diversification of antibodies in
the germinal center (GC). AID introduces DNA damage at the
immunoglobulin gene (Ig) locus for initiating the processes of SHM
and CSR (Chaudhuri et al, 2003; Muramatsu et al, 2000). BLIMP-1
determines the cell fate to become PC by terminating the
expression of B-cell-specific genes, including those for CSR and
SHM. Therefore, the expression of Prdm1 is strictly regulated
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during B-cell development and antigen-driven activation of B cells.
In these sequential processes following antigen stimulation, TFs
BACH2 (BTB and CNC homolog 2) and IRF4 (Interferon
regulatory factor 4) cooperatively promote CSR (Ochiai and
Igarashi, 2022) but oppositely regulate PC differentiation; while
BACH2 represses the expression of Prdm1 (Ochiai et al, 2006),
IRF4 activates its expression (Sciammas et al, 2006). Therefore,
these two TFs play a critical role in the determination of B-cell fate
upon antigen stimulation.

BACH2 belongs to the BACH family, and recognizes the Maf
recognition element (MARE), TPA response elements (TRE), and the
cAMP response elements (CREs) (Reinke et al, 2013). Deficiency in
Bach2 severely reduces SHM and CSR in immunized mice,
accompanied by elevated expression of Prdm1 and Xbp1 (Muto
et al, 2004). BACH2 binds to the regulatory regions of the Prdm1 gene
(Ochiai et al, 2006; Ochiai et al, 2008) and recruits the complexes of the
corepressors NCOR and histone deacetylase HDAC3 for gene
repression (Tanaka et al, 2016). BACH2 protein amount remains
high for a longer period in class-switching IgG-type B cells than in
non-class-switching IgM-type B cells (Muto et al, 2010), suggesting
that BACH2 determines whether B cells undergo CSR. Furthermore,
BACH2 determines differentiation to memory B cells (Kometani et al,
2013). BACH2 is negatively regulated by the AKT-mTOR (mamma-
lian target of rapamycin) kinase pathway, which reduces Bach2 gene
expression and promotes BACH2 protein degradation by mTORC1
(mammalian target of rapamycin complex 1)-mediated phosphoryla-
tion (Ando et al, 2016; Tamahara et al, 2017). Consistent with the fact
that BCR stimulation is coupled with the AKT-mTOR pathway and
initiates the dynamic alteration of chromatin architecture for initiating
differentiation (Kieffer-Kwon et al, 2017), BACH2 is reduced in its
function upon BCR activation (Tamahara et al, 2017). The alteration
of chromatin architecture upon BCR stimulation may also reduce the
expression of Bach2. Nonetheless, BACH2 needs to be maintained
active and/or re-activated in B cells undergoing antibody CSR. The
mechanism for the maintenance or reactivation of BACH2 under BCR
stimulation remains an open question to be explored.

IRF4 has been identified as a partner of PU.1, an ETS family TF
(Eisenbeis et al, 1995), which together binds to the ETS-IRF
composite element (EICE) for B-cell gene activation (Brass et al,
1999). The PU.1-IRF4 heterodimer functions across B-cell devel-
opment (Lu et al, 2003), and induces the expression of various
genes including Bcl6 and Icosl required for the GC reaction (De
Silva and Klein, 2015; Liu et al, 2015; Ochiai et al, 2013; Ochiai et al,
2018). Furthermore, IRF4 alters its function by binding to
additional DNA motifs in the process of PC differentiation. AP-1
is one of the IRF4 partners, and it recruits IRF4 to the AP-1-IRF
composite element (AICE) for gene activation (Glasmacher et al,
2012). BATF, an AP-1 family TF, is transiently expressed in
activated B cells, and forms DNA-binding complexes with IRF4 on
the Aicda locus to induce its expression (Ochiai et al, 2018). Thus,
the PU.1-IRF4 and BATF-IRF4 heterodimers cooperatively orches-
trate GRNs promoting CSR prior to PC differentiation. Layered
upon this regulation, IRF4 protein is accumulated toward PC
differentiation and becomes to recognize the interferon-stimulated
response element (ISRE), another DNA motif bound by the IRF4
homodimer (Ochiai et al, 2013). Accumulated IRF4 activates the
expression of Prdm1 by binding to an ISRE within the intron
(Sciammas et al, 2006). It is suggested that the induction of Irf4 by
BLIMP-1 forms the IRF4-BLIMP-1-positive feedback loop, which

drives and fixates PC differentiation (Minnich et al, 2016). Due to
the modulation of multiple GRNs via diverse DNA motifs, IRF4 is
indispensable for both CSR and PC differentiation (Klein et al,
2006; Sciammas et al, 2006). In a previous study, BACH binding
motifs were detected adjacent to IRF4 binding motifs in activated B
cells (Xu et al, 2015), suggesting a competitive or collaborating roles
of BACH2 and IRF4. However, their functional relationship has
never been explored.

The AKT-mTOR pathway has important roles in modulating
immunoglobulin gene recombination during B-cell development
(Clark et al, 2014; Omori et al, 2006). AKT binds to cellular
membrane lipids phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)
or phosphatidylinositol (3,4,5) triphosphate (PIP3) produced by
phosphoinositide 3-kinase (PI3K), which is activated via signaling
from receptors including BCR. AKT activation is modulated by its
phosphorylation, and, in particularly, phosphorylation at serine 473
(Ser473) brings about full activation of AKT. AKT promotes
mTORC1 activity by phosphorylating components of mTORC1,
followed by phosphorylation of p70S6K (p70 ribosomal protein S6
kinase), which in turn phosphorylates mTOR at serine 2448
(Ser2448) (Chiang and Abraham, 2005; Holz and Blenis, 2005;
Rosner et al, 2010). Since the AKT-mTOR pathway inhibits CSR by
modulating the function of TFs, including BACH2 (Omori et al,
2006; Tamahara et al, 2017), its activity needs to be restricted in B
cells undergoing CSR. It remains unclear how the AKT-mTOR
pathway is kept in check during B-cell activation.

Here, we tried to examine how the roles of BACH2 and IRF4
were integrated into the regulation of CSR and PC differentiation.
We found the regulatory mechanism of AKT as a key switch of
BACH2 and IRF4. In addition to inhibiting the BACH2 activity,
AKT increased IRF4 protein, which led to elevated Prdm1
expression induced by the IRF4 homodimer and resulted in PC
differentiation. On the other hand, AKT activity was reduced by the
PU.1-IRF4 heterodimer. Surprisingly, in B cells from Bach2-
deficient mice, PU.1-IRF4 function was decreased, and IRF4
promoted PC differentiation without committing the IRF4-
BLIMP-1-positive feedback loop.

Results

BACH2 represses gene loci for CSR and plasma cell in an
H3K9me3-mediated manner

In previous reports, we have set up an in vitro PC differentiation
system using resting B (naive B) cells purified from B1-8 mice,
which allowed us to analyze both B-cell activation and PC
differentiation in response to BCR signaling (Ochiai et al, 2021)
(Fig. 1A). Considering that BACH2 is regulated via the BCR-AKT-
mTOR pathway (Ando et al, 2016; Tamahara et al, 2017), we
examined how BACH2 function was regulated under BCR signaling
using this system. We found that a majority of BACH2 protein was
localized around nuclei in naive B cells (Tamahara et al, 2017), and
BACH2 was co-localized with the nuclear membrane protein
LAMIN B1 in both naive B and activated B cells (Fig. 1B). These
observations raised the possibility that the gene repression
controlled by BACH2 involved the association of target gene loci
at the nuclear membrane. To explore this possibility, endogenous
BACH2 was purified using anti-BACH2 antibodies from B1-8hi
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mice B cells at 12 h after BCR stimulation, and interacting proteins
were identified using mass spectrometry. Then, the components
of BACH2 complex were determined as specific detection with anti-
BACH2 antibodies, or more than two-fold protein score with anti-
BACH2 antibodies than control IgG. Furthermore, independently
purified three BACH2 complexes were compared, and 80 factors
were commonly detected in three BACH2 complexes (Fig. 1C).

