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FOXF1 promotes tumor vessel normalization and
prevents lung cancer progression through FZD4
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Abstract

Cancer cells re-program normal lung endothelial cells (EC) into
tumor-associated endothelial cells (TEC) that form leaky vessels
supporting carcinogenesis. Transcriptional regulators that control
the reprogramming of EC into TEC are poorly understood. We
identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-
TEC transition. FOXF1 was highly expressed in normal lung vas-
culature but was decreased in TEC within non-small cell lung
cancers (NSCLC). Low FOXF1 correlated with poor overall survival
of NSCLC patients. In mice, endothelial-specific deletion of FOXF1
decreased pericyte coverage, increased vessel permeability and
hypoxia, and promoted lung tumor growth and metastasis.
Endothelial-specific overexpression of FOXF1 normalized tumor
vessels and inhibited the progression of lung cancer. FOXF1 defi-
ciency decreased Wnt/β-catenin signaling in TECs through direct
transcriptional activation of Fzd4. Restoring FZD4 expression in
FOXF1-deficient TECs through endothelial-specific nanoparticle
delivery of Fzd4 cDNA rescued Wnt/β-catenin signaling in TECs,
normalized tumor vessels and inhibited the progression of lung
cancer. Altogether, FOXF1 increases tumor vessel stability, and
inhibits lung cancer progression by stimulating FZD4/Wnt/β-
catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has
promise for future therapies in NSCLC.
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Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide. Current treatment strategies include chemotherapy
and/or radiotherapy, and surgery in the case of patients diagnosed
with early-stage lung cancer. However, the 5-year survival rate of
patients with advanced NSCLC remains less than 20% (Siegel et al,
2019), emphasizing a need to develop better treatment strategies.
Interactions between the tumor microenvironment and tumor cells
play a crucial role in tumor progression. Tumor cells secrete pro-
angiogenic factors, like VEGF, that recruit endothelial cells to form
tumor-associated vasculature, which provides nutrients and oxygen
to the proliferating tumor cells, thereby supporting tumor growth.
However, antiangiogenic therapies have failed to improve overall
survival of lung cancer patients (Alshangiti et al, 2018), suggesting
that a deeper understanding of tumor-associated vascular biology is
required.

Tumor-associated blood vessels are structurally and functionally
abnormal. The presence of tumor cells induces reprogramming of
normal endothelial cells (EC) into tumor-associated endothelial
cells (TEC) (Dudley, 2012). While ECs are quiescent and form tight
endothelial barrier, TECs are activated and form leaky vessels that
support carcinogenesis. Re-programmed TEC secrete pro-
tumorigenic mediators, supporting tumor cell proliferation and
invasion (Maishi and Hida, 2017; Zhao et al, 2016). TEC are resting
on a porous basement membrane with decreased pericyte coverage,
causing increased vessel permeability. Increased vessel permeability
induces tumor-associated inflammation and contributes to
increased intravasation and extravasation of tumor cells, stimulat-
ing tumor invasion and metastasis (Kienast et al, 2010). Perfusion
through tumor-associated vessels is decreased, causing hypoxia
within the tumors (Jain, 2014). The hypoxic and acidic tumor
microenvironment supports an immunosuppressive environment
and prevents the activity of cytotoxic T cells, thereby promoting
tumor growth (Huang et al, 2018).

Normalization of tumor vessels’ structure and function alleviates
hypoxia in the tumor microenvironment and increases the efficacy
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of anti-cancer therapy (Martin et al, 2019). Vascular normalization
decreases endothelial permeability, improves the perfusion of
tumor-associated blood vessels, and creates an immune-
permissive microenvironment that inhibits cancer progression
(Hatfield et al, 2015; Lanitis et al, 2015). However, molecular
mechanisms critical for tumor vascular normalization are not well
understood. In this study, we compared normal EC with TEC from
mouse and human lung tumors to identify FOXF1 as a critical
transcriptional regulator of EC-to-TEC reprogramming. FOXF1 is
an embryonic transcription factor from the Forkhead Box (Fox)
family of transcription factors (Clark et al, 1993; Kaestner et al,
1993). Foxf1−/− mice are embryonic lethal (Kalinichenko et al,
2001a; Mahlapuu et al, 2001). Deletions or point mutations in
FOXF1 gene locus are linked to Alveolar Capillary Dysplasia with
Misalignment of Pulmonary Veins (ACDMPV), a lethal congenital
disorder of newborns and infants (Dharmadhikari et al, 2015).
Conditional deletion of Foxf1 from EC caused embryonic lethality
due to the inability of FOXF1-deficient EC undergo angiogenesis in
response to VEGF signaling (Ren et al, 2014). The role of FOXF1 in
lung cancer is unknown.

In this study, we show that FOXF1 is expressed in normal lung
EC but is decreased in the tumor-associated vasculature of human
and mouse NSCLC. Decreased expression of FOXF1 correlates with
poor prognosis in NSCLC patients. Using transgenic mice in which
Foxf1 was deleted or overexpressed in endothelial cells, we found
that FOXF1 inhibits lung tumor growth and metastasis and
normalizes tumor-associated blood vessels by maintaining Wnt/β-
catenin signaling in ECs through transcriptional activation of
FZD4. Our results support the use of FOXF1-activating therapies
for vascular normalization in lung cancers.

Results

FOXF1 is decreased in human and mouse NSCLC-
associated endothelial cells

Endothelial-specific expression of FOXF1 in the lung tissue of NSCLC
patients was visualized by co-staining tissue sections for FOXF1 and
CD31. In human donor lungs without tumors, FOXF1 protein was
detected in a majority of endothelial cells (Fig. 1A, left panels and
Fig. 1B). In contrast, only 5–10% of endothelial cells expressed FOXF1
in human lung adenocarcinomas and squamous cell carcinomas (SCC)
(Fig. 1A, right panels and Fig. 1B). FOXF1 was not detected in tumor
cells (Fig. 1A). FACS-sorted endothelial cells from human NSCLC
tumors (TEC) showed a significant decrease in FOXF1 mRNA
compared to endothelial cells isolated from donor’s lungs (EC)
(Fig. 1C). The Cancer GenomeAtlas (TCGA) data mining showed that
NSCLC patients (N = 1925) with higher FOXF1mRNA expression had
increased overall survival compared to patients with lower FOXF1
levels (Figs. 1D and EV1A), and that the survivors had significantly
higher levels of FOXF1 compared to non-survivors (Fig. 1E). Thus,
FOXF1 is decreased in NSCLC-associated endothelial cells, and its
expression levels correlate with poor prognosis in NSCLC patients.

Expression of FOXF1 was examined in an orthotopic mouse
model of NSCLC using Lewis Lung Carcinoma (LLC) cells (Doki
et al, 1999). LLC cells were injected into the left lung lobe of C57Bl/
6 wild-type (WT) mice and mice were sacrificed 28 days after
tumor inoculation. Expression of FOXF1 was visualized by

immunostaining for FOXF1 and SOX17, the latter is a known
nuclear endothelial cell marker (Lange et al, 2014). Consistent with
human data (Fig. 1A), the percentage of FOXF1-positive endothe-
lial cells in mouse LLC tumors was decreased compared to normal
lung tissue (Figs. 1F and EV1B). Next, endothelial cells were
FACS-sorted from microdissected LLC tumors and compared with
endothelial cells from control lungs. Foxf1 mRNA was decreased in
TEC compared to normal EC (Fig. 1G). Thus, both FOXF1 protein
and mRNA expression were decreased in TEC of mouse lung
tumors, recapitulating the human data.

To confirm our results using FACS-sorted lung endothelial cells
and immunostaining, we next used a publicly available scRNA-seq
dataset to analyze endothelial cells from LLC tumors and normal
murine lung (Goveia et al, 2020). Endothelial cells from normal
lung (NEC) and LLC tumors (TEC) were visualized using uniform
manifold approximation and projection (UMAP) after samples
integration with Harmony (Korsunsky et al, 2019) (Figs. 1H and
EV1C). Both FOXF1 mRNA levels and the total number of FOXF1-
expressing EC were decreased in lung tumors compared to normal
lung (Fig. 1H). Based on endothelial cell sub-clustering, decreased
Foxf1 mRNA was detected in tumor-associated capillary, arterial
and venous ECs (Fig. EV1D). Foxf1 was not expressed in the
lymphatics (Fig. EV1D). Altogether, FOXF1 expression is decreased
in TEC of mouse and human NSCLC tumors.

