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Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-
derived suppressor cells (MDSCs), one of the most abundant components of the 
tumor stroma, play an important role in the invasion, metastasis, and immune 
escape of CRC. MDSCs create an immunosuppressive microenvironment by 
inhibiting the proliferation and activation of immunoreactive cells, including T 
and natural killer cells, as well as by inducing the proliferation of immunosup-
pressive cells, such as regulatory T cells and tumor-associated macrophages, 
which, in turn, promote the growth of cancer cells. Thus, MDSCs are key con-
tributors to the emergence of an immunosuppressive microenvironment in CRC 
and play an important role in the breakdown of antitumor immunity. In this 
narrative review, we explore the mechanisms through which MDSCs contribute to 
the immunosuppressive microenvironment, the current therapeutic approaches 
and technologies targeting MDSCs, and the therapeutic potential of modulating 
MDSCs in CRC treatment. This study provides ideas and methods to enhance 
survival rates in patients with CRC.
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Core Tip: Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), 
one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune 
escape of CRC. In this study, we focused on the mechanisms through which MDSCs contribute to the immunosuppressive 
microenvironment, current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of 
modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with 
CRC.
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INTRODUCTION
Colorectal cancer (CRC) ranks as the third most common malignancy and the second leading cause of cancer-related 
deaths worldwide[1,2]. Standard treatments for CRC include surgery, chemotherapy, radiotherapy, and combinations 
thereof[3]. In recent years, significant advancements have been made in the diagnosis and treatment of CRC, particularly 
with the introduction of immunotherapy[4-6]. Pembrolizumab, for instance, has improved the median survival time for 
patients with metastatic CRC from 8.2 to 16.5 months, becoming established as the standard first-line treatment option for 
metastatic microsatellite instability-high (MSI-H) and mismatch repair-deficient (dMMR) CRC[7,8]. However, immune 
checkpoint inhibitors (ICIs) are only effective in CRC patients with MSI-H/dMMR, who account for approximately 15% 
of cases[9-12]. Furthermore, even among these patients, the response rate to ICI is only about 40%[13,14], contributing to a 
high mortality rate, especially in patients with stage IV CRC, who have a 5-year survival rate of only 14%[15]. Therefore, 
improving the efficacy of immunotherapy remains a critical challenge in improving the prognosis for CRC patients[16].

CRC is a highly malignant disease with a complex tumor microenvironment (TME), marked by interactions between 
the tumor, stromal, and immune cells. The major cellular components of the TME in CRC include tumor cells, myeloid-
derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts, tumor-associated macrophages 
(TAMs), natural killer (NK) cells, and regulatory T cells (Tregs), among other immune cells[17,18]. Crosstalk between 
cancer cells and the TME is an important factor that contributes to tumor immune escape, metastasis, recurrence, and 
poor immunotherapy efficacy[19,20]. MDSCs, which originate from hematopoietic stem cells, are one of the most 
abundant and dominant components of the TME. Several studies have demonstrated that MDSCs can cause immunosup-
pression, which in turn is involved in CRC progression, recurrence, and metastasis[15,17,21,22]. Increased levels of 
circulating and tumor-infiltrating MDSCs have been observed in CRC patients[23,24]. Thus, targeted inhibition of MDSCs 
attenuates immunosuppression and activates antitumor immune responses, such as T and NK cells, which in turn 
enhances antitumor immunotherapy[25,26]. Inhibiting MDSC trafficking to the TME has been proposed as a novel 
strategy in microsatellite-stable CRC, with the potential to reprogram the immune system[27]. A previous study reported 
that a high-salt diet inhibited tumor growth in mice by reducing MDSC activity and enhancing antitumor immune 
surveillance[28]. Furthermore, targeting TAMs and granulocytic MDSCs (G-MDSCs) augments the effects of ICIs and 
programmed cell death protein 1 (PD-1) blockade in cholangiocarcinoma[29]. Therefore, this review focuses on MDSCs, 
exploring and discussing their roles and mechanisms in tumor progression, and examining the current application of 
pharmacological and non-pharmacological therapies aimed at inhibiting MDSCs, including combination therapies with 
ICIs. This discussion aims to provide therapeutic ideas and targets for improving the immunosuppressive microenvir-
onment in CRC, thereby enhancing the efficacy of immunotherapy and improving patient prognosis.