These factors were enriched with GO terms related to “chromatin
remodeling”, “DNA repair” and “transcripts” (Fig. 1D; Appendix
Table S1). LAMIN B1 was detected as one of these core 80 factors.
The known BACH2 interactors NCOR1 and NuRD complexes were
detected in two of the three samples (Fig. 1E), confirming that they
function with BACH2 in primary B cells. Furthermore,
heterochromatin-related factors, including TRIM28 and HP1γ
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which recognize histone H3 lysine 9 tri-methylation (H3K9me3),
and linker histone H1 were consistently identified in the
BACH2 samples. Consistent with our previous report that BACH2
is phosphorylated by the AKT-mTOR pathway and localized in the
cytoplasm (Ando et al, 2016), BCR stimulation increased the
phosphorylation form of BACH2 (p-BACH2) and resulted in
BACH2 accumulation in the cytoplasmic region (Fig. 1B,F). While
TRIM28 and HP1γ were unchanged at the protein level between
naive B cells and activated B cells (Fig. 1F), they co-localized with
BACH2 in both naive B cells and activated B cells (Fig. 1G,H).
These observations suggest that the BACH2-mediated target gene
repression involves H3K9me3.

It was reported that the number of chromatin regions with
enriched H3K9me3 became less in activated B cells than in naive B
cells (Kieffer-Kwon et al, 2017). They utilized LPS, IL-4, and anti-
CD180 antibodies for B-cell activation. In a previous report, we
have reported that BACH2 is required for CSR in activated B cells
stimulated with LPS and IL-4 (Muto et al, 2010). Therefore, their
H3K9me3 ChIP-seq data are supposed to contain BACH2
regulatory regions losing the modification upon B-cell activation.
In their ChIP-seq data, 143,396 and 88,825 H3K9me3 peaks in total
were detected in naive B cells and activated B cells, respectively
(Fig. 2A). To investigate the possible relationship of BACH2-
mediated target gene repression with H3K9me3, we extracted genes
regulated by BACH2 and H3K9me3 in naive B cells. From their
H3K9me3 ChIP-seq data in naive B and activated B cells (Kieffer-
Kwon et al, 2017), 25,677 peaks were detected in both naive B cells
and activated B cells, while 116,778 or 62,382 peaks were uniquely
detected in either of the B cells. Particularly, we focused on the
116,778 peaks, corresponding to 18,972 genes, which presumably
lost H3K9me3 modification upon B-cell activation. As a cohort of
H3K9me3-regulated genes in naive B cells, we also used 618 genes
repressed by non-chromatin protein PC4, which regulates
H3K9me3-mediated heterochromatin formation of non-B cells
genes in naive B cells (Ochiai et al, 2020).

To identify BACH2 target genes from those genes, we utilized
two data sets of BACH2 ChIP-seq. One was our previous data
obtained in Ebf1-deficient pre-pro-B cells (Itoh-Nakadai et al,
2017). A total of 12,128 peaks, corresponding to 8790 genes, were
extracted with enriched in BACH motif (Fig. 2B; Dataset EV1;
Appendix Fig. S1). The other dataset was newly obtained from
activated B1-8hi B cells. Compared with pre-pro-B cells, much fewer
664 peaks, corresponding to 627 genes, were identified (Fig. 2B;
Dataset EV1). Importantly, sequences obtained from BACH2
ChIP-seq in activated B cells were also enriched in BACH motif
with the significant P-value, and more than half, 55.50%, of targets

contained the BACH motif (Appendix Fig. S1). These results
suggested that BACH2 ChIP-seq in activated B cells effectively
exhibits BACH2-binding genomic regions. Importantly, many of
the genes related to CSR or plasma cell showed BACH2 binding in
pre-pro-B cells but not in activated B cells. On the other hand,
genes related to hematopoietic progenitors, non-B lineage immune
cells or early B cells showed BACH2 binding in both pre-pro-B cells
and activated B cells, and these genes included Kit, Ly96, Cish, and
Cxcr4 (Dataset EV1). These observations indicated that BACH2
represses the expression of non-B-cell genes in both early B cells
and activated B cells, and only a selected set of genes were de-
repressed upon B-cell activation. Therefore, for further analysis, we
applied genes bound by BACH2 in pre-pro-B cells but not in
activated B cells as a loss of BACH2 binding in activated B cells.

To extract genes that lost both BACH2 binding and H3K9me3
modification upon B-cell activation, four gene sets, lost H3K9me3
modification in activated B cells, upregulated in Sub1-deficient B
cells, BACH2 ChIP-seq in pre-pro-B cells and activated B cells were
compared (Fig. 2B). Among the genes which lost H3K9me3
modification upon B-cell activation, 184 genes were commonly
regulated by BACH2 and PC4, and 256 genes were regulated by
PC4 but not by BACH2. Importantly, 6957 genes were extracted as
genes that lost both BACH2 binding and H3K9me3 modification
(Fig. 2B; Dataset EV1). These genes included known BACH2 target
genes related to plasma-cell differentiation, such as Prdm1 and
Ccnd3 (Ochiai et al, 2006; Tamahara et al, 2017). Thus, the
extracted 6957 genes contained genes released from BACH2-
mediated heterochromatin upon B-cell activation. Transcription
start site (TSS) around these genes were reduced for H3K9me3
modification and increased for H3K27ac modification in activated
B cells (Fig. 2C), confirming that these genes were activated from
naive B to activated B cells. To confirm this interpretation, the
expression of these genes was examined using our previous
transcriptome data along PC differentiation (Ochiai et al, 2018).
Two sets of gene clusters were extracted from upregulated genes
(Fig. 2B, bottom). Cluster 1 included 456 genes (887 BACH2 peaks)
which were transiently upregulated at 60 h, whereas cluster 2
included 831 genes (1770 BACH2 peaks) which were gradually
upregulated toward PCs (Dataset EV2). BACH binding motif was
detected as de novo top motif in sequences of BACH2-binding
regions of the genes in both clusters (Fig. 2D,G). Genes in cluster 1
were enriched in “mRNA processing”, “cell cycle”, “transcription”,
“isotype switching”, “SHM and DNA repair” in GO analysis
(Fig. 2E,F; Dataset EV3). Aicda, an essential enzyme for CSR and
SHM (Chaudhuri et al, 2003; Muramatsu et al, 2000), and Batf, an
inducer of Aicda (Ochiai et al, 2018), as well as DNA repair factors

Figure 1. BACH2 interacts with H3K9me3-binding proteins in mouse splenic B cells.