Deletion of Foxf1 in endothelial cells promotes lung tumor
growth and metastasis

To determine the role of FOXF1 in endothelial cells during lung
tumor progression, we used mice in which the Foxf1 gene was deleted
in endothelial cells (Cai et al, 2016). Since homozygous deletion of
Foxf1 in mouse endothelial cells (Pdgfb-CreERtg/+;Foxf1fl/fl) is lethal
(Cai et al, 2016), we used heterozygous mice for cancer studies (Pdgfb-
CreERtg/+;Foxf1fl/+; abbreviated as endFoxf1+/−). Upon tamoxifen
(Tam) administration, Cre-mediated recombination of the Foxf1-
flox allele causes deletion of exon 1 encoding the DNA-binding
domain of FOXF1 protein (Fig. EV2A,B). Single transgenic Foxf1fl/+

or Pdgfb-Cretg/+ littermates were used as controls. Next, lung ECs were
FACS-sorted from Tam-treated control and endFoxf1+/− mice, and
Foxf1 mRNA was assessed by qRT-PCR. The ~50% decrease in Foxf1
mRNA was observed in ECs from endFoxf1+/− lungs compared
to controls (Fig. EV2C,D). Lungs of Tam-treated control and
endFoxf1+/− mice without tumors were histologically normal
(Fig. EV2E), a finding consistent with published studies (Cai et al,
2016). Orthotopic LLC lung tumors in Tam-treated endFoxf1+/− mice
developed faster and were significantly larger than in control mice
(Fig. 2A–D). BrdU incorporation and immunostaining for phospho-
histone H3 (pH3) showed increased numbers of proliferating tumor
cells in endFoxf1+/− mice compared to controls (Appendix Fig. S1A,B).
Using FACS-sorted lung endothelial cells, we found that TECs from
endFoxf1+/− tumors had a more profound decrease of Foxf1 mRNA
compared to TECs from control tumors (Fig. 2E). Moreover, deletion
of Foxf1 in endothelial cells increased the number of mice with
mediastinal metastases (Fig. 2F; Appendix Fig. S1C). To demonstrate
that the role of FOXF1 in endothelial cells is not limited to LLC tumor
model, we utilized a mouse model of urethane-induced lung
carcinogenesis (Miller et al, 2003) (Fig. 2G). Similar to the orthotopic
LLC model, Tam-treated endFoxf1+/− mice had increased numbers
and sizes of tumors (Fig. 2H–J; Appendix Fig. S1D). Increased
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tumorigenesis in endFoxf1+/− mice was associated with increased
proliferation of tumor cells (Appendix Fig. S1E). Altogether, FOXF1
deficiency in endothelial cells stimulated lung tumorigenesis in
orthotopic and chemically induced mouse models of lung cancer.

Deletion of Foxf1 in endothelial cells causes functional
and structural abnormalities in tumor vasculature

We next examined tumor-associated angiogenesis in FOXF1-deficient
mice. The number of tumor-associated vessels and Pecam1 mRNA in
microdissected LLC tumors were increased in endFoxf1+/− lungs
compared to controls (Fig. 3A,B). Flow cytometry of microdissected
tumors demonstrated the increased number of tumor-associated
CD31+CD45− endothelial cells in endFoxf1+/− tumors compared to
control tumors (Fig. 3C). The endFoxf1+/− tumor vessels had decreased
pericyte coverage as demonstrated by immunostaining for endothelial
marker CD31 and pericyte marker NG2 (Fig. 3D). Tumor-associated
vasculature in endFoxf1+/− lungs had decreased collagen IV staining in
basement membranes, and the ratio between CD31 and collagen IV
was reduced (Fig. 3E), consistent with the loss of basement membrane.
To evaluate the perfusion of tumor-associated blood vessels, Texas
red-conjugated lectin was injected into the tail vein of tumor-bearing
mice. Perfusion of tumor vessels in endFoxf1+/− lungs was decreased
compared to tumors vessels in control lungs (Fig. 3F). To determine
whether decreased perfusion impacted oxygen availability within the
tumor, we injected tumor-bearing mice with pimonidazole, a chemical
sensor for hypoxia (Cantelmo et al, 2016). LLC tumors in endFoxf1+/−

mice had more hypoxic areas (Fig. 3G), a finding consistent with
decreased vascular perfusion. Proliferation of endothelial cells in LLC
lung tumors was low as determined by co-staining of lung sections
with Ki-67 and CD31 (Appendix Fig. S2). Altogether, deletion of Foxf1
in endothelial cells caused structural abnormalities in tumor-
associated blood vessels, associated with decreased vascular perfusion
and increased hypoxia in tumor tissue.

Deletion of Foxf1 decreases Wnt/β-catenin signaling in
tumor-associated endothelial cells

To identify molecular mechanisms by which FOXF1 regulates
TECs, we performed RNA-seq analysis using TECs isolated from
microdissected LLC tumors of control and endFoxf1+/− mice. Gene

Set Enrichment Analysis of RNA-seq data showed that several
biological processes and signaling pathways were altered in FOXF1-
deficient TECs, including canonical Wnt/β-catenin signaling path-
way, which was decreased in endFoxf1+/− TECs compared to
control TECs (Fig. 4A, left panels). Furthermore, mRNAs of
downstream targets of canonical Wnt/β-catenin pathway were
decreased in endFoxf1+/− TECs. These include Axin1, Axin2, Dvl2,
Nkd1, Lef1, Sfrp2, Wnt4, Sfrp1, Plcb2, and Nkd2 mRNAs (Fig. 4A,
right panel). Since Wnt/β-catenin signaling regulates vascular
normalization in mouse glioma models (Reis et al, 2012), we
examined nuclear localization of β-CATENIN in TECs. In control
mice, nuclear β-CATENIN was detected in both TECs and tumor
cells as shown by immunostaining for β-CATENIN and CD31
(Fig. 4B). In contrast, nuclear β-CATENIN was decreased in TECs
of endFoxf1+/− mice (Fig. 4B,C). Consistent with decreased Wnt/β-
catenin signaling pathway, Axin2, Axin1 and Lef1 mRNAs, known
downstream targets of the Wnt/β-catenin pathway (Jho et al, 2002),
were reduced in endothelial cells isolated from endFoxf1+/− tumors
(Fig. 4D). In human pulmonary arterial endothelial cells (HPAEC),
the efficient shRNA-mediated inhibition of FOXF1 decreased LEF1
mRNA (Fig. 4F) but increased growth of spheroids formed by
human H-441 lung adenocarcinoma cells and FOXF1-deficient
HPAECs (Fig. 4E). Nuclear β-CATENIN and downstream targets
of WNT/β-catenin pathway was decreased in TECs within human
lung adenocarcinomas and squamous cell carcinomas (SCC)
(Fig. 4G–I), coinciding with reduced FOXF1 expression in TECs
(Fig. 1A–C). Thus, FOXF1 deficiency is associated with decreased
Wnt/β-catenin signaling in pulmonary endothelial cells in mouse
and human NSCLC tumors.

Endothelial-specific expression of FOXF1 prevents lung
tumor progression in vivo

As depletion of Foxf1 in endothelial cells accelerated cancer
progression in orthotopic and urethane-induced lung cancer
models (Fig. 2), we next tested whether increasing the Foxf1
expression in ECs would prevent lung tumor progression and
metastasis. We generated triple transgenic mice (Pdgfb-CreERtg/+;
LSL-rtTAtg/+; TetO-Foxf1tg/+) with conditional expression of Foxf1
in endothelial cells, abbreviated here as endFoxf1OE (Fig. EV3A).
After treatment with tamoxifen, rtTA is expressed in endothelial

Figure 1. FOXF1 is decreased in human and mouse NSCLC-associated endothelial cells.

(A) Co-localization studies show decreased FOXF1 staining (red) in CD31+ endothelial cells (green) within human lung adenocarcinomas and lung squamous cell
carcinomas (SCC) compared to endothelial cells of donor lung. (N= 5–9 per group). Scale bar= 50 μm. (B) Percentage of FOXF1+/CD31+ double-positive cells are
decreased within lung adenocarcinomas and SCC compared to donor lungs. Five random fields were counted and presented as mean ± SEM. (N= 5–9 per group).
****P < 0.0001. (C) FOXF1 mRNA is decreased in tumor-associated endothelial cells (TEC) FACS-sorted from NSCLC specimens compared to normal endothelial cells
(EC) FACS-sorted from donor lungs. Endothelial cells were identified as CD31+/CD45− cells. Data presented as mean ± SEM. (EC, N= 3; TEC, N= 4). **P = 0.0087.
(D, E) TCGA data mining show that lower FOXF1 mRNA levels in tumors predict poor overall survival in NSCLC patients. Median Foxf1 and Fzd1 mRNA levels were used to
split the two populations (N= 1926). ****P < 0.0001. Boxplots show median, Q1 and Q3 quartiles and whiskers up to 1.5× interquartile range. (F) Co-localization studies
demonstrate decreased FOXF1 protein (red) in SOX17+ endothelial cells (green) within mouse LLC tumors compared to normal lungs. The percent of FOXF1+/SOX17+