MDSC: ORIGIN, PHENOTYPE, AND FUNCTION
Under physiological conditions, hematopoietic progenitor cells in the bone marrow differentiate into common myeloid 
progenitors (Figure 1), and then undergo granulocyte-macrophage progenitor, myeloblast, and monocyte-DC progenitor 
processes that culminate in their differentiation into monocytes or neutrophils[30]. When a healthy human is subjected to 
acute infection or trauma, the bone marrow quickly releases large numbers of immature myeloid cells that differentiate 
into mature myeloid cells, such as polymorphonuclear neutrophils and monocytes, to help eliminate the acute 
pathological conditions[31,32]. However, in patients with tumors, continuous stimulation often leads to defective differ-
entiation of immature myeloid cells, which eventually differentiate into MDSCs with immunosuppressive properties[33,
34]. MDSCs are classified into two subsets: Monocytic MDSCs (M-MDSCs) and granulocytic polymorphonuclear MDSCs 
(PMN-MDSCs), with the latter comprising approximately 80% of the total MDSC population[35,36]. In mice, PMN-
MDSCs are identified by the markers CD11b+Ly6G+Ly6Clow, whereas M-MDSCs are characterized as CD11b+Ly6G-Ly6C 
high[37-40]. In humans, PMN-MDSCs and M-MDSCs can be distinguished by their respective markers: CD14-
CD11b+CD15+CD66b+CD33+ HLA-DR- for PMN-MDSCs and CD14+CD11b+CD15-CD66b-CD33+HLA-DR- for M-
MDSCs[41-43].
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Figure 1 Schematic diagram of myeloid-derived suppressor cell development and differentiation. Hematopoietic stem cells in the bone marrow 
differentiate into common myeloid progenitors (CMP) and then undergo CMP, myeloblast, and monocyte-dendritic cell progenitor processes that culminate in 
differentiation into monocytes or neutrophils. However, in patients with tumors, continuous stimulation often leads to defective differentiation of immature myeloid 
cells, which eventually differentiate into myeloid-derived suppressor cells (MDSCs) with immunosuppressive properties. MDSCs are classified into two subsets: 
Monocytic MDSC and granulocytic polymorphonuclear MDSC. HSC: Hematopoietic stem cells; CMP: Common myeloid progenitors; GMP: Granulocyte-macrophage 
progenitor; MB: Myeloblast; MDP: Monocyte-dendritic cell progenitor; IMC: Immature myeloid cell.

The hallmark of MDSCs is immunosuppression, primarily targeting immunoreactive cells such as T and NK cells, with 
a particular focus on T cells. They utilize multiple pathways that promote tumor immune evasion, leading to antitumor 
immune resistance[44,45]. However, PMN-MDSCs and M-MDSCs exert their immunosuppressive effects via different 
mechanisms. PMN-MDSCs mediate immunosuppression via the production of reactive oxygen species (ROS), 
peroxynitrite, and arginase 1 (ARG1), while M-MDSCs produce nitric oxide (NO) and immunoregulatory cytokines, 
including interleukin (IL)-10 and transforming growth factor beta (TGF-β). M-MDSCs also contribute to immunosup-
pression by upregulating the expression of immunoregulatory molecules such as programmed cell death 1 ligand 1 (PD-
L1)[46]. Due to the induction of these tumor-derived growth factors and pro-inflammatory cytokines, the MDSC 
population is greatly expanded in the TME[47].

In addition to their immunosuppressive functions, MDSCs can also promote tumor progression by influencing 
remodeling and tumor angiogenesis through the production of vascular endothelial growth factor (VEGF), bFGF, Bv8, 
and MMP9[48-51]. MDSCs promote epithelial-mesenchymal transition (EMT) by activating the PI3K-AKT-mTOR 
pathway in cancer cells, thereby increasing the invasiveness and metastatic potential of breast cancer cells[52,53]. MDSCs 
also directly promote tumor growth and metastasis. A previous study confirmed that human MDSCs promote CRC 
development by enhancing CRC cell stemness and growth via exosomal S100A9[54]. Furthermore, MDSCs drive tumor 
progression by producing IL-6 (which activates STAT3 in cancer cells) and NO (which activates the Notch pathway and 
maintains STAT3 activation), thereby inducing stem cell-like features in breast cancer cells[55].