(A) Schematic view of differentiation events and transcripts using in vitro BCR-mediated PC differentiation. Splenic B cells purified from B1-8hi mice were stimulated with
IL-2, IL-4, IL-5, CD40L, and NP-ficol. (B) Immunohistochemistry of BACH2 (green) and nuclear membrane protein LAMIN B1 (red) in naive B and activated B cells. (C)
Venn diagram comparing numbers of the BACH2 complex carry out components. Three independent BACH2 purifications were performed using B1-8hi splenic B cells
stimulated for 12 h, and examined the interacting components using LC-MS/MS. Each contained 488 or 625 or 180 components, respectively. Red, 80 proteins commonly
included in all the complexes; Blue, the numbers of proteins shared by two complexes. (D) A gene ontology (GO) analysis of the BACH2 interacting proteins detected in at
least two complexes. The P-value of enriched biological process (BP) related to transcription, DNA repair or chromatin are shown. The unique GO numbers and the
number of proteins belonging to each GO are shown in bars. (E) Selected BACH2 interacting proteins were indicated with the protein scores and numbers of peptide
detected in each BACH2 complex. (F) Immunoblot analyses of the indicated proteins. Red arrowhead indicates phosphorylated BACH2. αTUBULIN was used as an internal
control. kDa kilodalton. Immunohistochemistry of BACH2 with TRIM28 (G) or HP1γ (H) in naive B and activated B cells. (B, F, G, H) Naive B cells, without stimulation;
activated B cells, stimulated for 24 h. Data information: blue indicate nuclei stained with Hoechst 33342, and scale bars are 5 μm for all immunohistochemistry images.
Source data are available online for this figure.
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were included in this cluster (Fig. 2F). Genes in cluster 2 were
enriched in various cell functions such as “ER”, “transport”,
“oxidation”, “lipid metabolism” and “transcription” (Fig. 2H,I;
Dataset EV3). Prdm1 and Xbp1, well-known PC regulators, were

included in this cluster (Fig. 2I). These results indicate that BACH2
organizes heterochromatin-mediated silencing of genes for both
CSR and PC in naive B cells. BACH2 inactivation may be necessary
for initiating the activation of CSR and PC genes.
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Post-transcriptional accumulation of IRF4 protein in
Bach2−/− mice B cells

In our previous reports, we showed the accelerated PC differentia-
tion, with skipping CSR and the upregulation of Prdm1 expression,
in Bach2-deficient mice B cells (Muto et al, 2010; Muto et al, 2004;
Ochiai et al, 2006). We next generated Bach2-deficient mice with
B1-8hi background (hereafter Bach2−/− mice), and performed
transcriptome analysis comparing B cells purified from wild-type
(Bach2+/+) and Bach2−/− mice, and examined transcripts of BACH2
target genes (Fig. 3A). The transcripts of Aicda and Batf, transiently
upregulated BACH2 target genes (Fig. 2F), were not increased, and
that of Aicda was rather decreased in Bach2−/− B cells. The
transcripts of Prdm1 and Xbp1, BACH2 target genes upregulated in

PCs (Fig. 2I), were significantly upregulated in Bach2−/− B cells.
These results confirmed that Bach2−/− B cells were already
committed to PCs.

Since Prdm1 is induced by IRF4, we speculated that IRF4 is
upregulated in Bach2−/− B cells. However, Irf4 gene transcripts were
reduced in Bach2−/− B cells (Fig. 3A). The enrichment of H3K27ac,
a histone modification for gene activation, was reduced at the Irf4
locus in Bach2−/− B cells, along with much fewer transcripts than
Bach2+/+ naive B cells and PCs (Fig. 3B). Despite the reduced Irf4
transcript level, IRF4 protein was rather increased in Bach2−/− B
cells (Fig. 3C; Appendix Fig. S2). These results were further
validated using RT-qPCR. Consistent with our previous reports
(Muto et al, 2010; Muto et al, 2004), the expression of Prdm1 was
consistently much higher in Bach2−/− B cells than Bach2+/+ B cells
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Figure 3. IRF4 protein accumulation by post-transcriptional mechanism in Bach2−/− B cells.

Comparison analyses of splenic B cells from B1-8hi:Bach2+/+ (hereafter, Bach2+/+) mice and B1-8hi:Bach2−/− (hereafter, Bach2−/−) mice. (A) Volcano plots for RNA-seq data.
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independent experiments. Source data are available online for this figure.
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(Fig. 3D). On the other hand, while the expression of Irf4, Aicda
and G1 germline transcript (G1glt) was induced along the time
course in Bach2+/+ B cells, these were not induced in Bach2−/− B
cells. Regardless of the low Irf4 expression, IRF4 protein was
accumulated in a large population of activated Bach2−/− B cells,
which differentiated into PC with higher frequency than Bach2+/+ B
cells without undergoing CSR (Fig. 3E; Appendix Fig. S2). There-
fore, IRF4 protein was accumulated in Bach2−/− B cells indepen-
dently of its mRNA expression, suggesting that the IRF4-BLIMP-1-
positive feedback loop is not operating in Bach2−/− B cells.
Furthermore, IRF4 failed to induce the expression of Aicda in this
situation. The reason is presumably no induction of Batf, which
recruits IRF4 to AICEs at the Aicda locus for its induction.

Accumulated IRF4 governs the PC-GRN in
Bach2−/− B cells

To confirm that IRF4 protein accumulation in Bach2−/− B cells
activated the GRN for PC, we examined upregulated genes in Bach2−/−

B cells for IRF4 binding. We focused on the 831 BACH2 target genes
which were upregulated in PCs (Fig. 2B, cluster 2). Among them, 200
genes were upregulated in Bach2−/− B cells (Fig. 4A). These genes were
examined for IRF4 binding using IRF4 ChIP-seq at 72 h after
activation, and 43 genes with 67 peaks were extracted including
Prdm1 and Xbp1 (Fig. 4A,B; Dataset EV4). The sequences of these
IRF4-bound peaks contained ISRE bound by the IRF4 homodimer,
which can be formed upon IRF4 accumulation. The status of H3K27ac
was increased around the TSS of these genes in Bach2−/− B cells
(Fig. 4C). In GO term, the 200 genes upregulated in both Bach2−/− B
cells and PCs were enriched with factors related to “lipid metabolism
process”, “cell adhesion” and “transport” (Fig. 4D). The 43 IRF4 target
genes were enriched with terms related to “transport”, “B-cell
differentiation” and “lipid metabolic process”. Transcripts of IRF4-
targeted 43 genes were upregulated in both Bach2−/− B cells and PCs
(Fig. 4B). Among these genes, both Prdm1 and Tnfrsf17, which
encodes B-cell maturation antigen BCMA, showed increase in
H3K27ac in Bach2−/− B cells compared with Bach2+/+ B cells
(Fig. 4E,F). In contrast, the Xbp1 locus did not show such an increase
in H3K27ac (Fig. 4G). Their transcripts were increased in Bach2−/− B
cells. These observations are consistent with the previous reports
showing that, while Xbp1 is induced by alternative splicing, Prdm1 is
induced at the transcription level upon PC differentiation (Muto et al,
2010; Ochiai et al, 2006). ChIP-qPCR analysis confirmed that the IRF4
binding and H3K27ac enrichment at Prdm1 cns9 were increased in
Bach2−/− B cells (Fig. 4H). Thus, accumulated IRF4 in Bach2−/− B cells
activates PC-related genes via ISREs. It should be noted that these

genes were directly bound by BACH2 at separate sites from IRF4
binding regions (Fig. 4E–G) and repressed in B cells (Fig. 2B). Taken
together, BACH2 organizes heterochromatin formation of these gene
loci, and the loss of BACH2 presumably increases the accessibility of
IRF4 to its regulatory regions.