double-positive cells were counted in five random fields and presented as mean ± SEM. (N= 4–5 mice per group). *P = 0.0159. (G) Foxf1 mRNA is decreased in CD31+/
CD45− cells isolated from mouse LLC tumors (TEC) compared to normal lungs (EC) as shown by qRT-PCR. β-actin mRNA was used for normalization. (N= 7–8 per group).
***P = 0.0005. (H) Unsupervised clustering of lung endothelial cells from scRNA-seq dataset (Goveia et al, 2020) is shown using uniform manifold approximation and
projection (UMAP). Left panel: colored by group; red—Donor EC, (NEC; n= 3841 cells); blue—EC from LLC tumors, (TEC, n= 10012 cells). Middle panel: expression of
FOXF1 in NEC and TEC clusters after Z-score normalization. Right panel: violin plots show decreased expression of FOXF1 mRNA in TECs compared NECs. FOXF1 expression
is log normalized. Boxplots show median, Q1 and Q3 quartiles and whiskers up to 1.5× interquartile range. Scale bars= 50 μm. Data information: Data represent different
numbers (N) of biological replicates. The data with error bars are shown as mean ± SEM. Statistical analysis was performed using using the two-tailed unpaired-sample
Student t test (C, E, F, G), logrank test (D), or one-way ANOVA followed by Tukey’s post hoc test (B). Source data are available online for this figure.
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cells. After treatment with doxycycline, rtTA-mediated activation
of TetO promoter causes an increase in Foxf1 expression
(Fig. EV3A,B). Altogether, treatment with tamoxifen+doxycycline
increases FOXF1 expression, specifically in endothelium. Endothe-
lial cells isolated from lungs of tamoxifen+doxycycline-treated
endFoxf1OE mice exhibited increased Foxf1 mRNA when compared
to single transgenic controls (Fig. EV3F). The endFoxf1OE mice had

no visible phenotype with normal lung architecture (Fig. EV3C),
and the expression of endothelial and pericyte markers was normal
(Fig. EV3D,E). LLC tumor cells were inoculated into lungs of
control and endFoxf1OE mice. At 28 days after inoculation, tumors
in the endFoxf1OE mice were smaller (Fig. 5A–C) and the incidence
of mediastinal metastasis decreased (Fig. 5D). FOXF1 immunos-
taining and Foxf1 mRNA were increased in TECs from endFoxf1OE
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tumors (Fig. 5E,F). Increased pericyte coverage and improved
basement membrane were evident in endFoxf1OE tumor vessels as
shown by co-localization of CD31 with either NG2 or Collagen IV
(Fig. 5F–H). The percentage of endothelial cells with nuclear β-
CATENIN was increased in lung tumors of endFoxf1+/− mice
(Fig. 5I), coinciding with increased Axin2 mRNAs in flow-sorted
endothelial cells (Fig. 5F). Altogether, increased expression of
FOXF1 in endothelial cells stimulates canonical WNT/β-catenin
signaling, stabilizing tumor-associated blood vessels, and decreas-
ing lung tumor growth and metastasis.

FRIZZLED-4 is decreased after deletion of Foxf1 in lung
endothelial cells

To investigate molecular mechanisms by which FOXF1 regulates
Wnt/β-catenin signaling in TECs, we examined the expression of
Frizzled receptors. Based on the scRNA-seq analysis, the highest
level of mRNA expression in all subtypes of lung endothelial cells
was observed for Fzd4 mRNA (Fig. EV4A). Approximately 20% of
non-capillary ECs expressed Fzd6, and the expression levels of
Fzd1, Fzd2, Fzd3, Fzd5, Fzd7, Fzd8, Fzd9, and Fzd10 were
undetectable (Fig. EV4A). Using RNA-seq analysis and qRT-PCR
of FACS-sorted TECs, we found that deletion of Foxf1 decreased
Fzd4 mRNA in TECs (Fig. 6A,B). Furthermore, reduced FZD4
staining was detected in TECs from endFoxf1+/− mice compared to
TECs from control mice and normal mouse lung (Fig. 6C). In
human NSCLC, FZD4 staining in TECs was decreased compared to
endothelial cells from donor’s lungs (Fig. 6D). TCGA data mining
showed that NSCLC patients with higher FZD4 expression had
increased overall survival compared to patients with lower FZD4
expression (Fig. 6E), coinciding with similar correlation between
FOXF1 and patient survival (Fig. 1D). Finally, in human
pulmonary arterial endothelial cells (HPAEC) in vitro, the efficient
shRNA-mediated inhibition of FOXF1 decreased FZD4 (Fig. 4F).
Altogether, inhibition of FOXF1 in endothelial cells in vivo
decreases Wnt/β-catenin signaling and reduces FZD4.

FOXF1 directly binds to and induces the transcriptional
activity of Fzd4 promoter

We next determined whether FOXF1 directly regulates the
transcription of the Fzd4 gene. A previously published ChIP-seq
dataset (Dharmadhikari et al, 2016) was used to demonstrate that
FOXF1 directly bound to the DNA regulatory element located at 3’

to exon 2 of the Fzd4 gene in mouse endothelial cells (Figs. 6F
and EV4B). Within the FOXF1-binding region, several FOXF1
consensus DNA sequences were identified (Fig. EV4B). To test
whether FOXF1 directly activates Fzd4 transcription, we cloned the
Fzd4 regulatory element into the pGL2-basic luciferase (LUC)
vector to generate Fzd4-Luc reporter containing 4 endogenous
FOXF1-binding sites, BDS1, 2, 3, and 4 (Fig. 6G). Next, we used
site-directed mutagenesis to sequentially disrupt each FOXF1-
binding site and generate four mutant Fzd4-Luc constructs
(Fig. 6G). The Fzd4-Luc reporter or its mutants were co-
transfected with either CMV-empty or CMV-Foxf1 expression
plasmids and the transcriptional activation of Fzd4 DNA region
was tested by measuring LUC activity. Co-transfection with the
CMV-FOXF1 plasmid increased transcriptional activity of the Fzd4
regulatory element containing all four FOXF1-binding sites
(Fig. 6G). Disruption of BDS3 completely abrogated the ability of
FOXF1 to stimulate Fzd4 transcriptional activity, whereas disrup-
tion of BDS1 or BDS4 had partial effects (Fig. 6G). Disruption of
BDS2 had no effect. Thus, FOXF1 binds to and induces
transcriptional activity of the Fzd4 regulatory element through
BDS1, 3, and 4, indicating that Fzd4 is a direct target of FOXF1.

Nanoparticle delivery of FZD4 into endothelial cells
decreases lung tumor growth in FOXF1-deficient mice

To determine whether FOXF1 acts via FZD4, we tested whether
nanoparticle delivery of Fzd4 cDNA into endothelial cells will
decrease lung tumor growth in FOXF1-deficient mice. Mouse Fzd4
cDNA was cloned into CMV vector to generate the CMV- Fzd4
construct. To deliver CMV- Fzd4 plasmid to endothelial cells
in vivo, we utilized the poly β-amino esters (PBAE) polymer
(Kaczmarek et al, 2018; Kaczmarek et al, 2021), which forms stable
nanoparticles in complex with plasmid DNA and is suitable to
deliver DNA plasmids to endothelial cells in vivo (Bian et al, 2023).
Fluorescently labeled PBAE nanoparticles with either CMV-Fzd4
(nano-Fzd4) or CMV-Empty (nano-Empty) plasmids were deliv-
ered intravenously to tumor-bearing mice one week after
implantation of LLC tumor cells (Fig. 7A). To test the safety of
nanoparticles, we assessed liver and kidney functions. Mice treated
with nanoparticles did not show any differences in liver and kidney
metabolic panels compared to controls, including levels of total
protein, Albumin, Globulins, ALP, Total Bilirubin, GGT, ALT,
BUN and Creatinine (Fig. EV5A; Appendix Table S4). Also, no
changes in hematologic parameters were found in the nano-Fzd4

Figure 2. Deletion of Foxf1 in endothelial cells promotes lung tumor growth and metastasis.