MECHANISMS OF MDSC-MEDIATED IMMUNOSUPPRESSION IN CRC
Inhibition of T-cell function
MDSC can recruit and induce other suppressive or regulatory cells (Figure 2), such as Tregs, and inhibit the immune 
function of various T cell types, including NK cells and CD8+ T cells, through multiple pathways, thereby affecting the 
immune function of patients with tumors[56,57]. Activated MDSCs within the TME express ARG1 and cystine–glutamate 
transporters (Xc-), thus depriving T cells of L-arginine and L-cysteine, which are essential for proliferation and activation
[47,58]. T cells, which require cysteine for activation and function, can only acquire cysteine from antigen-presenting cells, 
such as macrophages and DCs, due to their inability to transport cysteine. However, MDSCs compete with these antigen-
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Figure 2 Mechanisms of myeloid-derived suppressor cells-mediated immunosuppression. The activated myeloid-derived suppressor cells 
(MDSCs) in the tumor microenvironment express arginase 1 and cystine-glutamate transporters, thus depriving T cells of L-arginine and L-cysteine, which are 
essential for proliferation and activation. MDSCs compete with antigen-presenting cells for extracellular cysteine and are unable to export cysteine to prevent T cell 
proliferation and activation. MDSCs also express indoleamine 2,3-dioxygenase 1 to inhibits the activity of T and natural killer (NK) cells under inflammatory conditions. 
Furthermore, MDSCs express ADAM17 to prevent naïve T cells from migrating to tumors or lymph nodes and subsequently forming effector T cells. MDSCs release 
reactive oxygen species and reactive nitrogen species to dysregulate the function of T cell. Activated MDSCs express programmed cell death 1 ligand 1, which bind 
programmed cell death protein 1 on T cells and secrete interleukin-10 and transforming growth factor beta to stimulate Treg activation and expansion. Activated Tregs 
release immunosuppressive cytokines and suppress other immune cells to inhibit anti-tumor immune responses. MDSC can impair Fc receptor-mediated function of 
NK cells by producing nitric oxide. MDSCs could impair NK cell function and cytotoxicity by suppressing the production of interferon-γ from NK cells. Since MDSC and 
dendritic cells (DC) share a common progenitor cell, the reduction in mature DC observed in cancer patients may be due to skewing of the common MDSC/DC 
progenitor towards preferential differentiation of MDSC at the expense of DC. MDSCs can continue to differentiate into tumor-associated macrophage, which can be 
divided into the M1 subset that inhibits tumor growth and the M2 subset that promotes tumor growth. In the presence of MDSCs, macrophages are converted to an 
M2 or alternatively activated phenotype to enhances tumor progression. ROS: Reactive oxygen species; ARG1: Arginase 1; NO: Nitric oxide; IL-10: Interleukin-10; 
TGF-β: Transforming growth factor beta; VEGF: Vascular endothelial growth factor; Xc-: Cystine-glutamate transporters; DC: Dendritic cells; TAM: Tumor-associated 
macrophage.

presenting cells for extracellular cysteine and are unable to export it, thus inhibiting T cell proliferation and activation
[59]. MDSCs also express indoleamine 2,3-dioxygenase 1, a tryptophan-catabolizing enzyme with immunological 
functions capable of inhibiting the activity of T and NK cells under inflammatory conditions[60]. MDSCs also express 
ADAM17, which cleaves CD62L, thereby preventing naïve T cells from migrating to tumors or lymph nodes and 
hindering their development into effector T cells[61]. In addition, MDSCs release ROS and reactive nitrogen species, 
which downregulate the ζ chain expression on T cell receptors, dysregulating T cell function[36,62]. Conversely, activated 
MDSCs express PD-L1, which binds PD-1 on T cells, and secrete IL-10 and TGF-β to stimulate Treg activation and 
expansion[63]. Tregs, known for their immunosuppressive capabilities, release cytokines that suppress other immune 
cells, thereby inhibiting antitumor immune responses[64,65]. In a mouse model of colon carcinoma, interferon-γ (IFN-γ)-
activated MDSCs were shown to promote the expansion and recruitment of Treg cells, possibly through the upregulation 
of major histocompatibility class 2 (MHC-II), IL-10, and TGF-β[66]. Further, a previous clinical trial showed that patients 
with advanced CRC have elevated levels of circulating MDSCs in their blood and that M-MDSCs are positively correlated 
with Tregs. These results suggest that MDSCs, and particularly M-MDSCs, are potential targets for CRC immunotherapy
[67].

