
WJGO https://www.wjgnet.com 2060 May 15, 2024 Volume 16 Issue 5

World Journal of 

Gastrointestinal 
OncologyW J G O

Submit a Manuscript: https://www.f6publishing.com World J Gastrointest Oncol 2024 May 15; 16(5): 2060-2073

DOI: 10.4251/wjgo.v16.i5.2060 ISSN 1948-5204 (online)

ORIGINAL ARTICLE

Basic Study

Epigenetic silencing schlafen-11 sensitizes esophageal cancer to 
ATM inhibitor

Jing Zhou, Mei-Ying Zhang, Ai-Ai Gao, Cheng Zhu, Tao He, James G Herman, Ming-Zhou Guo

Specialty type: Medicine, research 
& experimental

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): 0 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Ghiorzo P, Italy

Received: November 30, 2023 
Revised: February 26, 2024 
Accepted: April 1, 2024 
Published online: May 15, 2024

Jing Zhou, Cheng Zhu, Ming-Zhou Guo, School of Medicine, NanKai University, Tianjin 300071, 
China

Jing Zhou, Mei-Ying Zhang, Ai-Ai Gao, Cheng Zhu, Ming-Zhou Guo, Department of 
Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, 
Beijing 100853, China

Tao He, Departments of Pathology, Characteristic Medical Center of The Chinese People’s 
Armed Police Force, Tianjin 300162, China

James G Herman, The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 
Pittsburgh, PA 15213, United States

Ming-Zhou Guo, National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 
Beijing 100853, China

Corresponding author: Ming-Zhou Guo, MD, PhD, Professor, Department of Gastroenterology 
and Hepatology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing 
Road, Beijing 100853, China. guomingzhou@301hospital.org

Abstract
BACKGROUND 
Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It 
has been reported that Schlafen-11 (SLFN11) contributes to increase chemosen-
sitivity by participating in DDR. However, the detailed mechanism is unclear.

AIM 
To investigate the role of SLFN11 in DDR and the application of synthetic lethal in 
esophageal cancer with SLFN11 defects.

METHODS 
To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 eso-
phageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma 
(ESCC) samples and various techniques were utilized, including methylation-
specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony 
formation assay, and xenograft mouse model.

RESULTS 
Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of 
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primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 
methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no 
significant associations were observed between promoter region methylation and age, gender, smoking, alcohol 
consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose 
cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while 
inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC 
cells to ATM inhibitor (AZD0156), both in vitro and in vivo.

CONCLUSION 
SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in 
ESCC.

Key Words: Schlafen-11; Esophageal squamous cell carcinoma; DNA methylation; Synthetic lethality; AZD0156
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Core Tip: Targeting DNA damage repair (DDR) is a novel strategy for cancer therapy. Epigenetic-based synthetic lethality 
studies have been conducted recently. Schlafen-11 (SLFN11) has been reported to sensitize cancer cells by involving DDR. 
However, the detailed regulatory network in DDR remains controversial. This study explored the mechanism of SLFN11 in 
DDR, and further investigated the synthetic lethal efficiency of epigenetic silencing SLFN11 and ATM inhibitor. The results 
demonstrated that SLFN11 activated non-homologous end-joining and ATR/CHK1, while inhibiting the ATM/CHK2 
signaling pathway. Epigenetic silencing SLFN11 sensitized esophageal cancer cells to ATM inhibitor both in vitro and in 
vivo.
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INTRODUCTION
Esophageal squamous cell carcinoma (ESCC) is the most common esophageal carcinoma, accounting for over 90%[1]. 
Surgical resection is the sole curable approach for early-stage cancer patients, but most cases were diagnosed at the late 
stage. Despite the efforts of oncologists using different regimens for a long time, chemo-radiotherapy remains inefficient
[2]. Targeting therapeutics were validated almost unsuccessful in ESCC, despite advancements made in other types of 
cancer[3]. It is desirable to discover novel therapeutic strategy for ESCC.

The discovery of synthetic lethality in BRCA1/2 mutated cancer has ushered in a new era of inhibition of DNA da-
mage repair (DDR) for cancer therapy[4,5]. DDR signaling pathways are intricately linked to apoptosis, and cells accumu-
lating with heavily damaged DNA will be eliminated[6,7]. DDR signaling pathways enable cells to survive under 
damaging stress. Strategies to target the DDR for cancer therapy have been developed very quickly[8-10]. The inhibitors 
of key mediators of DNA repair are actively being assessed in clinic, including ATM, ATR, CHK1, CHK2, DNAPK, and 
WEE1[8,9].

Defects of high-fidelity DDR will result in increased genomic instability and force cells to primarily depend on the 
compensatory survival pathways to evade cell death[11]. Synthetic lethality is applied to cancer therapy by selectively 
targeting compensatory pathways[11,12]. Currently, the majority of studies and ongoing clinical trials are focused on a 
limited number of DDR mutants, as the exhausting of genomic resources[13-15]. The application of DDR defects caused 
by aberrant epigenetic changes will expand synthetic lethal rationale in cancer therapy. Epigenetic abnormalities occur 
more frequently than mutations for tumor suppressor and DDR-related genes in cancer[16,17].