(A) Schematic representation of LLC orthotopic model of lung cancer. Tamoxifen-treated mice were inoculated with mCherry-labeled LLC cells into the left lung lobe. Mice
were sacrificed on days 14, 21, and 28 post LLC injection (day 21: *P = 0.0291; D28: *P = 0.0232). (B) Growth of lung tumors in endFoxf1+/− mice is increased compared
to controls. (N= 8–11 mice per group). (C) Deletion of Foxf1 in endothelial cells increased lung tumor volume measured on day 28. (N= 11–12 mice per group).
**P = 0.0026. (D) H&E staining shows larger LLC tumors in endFoxf1+/− mice compared to controls. Scale bar= 500 μm. (E) qRT-PCR shows that Foxf1 mRNA is
decreased in endothelial cells FACS-sorted from microdissected tumors of endFoxf1+/− mice as compared to control mice. β-actinmRNA was used for normalization. (N= 7
mice per group). ****P < 0.0001. (F) Tumor-bearing endFoxf1+/− mice have increased incidence of mediastinal lymph node metastasis. (N= 3–4 mice per group).
***P = 0.0003. (G) Schematic representation of urethane-induced lung cancer model. Tamoxifen-treated endFoxf1+/− and control mice were administered urethane once
a week for 10 weeks. Mice were sacrificed 32 weeks post first urethane injection. (H) H&E staining shows increased tumor number and size in urethane-treated
endFoxf1+/− mice. Scale bar= 500 μm. (I, J) Deletion of Foxf1 in endothelial cells increased the number and diameter of lung tumors in urethane-treated endFoxf1+/− mice.
(N= 11–13 mice per group). (I: ***P = 0.0003; J: ***P = 0.0009). Data information: Data represent different numbers (N) of biological replicates. The data with error
bars are shown as mean ± SEM. Statistical analysis was performed using the two-tailed unpaired-sample Student t test (C, E, F, I, J), or two-way ANOVA followed by
Fisher’s LSD post hoc test (B). Source data are available online for this figure.
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treated group compared to the control group (Fig. EV5B; Appendix
Table S5). Furthermore, no significant body weight changes were
found between nano-Fzd4-treated and control groups (Fig. EV5C).
Finally, the nano-Fzd4 treatment does not change the histological
appearance of endothelial cells in the liver, as demonstrated by
immunostaining for Pecam1 (CD31) (Fig. EV5D). Altogether, the
treatment of mice with nano-Fzd4 was not toxic. Using FACS
analysis of enzymatically digested lung tissue, nanoparticles were
detected in ~70% of lung endothelial cells (CD31+/CD45−)
(Fig. 7B). Nanoparticle-mediated targeting of epithelial (CD326+/
CD45−/CD31−), hematopoietic/immune (CD45+/CD31−) and
mesenchymal (CD31−/CD45−/CD326−) cells was ineffective
(Fig. 7B). Treatment with nano-Fzd4 significantly decreased lung
tumor sizes in endFoxf1+/− mice compared to nano-Empty controls
(Fig. 7C,D). Decreased tumor sizes in EEV-Fzd4-treated mice were
associated with increased number of TECs expressing Fzd4 mRNA
(Fig. 7E) as demonstrated by RNAscope with probes specific to
Fzd4, Foxf1, and Aplnr, the latter of which is a specific marker of
general capillary cells in the lung (Gillich et al, 2020). The number
of TECs expressing nuclear β-catenin protein were also increased
compared to nano-Empty-treated tumor-bearing endFoxf1+/− mice
(Fig. 7F), consistent with increased Wnt/β-catenin signaling in
TECs. In addition, nanoparticle delivery of Fzd4 to endothelial cells
increased protein levels of CollV, which is the major protein in lung
endothelial basal membrane (Fig. 7G) and improved the expression
of Claudin-5 and VE-cadherin that were impaired in TECs
(Appendix Fig. S3). Altogether, nanoparticle delivery of Fzd4
cDNA into endothelial cells of tumor-bearing endFoxf1+/− mice
restored Fzd4 expression, increased nuclear β-catenin, improved
endothelial basal membrane, and inhibited lung tumor growth.
Thus, FOXF1 stimulates Wnt/β-catenin signaling in endothelial
cells through FZD4. Nanoparticle delivery of Fzd4 into TECs can be
a therapeutic approach to inhibit lung tumor growth.

Discussion

Lung cancer is the leading cause of cancer-related mortality
worldwide. Despite the promise of antiangiogenic therapies in
animal models of cancer, their success has been limited in clinical
trials to treat advanced NSCLC. Bevacizumab is a humanized anti-
VEGF monoclonal antibody that binds to soluble VEGF and
prevents the activation of VEGFR2 receptor (Presta et al, 1997).

The combination therapy of bevacizumab with carboplatin and
paclitaxel showed only modest improvement in overall survival and
was associated with significant toxicities (Soria et al, 2013).
Therefore, additional approaches targeting tumor-associated vas-
culature are needed for NSCLC therapies.

This study supports the concept that increasing expression of
FOXF1 or its downstream target FZD4 in tumor endothelial cells,
either pharmacologically or via gene therapy, can be considered for
NSCLC treatment. FOXF1 is a transcription factor expressed in
pulmonary endothelial cells, which has been extensively studied in
embryonic and postnatal lung development (Kalinichenko et al,
2001b). FOXF1 is required for formation of blood vessels by
activating VEGF, PDGF-β and TIE-2 signaling pathways (Ren et al,
2014). Deletion and inactivating point mutations in FOXF1 gene
locus are associated with Alveolar Capillary Dysplasia with
Misalignment of Pulmonary Veins (ACDMPV), a congenital
pulmonary disorder characterized by the loss of pulmonary
capillaries and respiratory insufficiency in neonates and infants
(Dharmadhikari et al, 2015). FOXF1 stimulates lung repair and
regeneration in adult mice by regulating genes critical for
extracellular matrix remodeling, inflammation, and endothelial
barrier function (Bolte et al, 2017; Cai et al, 2016; Kalin et al, 2008).
Consistent with these studies, we found that FOXF1 stabilizes blood
vessels inside the NSCLC tumors, which can be utilized to enhance
delivery of chemotherapeutic agents or immune checkpoint
inhibitors in NSCLC therapy. In addition to its vessel-stabilizing
property, FOXF1 was implicated in embryonic angiogenesis
(Pradhan et al, 2019; Ren et al, 2014; Sturtzel et al, 2018; Sun et al,
2021), anti-fibrotic effects in lung fibroblasts (Black et al, 2018),
supporting lung regeneration after pneumonectomy (Bolte et al, 2017;
Cai et al, 2016), and engraftment of endothelial progenitor cells
after cell therapy (Kolesnichenko et al, 2023; Wang et al, 2021).
Furthermore, FOXF1 was found to be required for oncogenic potential
of tumor cells in rhabdomyosarcomas (Milewski et al, 2017; Milewski
et al, 2021) and gastrointestinal stromal tumors (Ran et al, 2018).
These published studies demonstrate that FOXF1 plays divers roles in
different diseases by regulating multiple downstream signaling path-
ways in cell-specific manner reviewed in (Bolte et al, 2020a) and (Bolte
et al, 2018). While therapeutic targeting of FOXF1 can be achieved
using either gene therapy (Bolte et al, 2020b) or TanFe small molecule
compound (Pradhan et al, 2023), further understanding of cell- and
context-dependent functions of FOXF1 is needed for future
considerations of FOXF1-directed therapies.

Figure 3. Deletion of Foxf1 in endothelial cells causes functional and structural abnormalities in tumor vasculature.

(A) The density of tumor vessels is increased in LLC tumors of endFoxf1+/− mice as shown by immunostaining with CD31+ Abs. (N= 9 mice per group). *P = 0.0123.
(B) qRT-PCR shows that Pecam1 mRNA is increased in microdissected lung tumors from endFoxf1+/− mice compared to control mice. β-actin mRNA was used for
normalization. (N= 4 per group). **P = 0.0016. (C) Increased percent of endothelial cells in microdissected lung tumors from endFoxf1+/− mice is shown by flow
cytometery. (N= 3–6 mice per group). *P = 0.0317. (D) Tumor-associated vessels in endFoxf1+/− lungs have decreased pericyte coverage as demonstrated by
immunostaining for endothelial marker CD31 (green) and pericyte marker NG2 (red). The percentage of positive area was counted in five random fields and presented as
mean ± SEM. (N= 8–9 mice per group). *P = 0.0491. (E) The endFoxf1+/− tumor vessels have decreased basement membrane, shown by decreased Collagen IV
immunostaining (red), and reduced ratio between CD31 (green) and Collagen IV levels (red). The percentage of positive area was counted in five random fields and
presented as mean ± SEM. (N= 5–6 mice per group). **P = 0.0043. (F) Perfusion of tumor vessels in endFoxf1+/− lungs is decreased compared to tumor vessels in control
lungs. Texas red-conjugated lectin was injected into the tail vein of tumor-bearing mice. Perfusion is shown by co-staining for CD31+ (green) blood vessels and tdTomato-
lectin (red) (N= 3 mice per group). **P = 0.0051. (G) LLC tumors in endFoxf1+− lungs have more hypoxic areas as shown using hypoxyprobe (red). Tumor vessels are
visualized using immunofluorescence for CD31+ (green). The percentage of positive area was counted in five random fields and presented as mean ± SEM. (N= 5–6 mice
per group). **P = 0.0043. Scale bar= 50 μm. Data information: Data represent different numbers (N) of biological replicates. The data with error bars are shown as
mean ± SEM. Statistical analysis was performed using the two-tailed unpaired-sample Student t test (A–G). Source data are available online for this figure.
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Tumor blood vessels are characterized by poor perfusion,
causing hypoxia and acidosis within the tumors (Semenza, 2013).
Hypoxia increases tumor growth and prevents infiltration of anti-
tumor cytotoxic T cells (Jayaprakash et al, 2018). Inhibition of
tumor hypoxia decreases tumor growth and metastasis by
increasing infiltration of CD8 T cells (Hatfield et al, 2015).
Consistent with previous studies, we found that FOXF1-deficient
endothelial cells form leaky tumor vasculature with abnormal
basement membrane lacking ColIV, leading to hypoxia in the lung
tumor. Our data suggests that FOXF1 expression in endothelial
cells is required for vascular normalization and that increasing
FOXF1 in TECs can potentially improve anti-tumor inflammatory
responses and drug deliveries. Interestingly, we have observed
elevated endothelial cell numbers in FoxF1-deficient tumors (Fig. 3),
suggesting an increased tumor angiogenesis. This contrasts with
diminished angiogenesis in FoxF1-deficient embryonic and neona-
tal lungs (Pradhan et al, 2019; Ren et al, 2014; Sturtzel et al, 2018;
Sun et al, 2021). One explanation is that FOXF1 regulates
angiogenesis differently in normal embryonic/neonatal lung tissue
compared to lung tumor tissue. This is consistent with the different
gene expression profiles in normal ECs (NEC) vs tumor-associated
ECs (TEC) as reported in the present manuscript. Published studies
demonstrate that FOXF1 can function as a pioneer transcription
factor to remodel chromatin and make it accessible for other
transcription factors to regulate gene expression (Ran et al, 2018).
Therefore, it is possible that FOXF1-regulated chromatin remodel-
ing can lead to either stimulation or inhibition of angiogenesis
depending on other transcription factors that differentially
expressed in normal and cancer lung tissues.