IRF4 failed to activate EICE-regulated genes in
Bach2−/− B cells

Prior to inducing the PC-related genes, IRF4 promotes B-cell
activation and CSR by binding to EICE and AICE, respectively. Its
target genes such as Bcl6 and Icosl promote antibodymaturation in GC
B cells (De Silva and Klein, 2015; Huang et al, 2014; Liu et al, 2015),
and they are induced by EICEs bound by PU.1-IRF4 heterodimer
(Ochiai et al, 2018; Ochiai et al, 2013). However, the transcripts of Bcl6
and Icosl were downregulated in Bach2−/− B cells (Fig. 3A). These
observations raised the possibility that EICE-regulated genes, includ-
ing Bcl6 and Icosl, were downregulated in Bach2−/− B cells. To clarify
the possibility, we examined whether the downregulated genes in
Bach2−/− B cells contain PU.1-IRF4 regulated genes. From 4216 genes
downregulated in Bach2−/− B cells, 1353 genes, corresponding to 2602
peaks, were extracted as IRF4-bound genes using IRF4 ChIP-seq at
24 h after activation (Fig. 5A). Then, 969 genes, corresponding to 1582
peaks, were further extracted as PU.1-IRF4 co-bound genes using PU.1
ChIP-seq. The sequences bound by PU.1-IRF4 contained the EICE
motif with a significant P-value (Fig. 5A; Dataset EV4). The status of
H3K27ac was decreased in Bach2−/− B cells around the TSS of these
genes (Fig. 5B), confirming their decreased transcriptional activity. In
GO term, these genes were enriched in “transcription”, “protein
phosphorylation” and “dephosphorylation”, “chromatin modifica-
tion”, “apoptosis” and “signal transduction” (Fig. 5C). Bcl6 and Icosl
were included in these genes, and their transcripts were reduced in
both Bach2−/− B cells and PCs (Fig. 5D–F). Thus, PU.1-IRF4 target
genes, regulated by EICEs, were downregulated in Bach2−/− B cells.

During the course of CSR, AKT activity needs to be kept low,
and several phosphatases are known to inhibit the AKT pathway.
PTEN (phosphatase and tensin homolog) inhibits the AKT
pathway by dephosphorylating PIP3 (Maehama and Dixon, 1998)
and modulates the AKT pathway in GCB cells (Luo et al, 2019).
PHLPP1 (PH domain leucine-rich repeat protein phosphatase)
directly dephosphorylates AKT at Ser473 (Gao et al, 2005).
Importantly, we found that Pten and Phlpp1 were also regulated
by PU.1-IRF4 and downregulated in Bach2−/− B cells (Fig. 5D).
These transcripts were reduced, and the enrichment of H3K27ac
was decreased at their gene loci in Bach2−/− B cells (Fig. 5G,H). To
clarify the reason for the downregulation of EICE-regulated genes,

Figure 4. IRF4 governs PC differentiation in Bach2−/− B cells.

(A) Extraction of the IRF4 binding targets from upregulated genes in Bach2−/− B cells. Upregulated 2575 genes, Bach2−/−/Bach2+/+ > 2.0 in the transcriptome analysis in
Fig. 3A, were co-analyzed with cluster 2 genes in Fig. 2, which were bound by BACH2 and lost H3K9me3 modification upon activation and induced in PCs, and 200 genes
were extracted. These genes were analyzed for IRF4 binding, and 43 genes, corresponding to 67 peaks, were extracted. Sequences within these IRF4-bound regions were
analyzed for enriched motif using HOMER, shown with enrichment P-value and percentage of target sequences. ISRE, interferon-stimulated response element. (B)
Transcripts of IRF4-bound 43 genes in Bach2+/+ B cell, Bach2−/− B cell and Bach2+/+ plasma cell (PC), shown with log2 expression. (C) The H3K27ac distribution at TSS of
43 genes (67 peaks) in Bach2+/+ and Bach2−/− B cells. (D) GO analysis of common 200 genes (upper) and IRF4-bound 43 genes (lower) shown with a modified Fisher
Extract P-value for gene-enrichment analysis. BP biological process. (E–G) Presentation of BACH2 and IRF4 binding, H3K27ac enrichment, and transcripts. (E) The Prdm1
locus (F) the Tnfrsf17 locus and (G) the Xbp1 locus. Red arrows, the regions containing indicated ISRE motif. BACH2 ChIP-seq, Ebf1−/− pre-pro-B cells (GSE87503). IRF4
ChIP-seq, Bach2+/+ B cells stimulated for 72 h. H3K27ac ChIP-seq, Bach2+/+ B cells stimulated for 12 h. RNA-seq data, shown in Fig. 2. PC, CD138+ cells at 96 h. (H) ChIP-
qPCR of IRF4 binding and H3K27ac enrichment at the Prdm1 (cns9, a red arrow in (E)). cns1, used as a negative control region at the Prdm1 locus. Data show the average
values ± SD (error bars) of three independent experiments. P-value by t-test using R.
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we examined the efficiency of PU.1 binding to EICE-contained
regions. While PU.1 bound to the regulatory regions at the Icosl,
Pten, Bcl6, and Phlpp1 loci as well as the Ig κ3’E region, a positive
control region of EICE (Eisenbeis et al, 1995), in Bach2+/+ B cells,
PU.1 binding to these regions was reduced in Bach2−/− B cells
(Fig. 5I). Nuclear localization of PU.1 was similarly observed in
both Bach2+/+ and Bach2−/− B cells (Appendix Fig. S3). The
expression of Spi1, encoding PU.1, did not alter (see Fig. 3A). Thus,
PU.1 was dissociated from EICEs, resulting in the failure to activate
the EICE-regulated genes in Bach2−/− B cells.

PU.1 re-activates BACH2 function in activated B cells

Accompanied by the downregulation of Pten and Phlpp1, the level of
phosphorylated AKT at Ser473 (p-AKT), the activation form of AKT,
was elevated in Bach2−/− B cells (Fig. 5J). The AKT pathway is one of
the important cell signaling pathways in the determination of CSR and
PC differentiation (Omori et al, 2006), and the negative regulation of
BACH2 is a part of the AKT function (Ando et al, 2016; Tamahara
et al, 2017). Consistently with a previous study implicating in the
regulation of Bach2 by PU.1 via EICE (Wang et al, 2019), we detected
PU.1-IRF4 binding to the Bach2 locus in activated B cells (Fig. 5K).
From these observations, we speculated that PU.1, cooperatively with
IRF4, maintains BACH2 by inducing its transcription and inhibiting
AKT activity via the induction of Pten and/or Phlpp1 in activated B
cells. To examine this possibility, PU.1 was transduced in activated B
cells. The expression of Bach2, Bcl6, Icosl, and Pten were induced in
PU.1 transduced (PU.1-OE) cells, while that of Phlpp1was not induced
(Fig. 5L). The level of p-AKT was reduced in these cells (Fig. 5M),
suggesting the effect of induced Pten expression. Importantly, the
expression of BACH2 targets genes, Prdm1, Xbp1, Aicda, and Hmox1,
as well as Irf4 was dramatically reduced in PU.1-OE cells (Fig. 5N).
The frequency of IRF4hiCD138+ PCs was predominantly reduced in
these cells (Fig. 5O). Therefore, we conclude that PU.1 promotes the
BACH2 function, and the mechanism involves the induction of Bach2
expression and inhibition of AKT activity.

Increased AKT activity promotes IRF4 protein
accumulation in Bach2−/− B cells

AKT activation facilitates PC differentiation (Omori et al, 2006).
Contrary to PU.1 transduction, transduction of constitutively active

AKT (CA-AKT) enhanced the percentage of IRF4hiCD138+ popula-
tion (Appendix Fig. S4). Therefore, we examined the relevance of AKT
activity to IRF4 protein accumulation. Upon B-cell activation, the level
of p-AKT was elevated in CD138+ PCs compared to CD138- cells
regardless of IgG1 positivity and hence CSR (Fig. 6A). When activated
B cells were sorted depending on IRF4 protein amount, IRF4hi and
IRF4lo populations were enriched in CD138+ PCs or CD138-IgG+ cells,
respectively, and the level of p-AKT was much higher in the IRF4hi

population than the IRF4lo population (Fig. 6B). Next, we examined
the effects of AKT inhibition on IRF4 accumulation. AZD5363, a
selective inhibitor of AKT-mediated phosphorylation, was supple-
mented in cell culture medium at 48 h after activation, and the effect
was analyzed at 96 h (Fig. 6C). The increased amounts of AZD5363
reduced the level of phosphorylated mTOR at Ser2448 (p-mTOR),
which is promoted at the downstream of AKT signaling, without
altering the ratio between p-AKT and total AKT (Fig. 6D). The
frequency of CD138+ PCs and IRF4hi population was also decreased
with the increased amount of AZD5363 (Fig. 6E). Thus, AKT
activation promotes IRF4 accumulation in activated B cells.