Inhibition of NK cell function
NK cells are cytolytic and cytokine-producing effector innate lymphoid cells with a critical role in immune activation 
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against abnormal cells[68]. MDSCs produce TGF-β, which is a master regulator of NK cell functions in tumors[69]. Co-
culture of MDSC with NK cells results in impaired tumor cytotoxic activity of NK cells and induces immune tolerance
[70]. Further, MDSC can have either direct or indirect effects on angiogenesis through their interactions with NK and 
immunosuppressive activities[69]. MDSC-mediated NK cell incompetence is associated with the ability of MDSCs to 
downregulate CD247 expression on the surface of NK cells[71]. MDSCs also inhibit NK cells in hepatocellular carcinoma 
patients via the NKp30 receptor[72]. In addition, inhibition of MDSC trafficking has been shown to potentially enhance 
NK cell immunotherapy in head and neck cancer models[73]. MDSCs can also impair Fc receptor-mediated functions of 
NK cells by producing NO[74]. In addition, MDSCs can impair NK cell function and cytotoxicity by suppressing the 
production of IFN-γ from NK cells and decreasing the expression of NK group 2 member D[17,75].

Inhibition of the function of other immune cells
DCs are specialized antigen-presenting cells that play a crucial role in activating T cells to drive antitumor responses[76]. 
However, multiple conditions and factors within the TME, including hypoxia, lactic acid build-up, and accumulation of 
adenosine, can cause DC abnormalities. Since MDSCs and DCs originate from a common progenitor cell, the observed 
reduction in mature DCs in cancer patients may result from this progenitor being skewed towards MDSC differentiation 
at the expense of DC maturation[77].

MDSCs can continue to differentiate into TAMs within the TME. TAMs can be categorized into two subsets: an M1 
subset that inhibits tumor growth and an M2 subset that promotes tumor growth. The TME’s vascular distortion and 
rapid tumor cell growth cause hypoxia. This hypoxia then contributes to TME immunosuppression through the secretion 
of immunosuppressive factors, such as VEGF and TGF-β. VEGF, in particular, could enhance the infiltration of TAMs into 
tumor sites[78]. In the presence of MDSCs, macrophages tend to adopt an M2 or alternatively activated phenotype, which 
furthers tumor progression by decreasing the macrophage’s production of IL-12[79].

MDSC-mediated low response to immunotherapy
Elevated numbers of MDSCs are linked to poor prognosis and diminished response to treatment in several solid tumors
[80,81]. MDSCs function as immunosuppressors by promoting immune evasion and resistance to cancer progression[82]. 
Presently, most treatments for tumors, especially CRC, rely on immunotherapy. The failure of immunotherapy is mainly 
related to the development of resistance to ICIs[83], which are designed to modulate and alter the response of T 
lymphocytes to tumors[84]. Anti-PD-1 and anti-PD-L1 antibodies represent the main types of ICIs. As discussed above, 
MDSCs can promote tumor immunosuppression, leading to ICI resistance by inhibiting T cell function[85]. Additionally, 
MDSCs increased PD-L1 expression on their surface, contributing to immunosuppression[84,86]. The immunosup-
pressive TME fosters resistance to anti-PD-1/PD-L1 therapies, and inhibiting MDSCs can synergize with PD-1/PD-L1 
inhibitors to exert antitumor effects. HDAC expression in MDSCs promotes their differentiation into less inhibitory cells. 
HDAC inhibitors upregulate PD-1 or PD-L1 expression in tumors or immune cells and sensitize hormonal mice to anti-
PD-1/PD-L1 therapy[87]. Kim et al[88] demonstrated that the removal of MDSCs results in the disappearance of tumor 
cells resistant to PD-1 antibody treatment. SLC25A22 knockout inhibits MDSC infiltration and function. The reduction of 
MDSCs through SLC25A22 knockout, particularly when combined with anti-PD1 therapy, synergistically induces CD8+ 
T-cell infiltration and IFN-γ expression, identifying SLC25A22 as a promising target for sensitizing KRAS-mutant CRC to 
immune checkpoint blockade therapy[89]. A growing body of research suggests that MDSCs are a potential therapeutic 
target for reducing tumor-promoting and immunosuppressive activities, as well as for boosting the efficacy of checkpoint 
inhibitors[90].