Canonical Wnt/β-catenin signaling plays a crucial role in
endothelial cell proliferation, migration, and survival by activating
Frizzled receptors. Activation or inhibition of β-catenin in
endothelial cells causes embryonic lethality due to disruption of
Wnt/β-catenin signaling and abnormal vessel adherens junctions
(Haegel et al, 1995; Rudloff and Kemler, 2012). Activation of Wnt/
β-catenin signaling in endothelial cells stabilizes postnatal retinal
blood vessels (Birdsey et al, 2015), and improves stability of blood
vessels in Erg-deficient mice (Birdsey et al, 2015). Interestingly,
activation of Wnt/β-catenin signaling in endothelial cells inhibits
glioma angiogenesis and normalizes tumor blood vessels through

the recruitment of pericytes (Reis et al, 2012). Our studies support
the concept that FOXF1 regulates vascular normalization within the
lung tumor, at least in part, through transcriptional activation
FZD4. In addition to its role in tumor vasculature, Wnt/β catenin
signaling regulates stromal and tumor cells to promote carcinogen-
esis (reviewed in (Nusse and Clevers, 2017)). Furthermore, FOXF1
was implicated in the regulation of Wnt/β catenin signaling in
fibroblasts and osteoblasts (Reza et al, 2023; Shen et al, 2020).
Therefore, it is possible that targeting of endothelial-FOXF1-FZD4-
Wnt//β catenin axis can be insufficient to effectively repress tumor
growth. The use of multiple therapeutic agents simultaneously
inhibiting tumor cells and cells of tumor microenvironment may be
needed to supplement the endothelial-specific nanoparticle FZD4
therapy for NSCLC.

In summary, FOXF1 is decreased in tumor-associated endothe-
lial cells in human and mouse NSCLC. Endothelial cell-specific
deletion of Foxf1 stimulates lung cancer growth and metastasis,
whereas FOXF1 overexpression in endothelial cells inhibits lung
tumorigenesis. FOXF1 induces Wnt/β-catenin signaling in
endothelial cells through transcriptional activation of FZD4.
FOXF1 regulates pericyte coverage and perfusion of tumor-
associated blood vessels, supporting the use of FOXF1-activating
therapies for vascular normalization in NSCLC patients.

Methods

Transgenic mice

Generation of endothelial cell-specific Foxf1 heterozygous mice: We
have previously generated Foxf1fl/fl mice (Ren et al, 2014) and bred
them into the C57Bl/6 mice (The Jackson Laboratory). Foxf1fl/fl

mice were crossed with Pdgfb-iCreERtg/- transgenic mice (Claxton
et al, 2008) received from Dr. Marcus Fruttiger (University College
London) to generate Pdgfb-iCreER/Foxf1fl/+ (abbreviated as
endFoxf1+/−) mice. To delete 1 allele of Foxf1 from endothelial
cells, tamoxifen (3 mg; Sigma) was given as oral gavage to 6–8 weeks
old mice. Generation of endothelial cell-specific FOXF1 over-
expression mice: We have recently generated TetO7-HA-mFoxf1tg/+

mice (Bian et al, 2023). TetO7-HA-mFoxf1tg/+ mice were crossed

Figure 4. Deletion of Foxf1 in tumor endothelial cells decreases canonical WNT signaling.

(A) Gene Set Enrichment Analysis of RNA-seq data shows downregulated pathways, including canonical Wnt signaling in endFoxf1+ /− compared to control TECs (left
panels). Endothelial cells isolated from microdissected endFoxf1+ /− and control tumors were used for RNA-seq. Reduction in gene transcripts related to canonical WNT
signaling pathway is presented as fold changes between endFoxf1+ /− and control TECs (right panel). (B) Co-localization studies show decreased nuclear β-CATENIN
(red) staining in CD31+ (green) endothelial cells within LLC tumors of endFoxf1+/− mice. Scale bar= 50 μm. (C) Percent of β-CATENIN+/CD31+ double-positive cells were
counted in five random fields and presented as mean ± SEM. (N= 5–7 mice per group). ****P < 0.0001. (D) Deletion of Foxf1 in endothelial cells decreases Foxf1 mRNA as
well as mRNAs of downstream targets of canonical WNT signaling pathway, including Axin2, Axin1, and Lef1. qRT-PCR was performed using FACS-sorted CD31+ /CD45−

endothelial cells from LLC tumors of endFoxf1+/− and control mice. β-actin was used for normalization. (N= 2–7 per group). (Foxf1: ****P < 0.0001; Axin2: ***P = 0.0009;
Axin1: **P = 0.0085; Lef1: *P = 0.0116). (E) The growth of human H-441 lung tumor spheroids were decreased when co-cultured with FOXF1-deficient HPAEC compared
to control HPAEC. Scale bar= 1000 μm. (N= 9). **P = 0.0015. (F) qRT-PCR shows the efficient shRNA-mediated inhibition of FOXF1, FZD4, and LEF1 in human pulmonary
arterial endothelial cells (HPAEC). β-ACTIN mRNA was used for normalization. (N= 3). (FOXF1: ***P = 0.0005; FZD4: *P = 0.0433; LEF1: *P = 0.0193). (G) Co-
localization studies show decreased β-CATENIN (red) staining in CD31+ (green) endothelial cells within human lung adenocarcinomas and SCC compared to donor lungs.
Scale bar= 50 μm. (H) Percent of β-CATENIN+/CD31+ double-positive cells were counted in five random fields and presented as mean ± SEM. (N= 5–9 per group). Scale
bar= 50 μm. ****P < 0.0001. (I) Downstream targets of canonical WNT signaling, including AXIN2, AXIN1, and CCND1, are decreased in TEC isolated from NSCLC patients
compared to EC isolated from human donor lungs. β-actin mRNA was used for normalization. (N= 3–5 per group). (AXIN1: **P = 0.0052; AXIN2: ***P = 0.0009; CCND1:
**P = 0.0017). Data information: Data represent different numbers (N) of biological replicates. The data with error bars are shown as mean ± SEM. Statistical analysis was
performed using Benjamini-corrected P value (A), the two-tailed unpaired-sample Student t test (C, D, E, F, I), or one-way ANOVA followed by Tukey’s post hoc test
(H). Source data are available online for this figure.
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with Pdgfb-iCreERtg/- (Claxton et al, 2008) transgenic mice and
Rosa26-LSL-rtTAtg/+ (Belteki et al, 2005) (Jackson Laboratory) to
generate Pdgfb-iCreER/Rosa26-LSL-rtTA/TetO7-HA-mFoxf1 mice.
To induce FOXF1 overexpression in endothelial cells, tamoxifen
(3 mg; Sigma) was given as oral gavage on 2 consecutive days to
6–8 weeks old mice, followed by maintenance of mice on
doxycycline chow for the duration of the experiment. Mice were
sacrificed and lungs were collected 31 days post tamoxifen
administration.