To examine whether IRF4 protein is accumulated by the
elevated AKT activity in Bach2−/− B cells, splenic B cells were
incubated in the culture medium supplemented with AZD5363.
BACH2 is phosphorylated by mTORC1, and p-BACH2 was
reduced with AZD5363 treatment in Bach2+/+ B cells (Fig. 6F).
IRF4 protein was not affected in these cells. In contrast, it was
higher in Bach2−/− B cells and was reduced with the AZD5363
treatment. Therefore, IRF4 protein was accumulated by the elevated
AKT activity in Bach2−/− B cells. We surmise that the down-
regulation of Pten and Phlpp1 contributed to the increase of AKT
activity, resulting in IRF4 protein accumulation in Bach2−/− B cells.

Altered PU.1-IRF4 function and IRF4 regulation in
Bach2−/− mice follicular B cells

Taken together, we found that Bach2−/− B cells were accelerated for PC
differentiation by two altered functions of IRF4. One was a reduction
in the PU.1-IRF4 function, which resulted in the decreased expression
of EICE-regulated genes, including Bcl6, Icosl, Pten, and Phlpp1. The
other is IRF4 protein accumulation, which facilitated the expression of
ISRE-regulated genes including Prdm1, Xbp1, and Tnfrsf17. In the
secondary lymphoid organ, B cells are localized at marginal zone (MZ)
or follicular (FO), and these cells are distinguished with cell surface

Figure 5. IRF4 failed to activate PU.1-IRF4 target genes in Bach2−/− B cells.

(A) Extraction of PU.1-IRF4 binding targets from downregulated genes in Bach2−/− B cells. Downregulated 4216 genes, Bach2−/−/Bach2+/+ < 0.7 in RNA-seq analysis, were
co-analyzed with IRF4-bound 5393 genes, and 1353 genes, corresponding to 2602 peaks, were extracted. These peaks were further examined for PU.1 binding using
HOMER mergePeaks, and 1582 peaks (969 genes) were extracted as PU.1-IRF4 co-bound regions. Sequences within these peaks were analyzed for an enriched motif using
HOMER, shown with enrichment P-value and percentage of target sequences. EICE, Ets-IRF composite element. (B) The H3K27ac distribution at TSS of the 969 genes
(1582 peaks) in Bach2+/+ and Bach2−/− B cells. (C) GO analysis of the 969 genes shown with a modified Fisher Extract P-value for gene-enrichment analysis. BP biological
process. (D) Transcripts of indicated 24 genes, selected from 969 genes, in Bach2+/+ B cell, Bach2+/+ PC, and Bach2−/− B cell, shown with Z-score. (E–H) Presentation of
PU.1 and IRF4 binding, H3K27ac enrichment, and transcripts. (E) The Bcl6 locus, (F) the Icosl locus, (G) the Pten locus, and (H) the Phlpp1 locus. Red arrows, the regions
containing indicated EICE motif. (I, J) Analysis of Bach2+/+ and Bach2−/− naive B cells. (I) ChIP-qPCR of PU.1 binding at indicated genomic regions containing EICEs. Prdm1
cns9, used as a negative control region. κ3E, possessing EICE and used as a positive control region. (J) Flow cytometry analysis of intracellular phospho-AKT at S473 (p-
AKT). (K) Presentation of PU.1 and IRF4 binding at the Bach2 locus. IRF4 ChIP-seq, Bach2+/+ B cells stimulated for 24 h. PU.1 ChIP-seq, B1-8i splenic B cells stimulated for
24 h (GSE46607). H3K27ac ChIP-seq, Bach2+/+ or Bach2−/− B cells stimulated for 12 h. RNA-seq data, shown in Fig. 2. PC, CD138+ cells at 96 h. (L–O) Analysis of PU.1
transduced (PU.1-OE) cells. (L) The expression of EICE-target genes, Bach2, Bcl6, Icosl, Pten and Phlpp1. (M) Flow cytometry analysis of p-AKT. (N) The expression of Irf4
and BACH2 target genes, Prdm1, Xbp1, Aicda and Hmox1. (O) Frequencies of intracellular IRF4 and surface CD138. Data information: (I, L, N) data show the average
values ± SD (error bars) of three independent experiments. P-value by t-test using R. (J,M, O) Data are representative of three mice for each genotype or transduced cells.
Source data are available online for this figure.
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markers (Fig. 7A). While the majority of MZ B cells differentiate to
IgM-producing PCs in early time points, FO B cells undergo CSR and
SHM to produce high-affinity antibodies. BACH2 was predominantly
expressed in FO B cells (Fig. 7B) (Huang et al, 2014; Shinnakasu et al,
2016), and Bach2−/− mice showed decreased FO B cells and increased
MZ B cells (Fig. 7A). These observations suggest that Bach2-deficiency
influenced FO B cell differentiation.

To examine whether the two altered functions of IRF4 pertain to
FO B cells, we examined the expression of EICE- or ISRE-regulated
genes in FO B and MZ B cells. The expression of EICE-regulated
genes, Bcl6, Icosl, Pten, and Phlpp1, was decreased in Bach2−/− FO B
cells but not altered in Bach2−/− MZ B cells (Fig. 7B), indicating
that a reduction in the PU.1-IRF4 function was mainly observed
in FO B cells. Importantly, the expression of Prdm1, an
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ISRE-regulated gene, was robustly increased in both Bach2−/− FO B
and MZ B cells, indicating their commitment to PCs. The
expression of Irf4 was significantly decreased in Bach2−/− FO B
cells, while it was not altered in Bach2−/− MZ B cells. These results
suggest that Bach2−/− FO B cells are driven to PC differentiation by
the combination of a decrease in the PU.1-IRF4 function and an
increase in the IRF4 homodimer function. Thus, loss of BACH2
facilitates overall PC differentiation of splenic B cells, without
activating the IRF4-BLIMP-1-positive feedback loop.

We found that the above aberrant PC differentiation observed in
Bach2−/− mice was not the case in B-cell-specific Bach2-deficient
(Mb1-Cre:Bach2fl/fl, hereafter cKO) mice. In Bach2 cKO B cells,
IRF4 protein was not accumulated (Fig. 7C), and AKT was not
activated, accompanied with the unaltered expression of EICE-
regulated genes, Bcl6, Icosl, and Pten (Fig. 7D; Appendix Fig. S5A).
Upon stimulation with LPS and IL-4, the expression of both Prdm1
and Irf4 was induced more highly along the time course in Bach2
cKO B cells than control B cells (Fig. 7E). The expression of Aicda
was not induced, and G1glt was induced at 24 h but decreased at
48 h in these cells (Appendix Fig. S5B). In flow cytometry analysis,
control B cells were enriched with the IRF4 intermediate (IRF4inter)
population which undergoes CSR (Appendix Fig. S5C). Bach2 cKO
B cells increased the IRF4hi population at early cell division, with
lacking CSR. Thus, differing from Bach2−/− B cells, PC differentia-
tion was driven by the IRF4-BLIMP-1-positive feedback loop in
Bach2 cKO B cells.