STRATEGIES FOR TARGETING MDSC INHIBITION
Inhibition of MDSC recruitment
By inhibiting the recruitment and transport of MDSCs to tumor tissues and the spleen, immunosuppression can be 
reversed, and the antitumor activity of T and NK cells can be activated to inhibit tumor proliferation and enhance the 
efficacy of antitumor therapy. Previous studies have shown that VEGF, hypoxia, S100A8/A9, chemokine receptors, and 
CSF1-R inhibitors can inhibit the recruitment and transit of MDSCs. For instance, bevacizumab has been shown to 
significantly reduce G-MDSC levels in the peripheral blood of patients with non-small cell lung cancer[91]. In addition, 
chemotherapeutic agents also exhibit MDSC-inhibitory effects. For example, the combination of sulforaphane and 
doxorubicin has been shown to effectively inhibit breast cancer proliferation and MDSC aggregation while increasing 
CD8+ T cell levels[92]. Chemotherapy (cisplatin + pemetrexed) combined with a PD-1 checkpoint inhibitor inhibits the 
proliferation of malignant mesothelioma cells by reducing MDSC accumulation and angiogenesis[93]. Further, 
polypeptide nanoformulations containing doxorubicin and the immune regulator 1-methyl-DL-tryptophan have been 
shown to inhibit the recruitment of Tregs and MDSCs while increasing the frequency of tumor-infiltrating CD8+ T cells, 
thus exerting synergistic antitumor effects[94]. Blocking STAT3 signaling, for example, with the use of Embelin and 
Flubendazole, can reduce the levels of MDSCs and inhibit their activity. Embelin can directly reduce MDSC production, 
as well as their immunosuppressive activity, by inhibiting the C/EBPβ and STAT3 signaling pathways[95]. Meanwhile, 
Flubendazole reduces MDSC levels in tumor tissues via the inhibition of the transducer and activator signaling activity of 
STAT3[96]. IL-6 silences the TNFα-RIP1 necrotic pathway to maintain MDSC survival and accumulation by mediating 
activation of the STAT3-DNMT axis[97]. Thus, the inhibition of STAT3 activation suppresses MDSC levels. IL-17, on the 
other hand, can induce MDSC differentiation, inhibit MDSC proliferation, and promote apoptosis by activating STAT3
[98]. A deficiency in CXCR2 hampers MDSC migration to tumor sites, significantly boosting the antitumor effects of PD-1
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[99]. Small molecules of traditional Chinese medicine also exhibit MDSC inhibitory effects. Nanoparticles containing 
curcumin can exert antitumor effects by inhibiting the recruitment and accumulation of MDSCs[100]. Carnosic acid 
reduces the proportion of MDSCs, enhances the function of CD8+ T cells by decreasing the levels of iNOS2, Arg-1, and 
MMP9, and enhances the cytotoxic effects of cisplatin on lung cancer cells[101]. Some anti-inflammatory and antifungal 
drugs also have the ability to inhibit MDSC aggregation. Terbinafine inhibits CRC proliferation by reversing intestinal 
fungal dysbiosis, inhibiting MDSC infiltration, and restoring antitumor immune responses[102]. The anti-inflammatory 
drug dimethyl itaconate protects against colitis-associated CRC by decreasing the number of macrophages and MDSCs
[103]. OSU-53 (a PPAR-inactive derivative that stimulates AMPK kinase) has been shown to significantly reduce MDSCs 
in the spleens and tumors of EMT-6 mice[104]. LDK378 (an anaplastic lymphoma kinase inhibitor) partially blocks 
lipopolysaccharide-induced p38 phosphorylation, reduces cell surface CCR2 expression, and inhibits the migration of 
MDSCs to the spleen[105]. In addition, the targeted inhibition of SLC25A22, YTHDF2, and G-CSF inhibits MDSC 
migration and aggregation[89,106,107].