Cell lines

Mouse Lewis Lung Carcinoma (LLC; ATCC # CRL-1642) were
cultured in DMEM (Invitrogen), human lung adenocarcinoma cell
line NCl-H-441 (ATCC, #HTB-174) were cultured in RPMI-1640.
Human Pulmonary Artery Endothelial Cells (HPAEC, Lonza
#CC2530) were cultured in ECM medium (ScienCell). For stable
knockdown of FOXF1, HPAECs were transduced with TRC
lentiviral human FOXF1 shRNA (clone ID: TRCN0000013953,
Horizon). GIPZ non-silencing lentiviral shRNA (Cat #: RHS4346,
Horizon) was used as described (Bian et al, 2023). Cells were tested
mycoplasma-negative prior to experiments.

Three-dimensional (3D) co-culture spheroid model

In total, 50 µl of H-441 cells (6 × 106 cells/ml) mixed with 50 µl of
HPAEC cells (6 × 106 cells/ml) and seeded to 96-well ultra-low
attachment 96-well plates (Corning, cat# CLS7007). The plates
were then placed in the incubator at 37 °C with 5% CO2, and the
spheroids grew on the bottom of the wells. After 7-day incubation,
images were captured by using EVOS™ XL Core Imaging System
(cat#AMEX1000).

Mouse models of lung cancer

Orthotopic model of lung cancer: Lung tumors were generated in
mice using Lewis Lung Carcinoma (LLC) cells as previously
described (Doki et al, 1999). Briefly, log-phase cell cultures of LLC
cells were collected and re-suspended at a cell density of 1 × 104

cells in 20 μL of 1:1 PBS: Matrigel. Six to eight weeks old mice
(C57Bl/6 wild-type control, endFoxf1+/−, and endFoxf1OE) were
anesthetized using isofluorane. A small incision was made on the
left chest wall, subskin fat and muscles were separated from the

coastal bones and using a 0.3-mL insulin syringe, 10,000 mCherry-
labeled LLC tumor cells were injected into the left lung through the
intercostal space. The muscles were sutured using absorbable
sutures and the skin incision was closed with a surgical skin clip.
Mice were sacrificed on days 14, 21, or 28 post tumor cell
inoculation. Lungs, and mediastinal lymph nodes were harvested,
and tumor sizes were measured. Tumor volumes were calculated as
½ (L ×W ×W) where L is the largest tumor diameter and W is
tumor diameter perpendicular to L. Tumor-bearing lungs were
collected for histology or tumors were microdissected and
CD45−CD31+ ECs were isolated by flow cytometry. RNA was
extracted from sorted ECs for qRT-PCR or RNA-seq analysis.
Urethane-induced lung carcinogenesis: Carcinogen-induced lung
tumors were generated as previously described (Miller et al, 2003).
Briefly, 6–8 weeks old mice were injected with urethane (25 mg;
Sigma) intra-peritoneally once a week for 10 weeks and
administered tamoxifen (3 mg; Sigma) orally once a month for
8 months. Mice were sacrificed 32 weeks after first urethane
injection. Lungs were harvested, and numbers of visible tumor
nodules were counted. Tumor nodules were classified into <1 mm,
~1 mm, and >1 mm diameter.

Patient samples

De-identified non-small cell lung cancer (NSCLC) patient paraffin-
imbedded lung sections or fresh tissue samples were obtained from
the University of Cincinnati Biorepository (Appendix Table S1).
Utilization of de-identified human samples was reviewed and
approved by the Ethics Committee of the University of Cincinnati.
A single-cell suspension was prepared from fresh lung cancer
patient tissue samples using enzyme cocktail (dispase, and liberase),
and endothelial cells (CD45−CD31+) were sorted using magnetic
beads (Miltenyi Biotec). RNA was extracted from sorted endothelial
cells and subjected to qRT-PCR analysis. Lung cancer patient
survival was determined using online survival analysis software
(Gyorffy et al, 2013).

Histology and immunostaining

Lung paraffin sections were used for H&E staining, and paraffin
sections or frozen sections were used for immunostaining as
previously described (Cai et al, 2016). The list of antibodies used for
immunostaining can be found in the Appendix Table S2. For

Figure 5. Endothelial-specific overexpression of FOXF1 inhibits lung cancer growth and metastases.

(A) Overexpression of FOXF1 in endothelial cells (endFoxf1OE) decreases primary lung tumor growth in LLC orthotopic mouse model. Scale bar= 0.2 cm. (B) H&E staining
shows smaller LLC tumors in endFoxf1OE lungs compared to controls. Scale bar= 500 μm. (C, D) Overexpression of FOXF1 decreases lung tumor volume and frequency of
mediastinal lymph node metastasis in endFoxf1OE mice. (N= 6 mice per group). (C: **P = 0.0428) (E) FOXF1 protein (red) is expressed in CD31+ (green) endothelial cells
within endFoxf1OE lung tumors but not within control lung tumors. (F) Foxf1 and Axin2 mRNAs are increased in CD31+ /CD45− TECs isolated from endFoxf1OE tumors
compared to TECs from control tumors as shown by qRT-PCR. β-actin mRNA was used for normalization. (N= 5–12 per group). (Foxf1: **P = 0.0039; Axin2:
*P = 0.0488). (G) Blood vessels in endFoxf1OE tumors have increased pericyte coverage as shown by co-localization of CD31 (green) with NG2 (red). The percentage of
positive area was counted in five random fields and presented as mean ± SEM. (N= 3 mice per group). Scale bar= 50 μm. *P = 0.041. (H) Blood vessels in endFoxf1OE

tumors have improved basement membrane as shown by increased co-localization of CD31 (green) with Collagen IV (red). The percentage of positive area was counted in
five random fields and presented as mean ± SEM. (N= 3 mice per group). Scale bar= 50 μm. ****P < 0.0001. (I) The number of endothelial cells (green) with nuclear β-
CATENIN (red) is increased in lung tumors of endFoxf1+/− mice. Percent of β-CATENIN+/CD31+ double-positive cells were counted in five random fields and presented as
mean ± SEM. (N= 3 mice per group). Scale bar= 50 μm. ***P = 0.0003. Data information: Data represent different numbers (N) of biological replicates. The data with
error bars are shown as mean ± SEM. Statistical analysis was performed using the two-tailed unpaired-sample Student t test (C, F, G, H, I). Source data are available online
for this figure.
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immunofluorescence imaging, secondary antibodies conjugated
with Alexa Fluor 488, Alexa Fluor 594, or Alexa Fluor 647
(Invitrogen/Molecular Probes) were used as described (Cai et al,
2016). Cell nuclei were counterstained with DAPI. Images were
obtained using a Zeiss AxioPlan 2 microscope. Tumor hypoxia:
Hypoxia within tumors was detected as previously described
(Cantelmo et al, 2016). Briefly, tumor-bearing mice were injected
with 60 mg/kg pimonidazole hydrochloride (hypoxyprobe kit) 1 h
prior to sacrifice. To detect the formation of pimonidazole adducts,
paraffin sections were immunostained with Hypoxyprobe-1-Mab1
following the manufacturer’s instructions. Tumor vessel perfusion:
A vascular perfusion assay was carried out as previously described
(Cantelmo et al, 2016). Tumor-bearing mice were intravenously
injected with 0.05 mg fluorescein-labeled Lycopersicon esculentum
(Tomato) lectin (Vector Laboratories) 10 min prior to sacrifice. The
perfused area was defined as lectin+ CD31+ area.

RNA-seq and single-cell RNA-Seq data analysis

LLC tumors were microdissected from control and endFoxf1+/− mice
21 days post tumor cell injection. Endothelial cells (CD45−CD31+)
cells were sorted from the microdissected lung tumors using FACS,
and RNA was extracted and sequenced. Differentially expressed genes
were identified using DESeq2, and both P value and fold change were
calculated. For molecular pathway analysis, the functional annotation
clustering was performed using DAVID Bioinformatics Resources
Ver.6.8. The KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway enrichment analysis was used to produce the annotation data.
Functional clusters with Benjamini-corrected P value < 0.05 were
considered statistically significant. The mouse scRNA-seq (ArrayEx-
press: E-MTAB-7458 (Goveia et al, 2020)) raw counts were retrieved
from the website (https://www.vibcancer.be/software-tools/
lungTumor_ECTax), and were analyzed using the Seurat R package
as previously described (Wang et al, 2022; Wang et al, 2021). Total
n = 3841 of normal lung EC (NEC) and n = 10,012 of tumor-associated
EC (TEC) were included in the analysis.

qRT-PCR

FACS-sorted lung endothelial cells were used for RNA extraction.
cDNA was synthesized from RNA using iScript cDNA synthesis kit
and qRT-PCR was carried out using Taqman probes listed in
Appendix Table S3.