Discussion

In this study, we have integrated the roles of BACH2 and IRF4 in the
promotion of CSR and PC differentiation (Appendix Fig. S6), and how
they are altered in the B cell of Bach2-deficient mice (Fig. 7F). The
duration of BACH2 function determines CSR in activated B cells
(Muto et al, 2010; Ochiai et al, 2006), while BACH2 is inactivated by
the BCR signaling (Tamahara et al, 2017). We found that PU.1-IRF4
promotes BACH2 function by inducing Bach2 expression and
reducing AKT activity (Fig. 5K–N). In the promotion of PC
differentiation, IRF4 is increased at both transcripts and protein levels
(Minnich et al, 2016; Sciammas et al, 2006), and AKT enhanced
accumulation of IRF4 protein, which led to the expression of the PC
genes through their ISREs bound by IRF4 (Ochiai et al, 2013).
Combined with our previous reports (Ando et al, 2016; Tamahara et al,
2017), we suggest the presence of “BACH2 on-off system” in B cells
undergoing CSR (Appendix Fig. S6). (i) BACH2 represses the CSR-
and PC-related gene loci in naive B cell, (ii) the BCR-AKT-mTOR
signaling turns off the BACH2 function, (iii) PU.1-IRF4 promotes the
BACH2 function in activated B cells, and (iv) increased AKT activity
terminates the BACH2 function. Thus, BACH2 and IRF4 coopera-
tively promote CSR prior to PC differentiation. However, in Bach2−/−

B cells, PU.1 binding to the PU.1-IRF4 regulatory regions was reduced
(Fig. 5I), resulting in the downregulation of EICE-regulated genes
including Pten and Phlpp1, inhibitors of the AKT pathway, as well as
Bcl6 and Icosl, GC B-cell genes. Furthermore, IRF4 was accumulated
post-transcriptionally (Fig. 3B,C), and induced the expression of PC
genes including Prdm1, Xbp1, and Tnfrsf17 by binding to their ISREs
(Fig. 4E–G). These observations indicate that Bach2−/− B cells were
primed for PC differentiation because of the altered balance of EICE-
and ISRE-mediated gene regulation by IRF4 (Fig. 7F).

In previous studies, we have shown that BACH2-mediated gene
repression involves histone deacetylation by recruiting the NCOR1
and NuRD complexes at its regulatory regions (Ando et al, 2016;
Tanaka et al, 2016). Here, we explored additional gene repression
machinery by BACH2 in B cells. The BACH2 complexes purified
from primary B cells contained the H3K9me3-mediated hetero-
chromatin factors, such as TRIM28, HP1γ and histone H1, as well
as the nuclear membrane protein LAMIN B1 (Fig. 1E). BACH2 was
co-localized with TRIM28 or HP1γ in the proximity of the nuclear
membrane in naive B cells (Fig. 1G,H). In our analysis, the BACH2
complexes did not contain major components of the PRC2 complex
which promotes the formation of H3K27me3-medited heterochro-
matin (Wiles and Selker, 2017). Enhancer of zest 2 (EZH2), the
catalytic subunit of the PRC2 complex, is highly induced in GC B
cells and represses plasma-cell differentiation (Béguelin et al, 2016;
Herviou et al, 2019; Velichutina et al, 2010). While we cannot
exclude the involvement of H3K27me3 in BACH2-mediated gene
regulation, it was not the case in the cells we examined in this study.
Upon B-cell activation, a large number of gene loci lost H3K9me3
modification (Kieffer-Kwon et al, 2017), and a substantial part of
these loci was also found to lose BACH2 binding (Fig. 2B). Such
genes included CSR-related genes, Aicda and Batf, as well as PC
genes, Prdm1 and Xbp1 (Fig. 2B,F,I). The BACH binding motif was
predominantly detected within the sequences of the BACH2-
binding regions, indicating the involvement of BACH2-mediated
heterochromatin formation. In addition to BACH binding motif,
BACH2 also binds to the AP-1 motif or AICE (Hipp et al, 2017;
Kuwahara et al, 2016). Batf is one of the genes negatively regulated
by BACH2 binding to the AP-1 motifs at the locus (Kuwahara et al,
2016). Aicda is regulated by AICEs (Ochiai et al, 2018), composed
of AP-1 and IRF motifs. BACH2 may regulate the heterochromatin
formation of the Batf and Aicda loci via AP-1 motifs or AICEs.
Overall, such BACH2 function is turned off by the AKT-mTOR
activation via BCR (Tamahara et al, 2017), resulting in release of
the BACH2-regulated gene loci from heterochromatin. Then, the
expression of Aicda is induced by BATF and a lower protein
amount of IRF4 (Ochiai et al, 2018), followed by the promotion of
CSR. At that time, the expression of Prdm1 and Xbp1 is kept at a
low level. However, their expression was induced by accumulated
IRF4 in Bach2−/− B cells (Fig. 4B). On the other hand, the
expression of Batf and Aicda was not induced in Bach2-deficient
naive B cells (Fig. 3A), suggesting the failure of IRF4-BATF
function. Once IRF4 protein level is increased, the balance of gene
regulation would be readily shifted towards activation at gene loci
modulated by BACH2-binding motifs and ISREs. These observa-
tions emphasize the importance of maintaining low IRF4 protein
level in B cells undergoing CSR. Taken together, BACH2 works to
promote CSR in concert with a lower protein amount of IRF4, and
its function is abrogated by IRF4 accumulation.

The positive feedback of IRF4-BLIMP-1 drives PC differentia-
tion (Minnich et al, 2016). However, there is an enigma of how the
feedback regulation is initiated; how is IRF4 accumulated to induce
Prdm1 expression? Our study strongly suggests that AKT activation
leads to an accumulation of IRF4 protein. The pharmacological
inhibition of AKT reduced IRF4 protein level in both activated
Bach2+/+ B cells and Bach2−/− B cells (Fig. 6E,F). AKT activity was
limited by PU.1 in activated B cells (Fig. 5M), while it was elevated
in PCs expressing little Spi1 mRNA (Fig. 6A) (Carotta et al, 2014).
The binding of PU.1 to the EICE-regulated IRF4 target genes was
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obviously decreased in Bach2−/− B cells (Fig. 5I), presumably
resulting in a failure to restrict AKT activity by inducing its
negative regulators, including Pten and Phlpp1 (Luo et al, 2019). In
consequence, IRF4 protein was accumulated to induce the ISRE-
regulated genes including Prdm1 (Fig. 4B). Thus, the elevated AKT
activity facilitated IRF4 protein accumulation, followed by PC
differentiation in Bach2−/− B cells. Regulation of IRF4 protein by
AKT may also be important for memory B cells which differentiate
to PCs shortly after BCR stimulation. In memory B cells, IRF4
protein is maintained at a low level (Kometani et al, 2013), and
IRF4 instantly commences the PC-GRN when BCR activates the
AKT pathway. Considering that AKT activates mTORC1, which
positively controls mRNA translation (Ma and Blenis, 2009), the
mechanism of IRF4 protein accumulation might involve an
increased translation of Irf4. Further study is required to explore
the mechanism of IRF4 protein accumulation.