MDSC depletion
Previous studies have shown that chemotherapeutic agents, such as 5-Fluorouracil, docetaxel, and gemcitabine, can 
effectively deplete MDSCs. 5-Fluorouracil promotes MDSC apoptosis by upregulating the expression of Fas and p53 on 
these cells and increasing the infiltration of toxic T lymphocytes into tumor tissues[108]. Docetaxel promotes the 
polarization of MDSCs from an M1 (CCR7) to an M2 (CD206) type and increases the differentiation of macrophages 
towards an M1 phenotype[109]. Metformin, a drug commonly used to treat diabetes, inhibits MDSCs and M2-type 
macrophages in the CRC microenvironment by activating AMPK and inhibiting mTOR signaling[110]. Lenalidomide 
reduces the number of MDSCs and Tregs in lymphoma-loaded mice[111]. Sunitinib also reduces MDSC levels and 
restores the normal function of splenic T cells in mice[112]. Furthermore, the combination of OX40 (agonist anti-OX40 
antibody) with belapectin (galectin-3 inhibitor) significantly reduces M-MDSCs levels and MHC-II hi macrophages 
thereby attenuating M-MDSC-induced immunosuppression[113]. Histamine dihydrochloride (a NOX2 inhibitor) in 
combination with low-dose IL-2, reduces M-MDSC levels in peripheral blood and enhances the antitumor efficacy of PD-
1/PD-L1[114]. Apt/PDGss@pMOF (a tumor-targeting and light-responsive penetrable nanoplatform) can deplete MDSCs 
and reverse immunosuppression[115]. The application of DS-8273a (TRAIL-R2 agonistic antibody) results in the depletion 
of MDSCs in approximately 50% of patients, without affecting mature bone marrow cells or lymphocytes[116]. Amino-
biophosphonates (MMP-9 inhibitors) inhibit tumor and bone marrow cell proliferation and attenuate immunosup-
pression[117]. The herbal molecule Baicalein decreases MDSC levels by regulating the Nrf2/HO-1 signaling pathway and 
NLRP3 expression in MDSCs[118]. The Shugan Jianpi Formula enhances immune surveillance by reducing CD8+ T cell 
apoptosis and tumor cell activity, inhibiting MDSC proliferation, and improving the survival of mice with breast cancer 
tumors[119]. In addition, the depletion of MDSCs and attenuation of immunosuppression can be achieved by targeting 
and inhibiting molecules closely related to MDSC function. NLRP3, for instance, promotes melanoma progression by 
inducing MDSC expansion and immune escape, yet its targeted inhibition can enhance the efficacy of PD-1[120]. IL4Rα is 
a key signaling molecule for MDSC survival; hence, blocking IL4Rα can directly deplete MDSCs and TAMs[121].

Inducing MDSC differentiation
The effectiveness of immunotherapy can be enhanced by reducing the number of MDSCs and promoting the differen-
tiation of immature myeloid cells. Angiotensin-converting enzymes or angiotensin receptor blockers can induce the 
maturation of myeloid cells towards non-suppressive neutrophils/monocytes, thus preventing them from becoming 
immature MDSCs[122]. The DHODH inhibitor, brequinar, prevents early myeloid progenitor cells from generating 
MDSCs and promotes their maturation, which, in turn, enhances the antitumor and anti-metastatic activity of PD-1 in 
ICI-resistant breast cancer models[123]. Vitamins A, D3, and E have been shown to reduce immature MDSCs and enhance 
the antitumor activity of T cells in both a mouse model and in patients with head and neck cancer[124,125]. Casein kinase 
2 substantially reduces the number of PMN-MDSCs and TAMs, thereby enhancing the effectiveness of CTLA4 checkpoint 
inhibitors[126].

Inhibiting MDSC activity
Another category involves the direct inhibition of the immunosuppressive activity of MDSCs. Celecoxib, (COX-2 
inhibitor) inhibits MDSC amplification[127]. Entinostat inhibits the immunosuppressive activity of HER2+ breast cancer 
G-MDSCs and promotes a macrophage shift to the M1 type[128]. Sildenafil, (PDE-5 inhibitor) can downregulate the 
expression of ARG1, IL4Ra, and ROS, restore the antitumor activity of NK cells, and reduce the postoperative recurrence 
of abdominal malignancies[70]. Ibrutinib (a BTK inhibitor) can reverse MDSC-induced immunosuppression, increase 
CD8+ T cell infiltration, and enhance PD-L1 efficacy[129]. Compared with sorafenib, tivozanib (a c-Kit/SCF antagonist) 
significantly reduces the levels of Foxp3+ Tregs, MDSCs, and exhausted T cells, thereby reversing immunosuppression
[130]. Cimetidine promotes MDSC apoptosis and inhibits lung cancer cell proliferation by inducing Fas/FasL expression 
on the surface of MDSCs[131]. IFN-α/β upregulates TRAIL expression on T cells and enhances the inhibitory effect of 
TNF-α on MDSC through the TRAIL-DR5 pathway[132]. The herbal molecule Curcuma kwangsiensis also induces MDSC 
apoptosis in the G0/G1 phase by upregulating caspase 3/9, PARP, and Bax and downregulating Bcl-xl[133,134]. 
Asparagus polysaccharide could induce MDSC apoptosis and attenuate immunosuppression through the toll-like 
receptor4 pathway[135]. In addition, application of Cimetidine[131], TJ-M2010-5 (MyD88 inhibitor)[136], MF-766 (EP4 
antagonist)[137], low-dose IPI-145 (PI3Kδ/γ inhibitor)[138], mitochondria-targeted complex I inhibitors[139], and 
compound39 (potent GCN2 inhibitor)[140], or targeted inhibition of jagged[141], SCARB1 (scavenger receptor type B-1)
[142], and ROS levels, inhibits MDSC activity[143] (Table 1).
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Table 1 Pharmacologic strategies for targeting myeloid-derived suppressor cells inhibition

Function Drug Target pathway Synergistic Diseases Ref.