Generation of the mouse Fzd4 reported construct and
luciferase assay

The mouse Fzd4 DNA regulatory region 400 bp (DNA sequence
+4261 to +4660 containing four FOXF1-binding site) was cloned
into luciferase plasmid. The insert was placed before minimal
promoter and luciferase plasmid. Fzd4 mutant constructs were
generated using site-directed mutagenesis. A dual luciferase
reporter assay was performed on Hek293T cells co-transfected
with luciferase reporters and either a CMV-empty or CMV-Foxf1
overexpression plasmid.

Nanoparticle generation and delivery of plasmid

The PBAEs were synthesized using two-step Aza-Michael addition
synthesis as described (Bian et al, 2023). To label the PBAE
nanoparticle, the DyLight 650 NHS ester (ThermoFisher Scientific)
was mixed with the nanoparticle at a mass ratio of 1:100. Foxf1
plasmid was generated by cloning DNA (3HA-RFP-Foxf) into the
Enhanced Episomal Vectors (EEV) empty plasmid vectors (SBI).
The PBAE polymer (300 µg) was used to encapsulate 40 µg of
plasmid DNA (CMV-Fzd4 or CMV-empty). Nanoparticles (250 µl)
were delivered to mice via tail vein or eye vein.

RNAscope in situ hybridization assay

Assay was performed according to a protocol developed by
Advanced Cell Diagnostics (ACD), using in situ probes designed
by ACD, the RNAscope Multiplex Fluorescent Reagent Kit (v.2),
and Opal dyes (Akoya Biosciences, 1:500 dilution for Opal 570 and
690 dyes, 1:1000 dilution for Opal 520 dyes). Nuclei were
counterstained with DAPI, and tissue sections were mounted in
Prolong Gold antifade reagent (Invitrogen). Proprietary (ACD)
probes used: Mouse, Mm-Foxf1(473051), Mm-Fzd4-C3(404901-
C3), Mm-Aplnr-C2(436171-C2), Mm-Cdh5(312531), Mm-Cldn5-
C3(491611-C3). Tissue slides were photographed with a wide-field
Nikon i90 or Nikon confocal microscope and quantified using the
Nikon’s NIS-Elements AR (Advanced Research, ver. 5) software.

Statistical analysis

Statistical significance differences in measured variables between
experimental and control groups were assessed by Student’s t test

Figure 6. FZD4 is decreased after deletion of Foxf1 in lung endothelial cells.

(A) RNA-seq analysis shows decreased Foxf1 and Fzd4 mRNA transcripts in endFoxf1+ /− TECs compared to controls. (N= 3 per group). Boxes show median, Q1 and Q3
quartiles and whiskers up to 1.5× interquartile range. (B) Fzd4 mRNA is decreased in FACS-sorted endFoxf1+ /− TECs compared to control TECs shown by qRT-PCR. β-
actin mRNA was used for normalization. (N= 8–10 mice per group). **P = 0.001. (C) Immunostaining shows that Fzd4 (red) is expressed in CD31+ endothelial cells
(green) in normal mouse lung (left panel). Deletion of Foxf1 decreases Fzd4 in CD31+ endothelial cells within LLC tumors of endFoxf1+/- mice compared to controls.
(N= 3–4 per group). The normal lung tissue image is the same as in Figure EV1B. Scale bar= 50 μm. ***P = 0.0002; *P = 0.0479. (D) Co-localization studies show
decreased FZD4 (red) staining in CD31+ (green) endothelial cells within human lung adenocarcinomas and SCC compared to donor lungs. (N= 7–16 per group). Scale
bar= 50 μm. ****P < 0.0001 compared to donor lungs. (E) TCGA data mining show that lower FZD4 levels predict poor overall survival in NSCLC patients. (F) ChIP-seq
shows direct binding of FOXF1 protein to Fzd4 promoter region in mouse MFLM-91U endothelial cells. (G) Schematic drawing of the pGL2-Fzd4-Luc construct with Fzd4
DNA containing the FOXF1-binding sites (BDS) (top panel). In co-transfection experiments, CMV-FOXF1 expression vector increased transcriptional activity of the full-
length Fzd4 reporter compared to CMV-empty vector (bottom panel). Deletion of BDS1, 3 and 4, but not BDS2, diminished CMV-FOXF1-induced transcriptional activation
of the Fzd4 region. (n= 4 samples per group). ****P < 0.0001; ****P = 0.0001 compared to CMV-empty group. Data information: Data represent different numbers (N)
of biological replicates. The data with error bars are shown as mean ± SEM. Statistical analysis was performed using the two-tailed unpaired-sample Student t test (B),
logrank test (E), or one-way ANOVA followed by Tukey’s post hoc test (C, D, G). Source data are available online for this figure.
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(two-tailed) or Mann–Whitney test. Multiple groups were com-
pared using one‐way analysis of variance (ANOVA) followed by
Tukey’s post hoc test. P values < 0.05 were considered significant.
Values for all measurements were expressed as the mean ± standard
deviation or as the mean ± standard error of the mean. Statistical
analysis was performed, and data were graphically displayed using
GraphPad Prism v.9.0 for Windows (GraphPad Software, Inc., San
Diego, CA). All experiments in this study have been repeated

independently with similar results more than three times. All
experiments were performed randomization. All animal experi-
ments and in vitro studies were performed and analyzed in a
blinded manner. All samples were used for analysis and there were
no inclusion/exclusion criteria.

Ethical statement

The Institutional Review Board of the Cincinnati Children’s
Hospital Medical Center (Federalwide Assurance #00002988)
approved all the studies with human tissue samples (IRB protocol
#2017-4321). Human lung tissue specimens were obtained from
tissue repository at the University of Cincinnati Medical Center
that provides de-identified human biospecimen procurement and
banking services in support of basic, translational, and clinical
research. All patients signed informed consent prior to tissues
collection. All animal studies were approved by the Cincinnati
Children’s Research Foundation Institutional Animal Care and Use
Committee and covered under our animal protocol (IACUC2016-
0070). The Cincinnati Children’s Research Foundation Institutional
Animal Care and Use Committee is an AAALAC and NIH-
accredited institution (NIH Insurance #8310801). All mice were
kept under SPF (specific-pathogen-free) conditions in 12/12 light/
dark cycle, 18–23 °C, and 40–60% humidity. Both males and
females were used for studies. The experiments conformed to the
principles set out in the WMA Declaration of Helsinki and the
Department of Health Services Belmont Report.

Graphics

Synopsis image graphics were created with BioRender.com.

Data availability

The RNA-seq data uploaded to GEO database can be accessed at
GSE255969.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44321-024-00064-8.

Figure 7. FOXF1 regulates WNT signaling in endothelial cells through the FZD4 receptor.

(A) Schematic diagram of nanoparticle delivery. Fluorescently labeled nanoparticles (DyLight 650+) were delivered I.V. to tumor-bearing control and endFoxf1+ /− mice
at day 7 after LLC tumor cells inoculation and the presence of nanoparticles was detected two weeks after nanoparticle treatment. (B) Using microdissected lung tumors
from control mice, flow cytometry analysis shows the presence of PBAE nanoparticles in endothelial (CD31+/CD45−) cells, but not in hematopoietic/immune cells
(CD45+/CD31-), epithelial cells (CD326+) or fibroblasts (CD326−/CD45−/CD31−). (n= 3–4 mice per group). (C, D) Nanoparticle delivery of the Fzd4 vector (nano-Fzd4)
to endothelial cells decreases lung tumor sizes in endFoxf1+ /- mice compared to treatment with nanoparticles containing CMV-empty vector (nano-Empty). (N= 7–11
mice per group). Scale bar (top)= 0.2 cm. Scale bar (bottom)= 900 μm. (Control compared to endFoxf1+ /− nano-Empty: **P = 0.0035; endFoxf1+ /− nano-Empty
compared to nano-Fzd4: **P = 0.008). (E) An increased number of Fzd4-positive endothelial cells in lungs of Nano-Fzd4 treated mice is shown using RNAscope (N= 4–9
mice per group). Endothelial cells were visualized using Aplnr mRNA. Data presented as mean ± SEM. *P < 0.05. Scale bar= 20 μm. (Lung Control compared to Tumor
Control: **P = 0.0013; Tumor Control compared to Tumor endFoxf1+ /− nano-Empty: **P = 0.0044; Tumor endFoxf1+ /− nano-Empty compared to nano-Fzd4:
*P = 0.0394). (F) Co-localization studies show increased nuclear β-CATENIN (red) staining in CD31+ (green) endothelial cells within LLC tumors of endFoxf1+/− mice
treated with nano-Fzd4 compared to nano-Empty groups. (Arrows: double-positive cells; N= 4-7 mice per group). Scale bar= 20 μm. Tumor Control compared to Tumor
endFoxf1+ /− nano-Empty: ***P = 0.0002; Tumor endFoxf1+ /− nano-Empty compared to nano-Fzd4: ***P = 0.0003). (G) Treatment of endFoxf1+/− mice with nano-
Fzd4 increases the basement membrane coverage in tumor vessels, shown by increased Collagen IV immunostaining (red) and increased percentage of ColIV+ area
relative to CD31+ area (green). The percentage of positive area was counted in five random fields and presented as mean ± SEM. (N= 4–5 mice per group). Scale
bar= 20 μm. Tumor Control compared to Tumor endFoxf1+ /− nano-Empty: ***P = 0.0002; Tumor endFoxf1+ /− nano-Empty compared to nano-Fzd4: **P = 0.0012).
Data information: Data represent different numbers (N) of biological replicates. The data with error bars are shown as mean ± SEM. Statistical analysis was performed
using the one-way ANOVA followed by Tukey’s post hoc test (D–G). Source data are available online for this figure.