In a previous report, we have shown that Bach2-deficient mice
lacked the germinal center formation upon immunization (Muto
et al, 2004). BCL6, a critical regulator of GC formation (Basso and
Dalla-Favera, 2010), is expressed in naive B cells (Muto et al,
2010) and represses Prdm1 with BACH2 cooperatively (Ochiai
et al, 2008). The expression is highly induced upon BCR
stimulation by PU.1-IRF4 (Ochiai et al, 2013). Considering that
the transcriptional function of PU.1 is activated by AKT (Rieske
and Pongubala, 2001), PU.1-IRF4 regulate the expression of Bcl6
in both naive B cells and activated B cells. The reduced DNA
binding of PU.1 presumably resulted in the downregulation of
Bcl6, followed by the failure of GC formation in Bach2-deficient
mice. Including Bcl6 and Pten, the expression of EICE-regulated
genes was reduced in FO B cells but not in MZ B cells in Bach2−/−

B cells (Fig. 7B), indicating the reduced PU.1 functions in
Bach2−/− FO B cells. It will be necessary to understand the
alteration of the transcriptome as well as the PU.1 activity in
Bach2−/− FO B cells and MZ B cells.

Importantly, antibodies produced in Bach2−/− mice sera are
autoreactive (Jang et al, 2019; Roychoudhuri et al, 2013). BACH2
regulates proper differentiation of not only B cells but also T cells
(Ebina-Shibuya et al, 2017; Roychoudhuri et al, 2013), NK cells (Li
et al, 2022) and dendritic cells (Kurotaki et al, 2018). Compared
with Bach2−/− mice, Bach2 cKO mice showed less abnormalities in
B cells (Fig. 7C–E; Appendix Fig. S5A–C) and no production of
autoreactive antibodies (Jang et al, 2019). Remarkably, the
dysfunction of BACH2 in CD4+ Treg differentiation leads to
autoreactivity in Bach2−/− mice, accompanied with the production
of inflammatory cytokines (Kuwahara et al, 2016; Roychoudhuri
et al, 2016; Roychoudhuri et al, 2013; Trujillo-Ochoa et al, 2023).
These observations strongly suggest that the involvement of non-B
cells in the abnormalities in Bach2−/− B cells. Inflammatory
cytokines activate various cell signaling including the AKT pathway
via cytokine receptors, and B-cell abnormality in Bach2−/− mice is
presumably brought about by the inflammatory milieu caused by
the integrated effect of immune cell dysfunction. BACH2
dysregulation may also confer disease vulnerability, including
autoimmune diseases (Afzali et al, 2017; Nakano et al, 2022; Zhou
et al, 2023), by inducing IRF4 protein accumulation as well as the
chromatin dissociation of PU.1 in B cells. Exploring how cell
signaling modulates the function of these key TFs will provide a
clue to prevent the production of autoreactive antibodies from B
cells under aberrant cell environment.

Collectively, our study describes the reciprocal regulation
between BACH2 and IRF4 in the course of PC differentiation
and demonstrates that Bach2-deficiency accelerates PC differentia-
tion by altering the regulations of IRF4 and its partner TF PU.1 in B
cells. BACH2 is a critical regulator for the acquisition of antigen-
specific antibodies, and such BACH2 function is regulated by
cellular molecules including mTORC1 and heme (Ando et al, 2016;
Tamahara et al, 2017; Watanabe-Matsui et al, 2011). The
mechanism for the reactivation and maintenance of BACH2 could
be exploited in both B cells and other immune cells to increase or to
mitigate immune response.

Methods

Mice

Bach2-deficient mice were described previously (Muto et al, 2004).
B1-8hi mice (Shih et al, 2002) were from M. Nussenzweig
(Rockefeller University), Mb1-Cre (Hobeika et al, 2006) mice and
Bach2flox/flox mice (Kometani et al, 2013) were from and T. Kurosaki
(Osaka University, RIKEN). B1-8hi:Bach2−/− mice and Mb1-
Cre:Bach2flox/flox mice were generated, and they were born at the
expected Mendelian ratio with no obvious abnormality. All mice
were maintained in pathogen-free conditions in accordance with
guidelines approved by the Institution for Animal Experimentation
Committee at Tohoku University Graduate School of Medicine
(2019MdA-218, 2021MdA-098). Experiments were performed
using sex- and age-matched mice between 8 and 12 weeks of age.

In vitro plasma-cell differentiation

Splenic B cells were isolated using the B-cell isolation kit and LS
columns (Miltenyi Biotec), and cultured in RPMI-1640 (Sigma)
media supplemented with 10% FBS, 10 mM HEPES, 1 mM Na-
Pyruvate, 0.1 mM non-essential amino acids, 100 U/mL penicillin,
100 μg/mL streptomycin, 50 μM β-mercaptoethanol. Splenic B cells
purified from B1-8hi background mice were stimulated with
recombinant mouse IL-2 (100 U/mL; R&D Systems), recombinant
mouse IL-4 (5 ng/mL; BD Biosciences), recombinant mouse IL-5
(1.5 ng/mL; R&D Systems), recombinant mouse CD40L (0.2 ng/
mL) (R&D Systems), and NP (4-Hydroxy-3-nitrophenylacetic)40-
ficoll (0.01 ng/mL) (Biosearch Technologies Inc.). Splenic B cells
purified from Bach2flox/flox mice were stimulated with LPS (20 μg/
mL; Sigma) and recombinant mouse IL-4 (10 ng/mL; BD
Biosciences). AKT inhibitor AZD5363 (Capivasertib; MedChem-
Express) was dissolved in DMSO, and added in culture medium.

Immunoblot analysis and Immunohistochemistry

Whole-protein extracts were prepared using RIPA extraction buffer
(50 mM Tris-HCl (pH 8.0), 0.1% SDS, 150 mM NaCl, 0.02% NaN3,
1% NP-40, 0.5% sodium deoxycholate) supplemented with protease
inhibitor and phosphatase inhibitor cocktails (Roche) as described
(Ochiai et al, 2020). Lysates were separated by SDS-PAGE and
transferred to Immobilon-P membranes (Millipore). Antibodies
used in this study were as follows: anti-BACH2 (N1; homemade),
anti-mTOR-p (S2448) (#2971; Cell Signaling), anti-mTOR (#2972;
Cell Signaling), anti-AKT-p (S473) (#9271; Cell Signaling),
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anti-AKT (#9272; Cell Signaling), anti-TRIM28/TIF1β/KAP1 (sc-
33186; Santa Cruz), anti-HP1γ (#2619; Cell Signaling), anti-IRF4
(sc-6059; Santa Cruz), anti-PU.1 (sc-352; Santa Cruz), anti-
αTUBULIN (sc-5286; Santa Cruz) and anti-β-ACTIN
(GTX109639; GeneTex). The secondary antibodies used were
horseradish peroxidase (HRP)-conjugated anti-rabbit IgG, HRP-
conjugated anti-mouse IgG, and HRP-conjugated anti-goat IgG
(GE Healthcare). Immunohistochemistry was performed using
anti-BACH2 (N1; homemade, sc-14702; Santa Cruz), anti-LAMIN
B1 (sc-6217; Santa Cruz), anti-TRIM28/TIF1β/KAP1 (sc-33186;
Santa Cruz) or anti-HP1γ (#2619; Cell Signaling) antibodies as
described (Tamahara et al, 2017). Data were obtained using
LSM780 confocal microscope system (ZEISS).