Bevacizumab Non-small cell lung cancer Koinis et al[91]

IL-17 Breast cancer Ma et al[98]

flubendazole STAT3 Melanoma Li et al[96]

CXCR2 Rhabdomyosarcoma Highfill et al[99]

IL-6 STAT3-DNMT Colorectal cancer Smith et al[97]

G-CSF Colorectal cancer Li et al[107]

Carnosic acid Cisplatin Lung cancer Liu et al[101]

CDDP and PEM Mesothelioma Otsuka et al[93]

Dimethyl itaconate Colorectal cancer Wang et al[103]

Embelin C/EBPβ and STAT3 Colitis-associated cancer Wu et al[95]

LDK378 p38-GRK2-CCR2 Sepsis Hu et al[105]

Inhibition of YTHDF2 Autoimmune hepatitis Lyu et al[106]

Terbinafine Colorectal cancer Hu et al[102]

Targeting of SLC25A22 Immunotherapeutic KRAS-mutant colorectal 
cancer

Zhou et al[89]

Sulforaphane and 
doxorubicin

Breast cancer Rong et al[92]

Polypeptide nanoformu-
lation

Immunotherapeutic Breast cancer and colon 
cancer

Feng et al[94]

OSU-53 AMPK Melanoma Trikha et al[104]

Inhibition of MDSC 
recruitment

Curcumin Lung cancer Wang et al[100]

5-Fluorouracil p53-Fas Colorectal cancer Yang et al[108]

Docetaxel Breast cancer Kodumudi et al[109]

Metformin Colorectal cancer Kang et al[110]

Amino-biphosphonate MMP-9 Breast cancer Melani et al[117]

Apt/PDGss@pMOF Triple-negative breast 
cancer

Chen et al[115]

Baicalein Nrf2/HO-1 Lupus nephritis Li et al[118]

DS-8273a TRAIL-R2 Pan-cancer Dominguez et al[116]

Histamine Anti-PD-1/PD-L1 Pan-cancer Grauers et al[114]

Shugan Jianpi Formula Breast cancer Lu et al[119]

OLT1177 NLRP3 Anti–PD-1 Melanoma Tengesdal et al[120]

Aptamer IL4Rα Breast cancer Roth et al[121]

Sunitinib STAT5 Renal cell carcinoma Ko et al[112]

MDSC depletion

Lenalidomide Cancer vaccine Lymphomas Sakamaki et al[111]

ACEI Colorectal Cancer Bueno et al[112]

Brequinar DHODH Anti–PD-1 Breast cancer Colligan et al[123]

Vitamins A, D3, and E Head and neck cancer Lathers et al[124]; Lee 
et al[125]

Inducting MDSC differ-
entiation

Casein kinase 2 Anti-CTLA4 Pan-cancer Hashimoto et al[126]

Celecoxib COX-2 Mesothelioma Veltman et al[127]

Entinostat HDAC HER2+ Breast Tumor Sidiropoulos et al[128]

Cimetidine Lung tumor Zheng et al[131]

Inhibiting MDSC 
activity
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Compound39 potent GCN2 
inhibitor

Renal carcinoma Jackson et al[140]

CTX014 Jagged1/2 Pan-cancer Sierra et al[141]

Asparagus polysaccharide Colorectal Cancer Zhang et al[135]

Curcuma TLR4-NF-κB Pan-cancer Jiang et al[134]

Ibrutinib Anti-PD-L1 Neuroblastoma Ishfaq et al[129]

IFN-α/β Anti-PD-1 Colorectal cancer Chen et al[132]

TJ-M2010-5 Myd88 Colorectal cancer Wang et al[136]

Tivozanib c-Kit/SCF HCC Kalathil et al[130]

Sildenafil Phosphodiesterase-5 Abdominal malignancies Tai et al[70]

IPI-145 PI3Kδ/γ Anti-PD-L1 Head and neck cancers Davis et al[138]

Mitochondrial complex I 
inhibitors

Melanoma AbuEid et al[139]

MF-766 Anti-PD-1 Pan-cancer Wang et al[137]

Lipoprotein Nanoparticle Lung carcinoma Plebanek et al[142]

MDSC: Myeloid-derived suppressor cells; HCC: Hepatocellular carcinoma; PD-L1: Programmed cell death 1 ligand 1; PD-1: Programmed cell death protein 
1.