The paper explained

Problem
Tumor-associated angiogenesis is essential to promote tumor growth and
metastases. Tumor blood vessels are abnormal, endothelial layer is dis-
organized and leaky. Lung has a robust capillary network, providing
unique microenvironment for highly metastatic non-small cell lung can-
cers (NSCLC). Presence of tumor cells induce reprogramming of normal
lung endothelial cells (EC) into tumor-associated endothelial cells (TEC),
which promote tumor progression and metastasis. The transcriptional
regulators that control EC-to-TEC transition are poorly understood.

Results
We have identified the Forkhead Box transcription factor 1 (FOXF1) as a
critical regulator of EC-to-TEC transition. FOXF1 is expressed in normal
EC, but rapidly decreases in TEC of mouse and human NSCLC. Low
FOXF1 predicts poor survival in NSCLC patients. While endothelial-
specific deletion of FOXF1 in mice destabilizes tumor vessels and pro-
motes lung cancer growth and metastasis, the endothelial over-
expression of FOXF1 normalizes tumor vessels and inhibits lung tumor
progression. FOXF1 deficiency decreases Wnt/β-catenin signaling in
TECs through direct transcriptional activation of Fzd4. Nanoparticle
delivery of Fzd4 cDNA to endothelial cells rescued Wnt/β-catenin
signaling in TECs, normalized tumor vessels and inhibited the pro-
gression of lung cancer.

Impact
Our study identifies the novel molecular mechanisms used by lung
endothelial cells to regulate tumorigenesis which involves FOXF1/
FZD4/WNT signaling. We have demonstrated that maintaining FOXF1/
FZD4 signaling in pulmonary EC via genetic or gene therapy is bene-
ficial to normalize tumor vessels and inhibit lung cancer progression.
Nanoparticle delivery of FZD4 cDNA represents a promising ther-
apeutic strategy to treat NSCLC.
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Figure EV1. FOXF1 expression is decreased in TECs of mouse LLC lung tumors.

(A) TCGA data mining show that lower FOXF1 mRNA levels in tumors predicts poor overall survival in patients with adenocarcinoma (AD) and squamous cell carcinoma
(SCC). The lower and upper quartile for FOXF1 expression in AD and SCC were compared. (N= 1926). (B) Co-localization studies demonstrate decreased FOXF1 protein
(red) in CD31+ endothelial cells (green) within mouse LLC tumors compared to normal lungs. The normal lung tissue image is the same as in Fig. 6C. (N= 3 mice per
group). Scale bar= 100 μm. (C) Endothelial cells from normal lung (NEC) and LLC tumors (TEC) were visualized using uniform manifold approximation and projection
(UMAP) after samples integration with Harmony. (D) Both Foxf1 mRNA levels and the total number of FoxF1-expressing EC were decreased in LLC lung tumors compared
to normal lung. Based on endothelial cell sub-clustering, decreased Foxf1 mRNA was detected in tumor-associated capillary, arterial and venous ECs. Foxf1 was not
expressed in lymphatics. Colored by group; red- Donor EC, (NEC; n= 3841 cells); blue- EC from LLC tumors, (TEC, n= 10012 cells). Boxes show median, Q1 and Q3
quartiles and whiskers up to 1.5× interquartile range. Data information: Data represent different numbers (N) of biological replicates. The data with error bars are shown as
mean ± SEM. *P < 0.05, ns: not significant, as determined using the logrank test (A), or Wilcoxon rank-sum test (D).
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Figure EV2. Conditional deletion of one Foxf1 allele from endothelial cells does not affect lung histology.

(A) Schematic representation of breeding strategy for the conditional deletion of one allele of Foxf1 from endothelial cells (endFoxf1+/− mice). Foxf1F/F mice were crossed
with Pdgfb-creER+/− mice to generate Pdgfb-creER+/-; Foxf1F/+ mice. Foxf1F/+ littermates were used as controls. (B) Schematic representation of tamoxifen treatment to
delete Foxf1 from endothelial cells. (C) The gating strategy for FACS-sorting. Single, live cells from the lungs were gated to identify endothelial cells (CD45− CD31+).
(D) qRT-PCR shows decreased Foxf1 mRNA in endothelial cells isolated from endFoxf1+/− lungs compared to control lungs. Actb mRNA was used for normalization.
(N= 8–10 mice per group). *P = 0.0151. (E) H&E staining (upper panels) shows no morphological differences between tamoxifen-treated control Foxf1F/+ lungs and
endFoxf1+/− lungs at 31 days after tamoxifen administration. Scale bar= 25 μm. No difference in pericyte coverage of blood vessels was found in control and endFoxf1+/−

lungs is shown by co-localization of CD31 (green) with NG2 (red) (Middle panels). Blood vessels in endFoxf1+/− and control lungs have similar basement membrane as
shown by co-localization of CD31 (green) with Collagen IV (red). (Bottom panels). Scale bar= 100 μm. Data information: Data represent different numbers (N) of
biological replicates. The data with error bars are shown as mean ± SD. Statistical analysis was performed using Mann–Whitney Two-tailed test (D). Source data are
available online for this figure.
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Figure EV3. Overexpression of FOXF1 in endothelial cells does not affect lung architecture.

(A) Schematic representation shows breeding strategy for overexpression of FOXF1 in endothelial cells (endFoxf1OE). (B) Schematic representation of tamoxifen and
doxycycline treatment to overexpress FOXF1 in endothelial cells. (C) H&E staining shows no morphological differences between tamoxifen+doxycycline-treated control
and endFoxf1OE mouse lungs at 31 days after the treatment. Scale bar= 50 μm. (D) No difference in pericyte coverage of blood vessels in control and endFoxf1OE lungs is
shown by co-localization of CD31 (green) with NG2 (red). (E) Blood vessels in endFoxf1OE and control lungs have similar basement membrane as shown by co-localization
of CD31 (green) with Collagen IV (red). (F) Foxf1 mRNA is increased by ~4.5-fold in CD45−CD31+ endothelial cells FACS-sorted from tamoxifen+doxycycline-treated
endFoxf1OE mice compared to controls. β-actin mRNA was used for normalization. (N= 3 mice per group). Scale bar= 100 μm. ****P < 0.0001. Data information: Data
represent different numbers (N) of biological replicates. The data with error bars are shown as mean ± SEM. Statistical analysis was performed using the two-tailed
unpaired-sample Student t test (F). Source data are available online for this figure.
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Figure EV4. Fzd4 is a direct transcriptional target of FOXF1.

(A) Expression of Frizzled receptor mRNAs in lung endothelial cells based on
scRNA-seq analysis. (B) Analysis of ChIP-seq dataset from MFLM-91U
endothelial cells shows FOXF1-binding picks in Fzd4 gene region located 3’ to
the exon 2 of the Fzd4 coding sequence (top panel). Homology of the Fzd4 gene
with FOXF1-binding sites (BDS) is shown for several mammalian species
(bottom panel).
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Figure EV5. Treatment with intravenously injected PBAE nanoparticles carrying CMV- Fzd4 (nano-Fzd4) is not toxic.

(A) Normal liver functions: No differences were found in the concentrations of total protein, Albumin, Globulins, ALP, Total Bilirubin, GGT, and ALT in peripheral blood
serum of mice treated with nano-Fzd4 compared to control mice treated with glucose. N= 5 mice per group. (B) Normal kidney functions: No differences in BUN and
Creatinine levels were found in the nano-Fzd4 treated group compared to the control group. N= 5 mice per group. (C) No changes in hematologic parameters compared to
the control group. N= 5 mice per group. (D) Nano-Fzd4 treatment does not change the histological appearance of endothelial cells in the liver shown with immunostaining
for Pecam1 (CD31). Arrows indicated blood vessels. N= 2–3 mice per group. Data information: Data represent different numbers (N) of biological replicates. The data with
error bars are shown as mean ± SEM. ns: not significant, as determined using two-tailed unpaired-sample Student t test (A–C). Source data are available online for this
figure.
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