Complex purification and LC-MS/MS analysis

B1-8hi splenic B cells were stimulated for 12 h, and BACH2
complexes were purified using ReCLIP (Ochiai et al, 2021; Smith
et al, 2011). Cells were crosslinked with reversible crosslinkers,
0.5 mM DTME (Thermo Scientific) and 0.5 mM DSP (Thermo
Scientific), at 25 °C for 30 min. After removal of the crosslink
buffer, cells were quenched with 20 mM Tris (pH 7.5) 5 mM
Cystein at 25 °C for 5 min, followed by washing with ice-cold PBS
twice. Cells were suspended in RIPA buffer supplemented with
proteinase inhibitor cocktail and PhosSTOP (Roche), and lysed on
ice for 10 min. The cell lysate was sonicated using Biorupter
(Cosmo Bio), and centrifuged. The supernatant was reacted with
protein A and G beads (Invitrogen) at 4 °C for 1 h for removal of
non-specific reaction. After beads trap, the lysate was reacted with
conjugated anti-BACH2 (N1; homemade) antibodies or control
IgG (sc-2027; Santa Cruz) for immunoprecipitation at 4 °C
overnight. Beads were washed with chilled RIPA buffer three
times, and eluted with elution buffer (50 mM Tris (pH 8.0), 0.2 M
NaCl, 2% SDS and 125 mM DTT) at 37 °C for 20 min, then 70 °C
for 10 min. The tryptic peptides were analyzed to determine each
protein using LTQ OrbiTrap Velos (Thermo Fisher Scientific) and
the MASCOT search engine (Matrix Science) as previously
described (Hipp et al, 2017).

Flow cytometry

Bone marrow or spleen cells were collected and suspended in FACS
buffer (1% FBS in PBS) and subjected to the surface or intracellular
staining as described previously (Ochiai et al, 2013; Ochiai et al, 2020).
Cells were stained with anti-B220 (RA3-6B2; eBioscience), anti-CD19
(1D3: BD Biosciences), anti-CD43 (S7; BD Biosciences), anti-IgM (II/
41; eBioscience), anti-IgD (11–26 c.a; BD Biosciences), anti-IgG1
(A85-1; BD Biosciences), anti-CD138 (281-2; BD Biosciences), CD21
(7G6; BD Biosciences), CD23 (B3B4; BD Biosciences) and anti-
Streptavidin-PerCP (BD Biosciences) antibodies. For intracellular
staining, cells were fixed with 1% paraformaldehyde for 10min and
washed twice with FACS buffer. Cells were stained with anti-IRF4 (sc-
6059; Santa Cruz) or p-AKT (S473) (R&D systems) antibody in 0.3%
Saponin/PBS. For IRF4 staining, cells were incubated with goat anti-
IRF4 antibodies in the presence of 5% donkey serum, followed by a
Cy5-coupled donkey anti-goat (712-606-153; Jackson Immunore-
search). For cell division trace assay, the isolated B cells were loaded
with 5 μM cell trace violet (C34557; Thermo Fisher Scientific,
Molecular Probes) according to the manufacturer’s instructions prior

to culturing. Data were collected with the FACS Aria II or FACS verse
(BD Biosciences) and analyzed with FlowJo software (TreeStar).

Retroviral vectors and transduction in activated
splenic B cells

Retroviral vector murine PU.1 (MSCV-EGFP-PU.1WT) has been
described (Laslo et al, 2006). MSCV-dsRedT4-PU.1WT was
constructed by cloning PU.1WT from MSCV-EGFP-PU.1WT into
the MSCV-dsRedT4. Virus supernatants were prepared and
infected to activated B cells after 18–20 h of in vitro stimulation
as previously described (Ochiai et al, 2012). Transduced cells were
sorted based on GFP or dsRedT4 expression after 48 h, followed by
flow cytometry analysis or cell collection for RNA extraction.

RNA isolation and RT-qPCR

Total RNA was prepared using an RNeasy Plus Mini Kit (Quiagen),
and cDNA was made with Superscript III reverse transcriptase
(Invitrogen). The FastStart SYBR Green Master SYBR Green I
(Roche) for cDNA was used for quantitative PCR by LightCycler96
(Roche). The relative expression was normalized by β2-
microglobulin (β2 m). Primers used in this study are shown in
Appendix Table S2.

RNA-seq

Splenic B cells were purified from B1-8hi:Bach2+/+ or B1-8hi:Bach2-/-,
and total RNA was prepared from triplicate cell samples using an
RNeasy Plus Mini Kit (Quiagen). Each library was prepared using a
TruSeq RNA sample preparation kit v2 (Illumina), and the libraries
were clonally amplified on the flow cell and sequenced on an Illumina
HiSeq2500 with a 51-mer paired-end sequence. Image analysis and
base calling were performed using Real-Time Analysis (RTA) 1.13.
The RNA-seq reads were aligned to a mouse reference genome
(mm10/GRCm38), using TopHat (version 2.2.3) with all parameters
set to default (Trapnell et al, 2012). The expression levels were
calculated using the Cuffdiff module of the Cufflinks program (version
2.2.3) (Trapnell et al, 2012).

Chromatin immunoprecipitation (ChIP) and ChIP-seq

Chromatin was isolated from activated B cells and sonicated to obtain
DNA fragments ranging in size from 100 to 500 base pairs using the
Bioruptor (BMBio). Chromatin fragments were immunoprecipitated
with Dynabeads Protein A and G beads (Invitrogen/Thermo Fisher
Scientific) conjugated with anti-BACH2 (Homemade) or anti-
H3K27ac (ab4729; Abcam) antibodies at 4 °C overnight. Beads were
washed with wash buffer 1 (0.1% SDS, 1% Triton-X 100, 2 mM EDTA,
20mM Tris-HCl pH 8.1, 150mM NaCl), 2 (0.1% SDS, 1% Triton-X
100, 2 mM EDTA, 20mM Tris-HCl pH 8.1, 500mMNaCl) and 3 (1%
NP-40, 250mM LiCl, 1 mM EDTA, 10mM Tris pH 8.1), then Tris-
EDTA (pH 8.0) twice. DNA was eluted using elution buffer (1% SDS,
100mM NaHCO3), reacted for 15min at 25 °C, twice. Two elutions
were combined, and NaCl (final 0.2M) and RNase A (final 0.4 mg/
mL) were added. Reverse crosslinks were performed at 65 °C
overnight. After reacted with Proteinase K buffer (final 4 μg/mL
Proteinase K, 20 mM EDTA, 40mM Tris pH 6.5) at 45 °C for
1 h, DNA was purified using a DNA purification Kit (Qiagen). For
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ChIP-seq alignment, ChIP-seq and input DNA reads were mapped on
a mouse reference genome sequence (mm10/GRCm38) using Bowtie
software (bowtie2-2.3.2). ChIP-seq peak identification was performed
using HOMER package (version v4.11) (Heinz et al, 2010). Mapped
SAM format files were converted to tag directories using the
makeTagDirectory module, and ChIP-seq peaks were identified by
using the findPeaks module with “-style factor” and “-style histone”
options for transcription factor and histone modifications, respec-
tively. DNA-binding motif of transcription factors were identified
using the findMotifsGenome .pl module with the default parameter.
For the visualization of ChIP-seq tags, the bedGraph files were
generated using the makeUSCSfile module, and uploaded on the
UCSC genome browser (https://genome.ucsc.edu/). The distribution
of histone modification was analyzed using Galaxy plotHeatmap
(https://usegalaxy.org/). For ChIP-qPCR, primers used in this study
are shown in Appendix Table S2.

Quantification and statistical analysis

Bar graphs for quantitative RT-PCR and ChIP-PCR were drawn
using GraphPad Prism9. Data are represented as average, and error
bars indicate standard deviation. Statistical significance was
determined with Welch two sample t-test using the open-source
statistical programing environment R (version 3.4.0).

Data availability

We utilized our previous sequencing data for input reads, IRF4
ChIP-seq day 3 (as 72 h), and H3K27ac ChIP-seq (as Bach2+/+)
prepared from B1-8hi mice splenic B cells (GEO: GSE145951).
Additional new RNA-seq and ChIP-seq data have been uploaded to
the NCBI Gene Expression Omnibus (PRJNA998173; https://
dataview.ncbi.nlm.nih.gov/object/PRJNA998173?
reviewer=nvjl7ink06nkdn57td3d181bsi).

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-024-00077-6.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44318-024-00077-6
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