NON-PHARMACOLOGICAL STRATEGIES FOR MDSC INHIBITION
Treatments for CRC, such as chemotherapy, immunotherapy, and targeted therapy, are continuously evolving, yet 
surgery remains the preferred treatment option for patients with CRC[144]. In mouse models with CRC, MDSCs are 
known to be enriched in the peritoneal cavity, and are associated with poor prognosis after tumor resection[145]. On the 
other hand, chemotherapy and radiotherapy typically lead to tumor cell death by mechanisms such as inducing signi-
ficant DNA damage[146]. Radiotherapy, specifically, can alter the abundance and immunosuppressive activity of MDSCs, 
ultimately negatively impacting treatment outcomes[147]. Notably, the expansion of MDSCs following radiotherapy is 
associated with an incomplete treatment response in preclinical tumor models[148]. Therefore, to improve the overall 
survival of CRC patients and reduce the probability of tumor metastasis, it is essential to develop therapeutic approaches 
that specifically target MDSCs. Certain non-pharmacological approaches, such as chimeric antigen receptor (CAR-T) and 
fecal microbiota transplantation (FMT), can improve the TME by targeting MDSCs, thereby helping inhibit tumor 
progression.

CAR-T cells are genetically modified to express engineered receptors and chimeric constructs that recognize and react 
specifically to cancerous antigens in an MHC-independent manner and react specifically against them[149]. In recent 
years, many basic and clinical studies on the treatment of CRC with CAR-T cells have been published, with encouraging 
progress[150,151]. One study investigated CAR-T cell therapy in ten patients with metastatic carcinoembryonic antigen-
positive CRC, seven of whom had stable disease after treatment. Two patients had stable disease for more than 30 wk, 
and positron emission tomography/computed tomography and magnetic resonance imaging analyses showed tumor 
shrinkage in two patients and a significant decrease in carcinoembryonic antigen levels in the majority of patients, which 
confirms the efficacy of CAR-T in the treatment of CRC[152]. Moreover, PD-1-TREM2-targeting scFv inhibited the 
activation of the PD-1/PD-L1 pathway. In addition, the secreted scFvs blocked the binding of ligands to TREM2 receptors 
present on MDSCs and TAMs, reduced the proportion of MDSCs and TAMs, and enhanced T-cell effector function, 
thereby mitigating immune resistance in the TME[153]. This demonstrates that CAR-T therapy can affect the TME via 
MDSC.

Many studies have suggested that disorders of intestinal microbiota play key roles in the pathogenesis of CRC[18,154,
155]. The regulation of the intestinal flora also plays a role in improving the immunosuppressive microenvironment of 
tumors[156]. Recently, FMT has become a popular topic. In a mouse model of CRC, the application of terbinafine 
decreased fungus-induced MDSC infiltration and tumor load, whereas FMT in untreated with-terbinafine donor mice 
increased MDSC infiltration and promoted tumor proliferation[102]. Transplantation of 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD)-treated donor mouse feces into antibiotic-treated mice induces MDSCs and increases Tregs[157]. This 
suggests that intestinal microbiota can influence tumor growth through MDSC. Another study showed that a fecal 
suspension from the astragalus polysaccharide group inhibited tumor growth in melanoma mice, decreased MDSC, and 
increased CD8+ T cells in tumor tissues, confirming that FMT could reverse the tumor immunosuppressive microenvir-
onment[158]. Therefore, we believe that FMT is a promising therapeutic approach for improving the tumor immunosup-
pressive microenvironment by inhibiting MDSC, thus exerting antitumor effects.
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CONCLUSION
Tumors exploit various immunosuppressive pathways to actively evade immune recognition. MDSCs can create an 
immunosuppressive microenvironment in CRC by suppressing the immune function of T cells, NK cells, DCs, and 
macrophages, resulting in immune escape and resistance to immunotherapy. Therefore, therapeutic targeting of MDSCs 
presents a promising strategy to halt CRC progression and enhance the efficacy of immunotherapy. This involves 
preventing the expansion and accumulation of MDSCs, regulating their differentiation, and inhibiting their immunosup-
pressive activities. In this review, we focused on the role of MDSCs in CRC and the mechanisms through which they 
contribute to immunosuppression. We have also extensively discussed the currently available pharmacological and non-
pharmacological treatments and strategies for targeting MDSC. This comprehensive analysis offers an objective 
understanding of the role of MDSCs in CRC and the methods to target MDSC-mediated suppression, ultimately aiming 
to improve the effectiveness of immunotherapy.
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