The Schlafen (SLFN) gene family was identified by screening growth regulatory genes from lymphocytes, which are 
present only in mammals. The mouse genome contains 10 members of the Schlafen family, and the human genome 
contains 6 members[18,19]. Human SLFN11 was identified by comparing the structural similarity with mouse[20]. 
SLFN11 protein contains an N-terminal ATPases associated domain and a C-terminal DNA/RNA helicase domain[20,
21]. By utilizing 60 human cancer cell lines derived from nine distinct tissues, it was observed that cells exhibiting 
elevated levels of SLFN11 displayed heightened sensitivity to various cytotoxic agents, including topoisomerase 
inhibitors and cisplatin[22]. Previous research has indicated that SLFN11 directly interacts with replication protein A 
(RPA) and is recruited to DNA damage sites to inhibit homologous recombination repair by destabilizing the RPA-single-
strand DNA complex[23]. Another study revealed that SLFN11 impeded stressed replication forks independently of ATR
[24]. Moreover, high level expression of SLFN11 sensitized different cancer cells to poly (ADP-ribose) polymerase (PARP) 
inhibitors, single strand DNA damage repair inhibitors[25-27]. The exact regulatory network of SLFN11 in DDR remains 
elusive.
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In this study, we explored the epigenetic regulation and the role of SLFN11 in DDR to pave the way for synthetic lethal 
therapy in human ESCC.

MATERIALS AND METHODS
Cell lines and clinical specimens
Eight ESCC cells were used in this study, including KYSE30, KYSE140, KYSE150, KYSE180, KYSE450, KYSE510, KYSE520, 
and colo680n. These cells were derived from primary ESCC and cultured in RPMI-1640 medium (Gibco, No. 31800089) 
supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. HEK293 cell line was used for lentivirus 
production and was maintained in DMEM (Gibco, No. 12100061).

Esophageal tissue samples, including 142 esophageal dysplasia (ED) and 1007 primary ESCC tissue samples, were 
collected from the Chinese PLA General Hospital. These samples were not subjected to chemo-radiotherapy prior to 
surgical resection. Sample collection adhered to the guidelines authorized by the Chinese PLA General Hospital Institu-
tional Review Board (IRB number: 20090701-015). Tumor classification was performed using the TNM staging system 
(AJCC 8th).

Demethylating reagent treatment and RT-PCR amplification
For cell treatment, 5-aza-2’-deoxycytidine (5-aza, Sigma-Aldrich, No. A3656) was added to RPMI-1640 medium at a 
concentration of 2 μmol/L. RNA isolation and semi-quantitative RT-PCR procedures were conducted in accordance with 
our previously described methods[28]. RT-PCR primers for SLFN11 were designed as follows: 5′-AACGCCC-
GATAACCTTCACA-3′ (forward) and 5′-CTAAGGGGAGGCCCACTAGA-3′ (reverse). To evaluate the quality of cDNA, 
GAPDH was amplified for 25 cycles[28].

DNA preparation and methylation detection
The methods for DNA extraction, bisulfite modification, and methylation-specific PCR (MSP) were described as 
previously[28]. The primer sequences for MSP targeting SLFN11 were designed as below: 5′-TTTGGAAGGTGG-
GATCGTAGGTATC-3′ (MF) and 5′-ACCCAAACAACTATCGACTCCTACG-3′ (MR); 5′-TATTTGGAAGGTGGGAT-
TGTAGGTATT-3′ (UF) and 5′-AAACCCAAACAACTATCAACTCCTACA-3′ (UR).

Plasmid construction and SLFN11 re-expressed monoclonal cells screening
The PCDH-CMV-MCS-puro vector was employed to construct a full-length cDNA (GenBank accession number: 
NM_91607) expression vector for human SLFN11. The lentiviral supernatant was obtained after transfection into HEK293 
cells by lipofectamine 3000 growing for 48 h and 72 h following the instructions of the manufacturer (Invitrogen, No. 
L3000008). Subsequently, the lentiviral supernatant was added into the culture medium. Puromycin (MCE, No. HY-
15695) was then used to screen for SLFN11 expressing KYSE30 (2.5 μg/mL) and KYSE450 (1.0 μg/mL) cells 48 h after 
lentiviral transfection, with a duration of 3 d for the screening process. The monoclonal SLFN11 expression cells were 
obtained through limited dilution in 96 well plates, and further validated via Western blot.

CRISPR/Cas9 technique for building SLFN11 knockout cells
The CRISPR/Cas9 technique was employed to generate SLFN11 deleted KYSE510 cells. Single guide RNA (sgRNA) was 
designed using Guide Design Resources from http://crispr.mit.edu. The LentiCRISPRv2 vector was utilized to construct 
the CRISPR/Cas9 knockout system with sgRNA1 5′-CACCGCAGCCTGACAACCGAGAAAT-3′ and sgRNA2 5′-
AAACATTTCTCGGTTGTCAGGCTGC-3′. SLFN11 knockout KYSE510 cell clones were selected following above 
procedure with puromycin (0.5 μg/mL), and validated by DNA sequencing and Western blot.

Western blot
Anti-SLFN11 (No. 34858), anti-p-ATM Ser1981 (No. 13050S), anti-ATR (No. 2790S), anti-p-ATR Ser428 (No. 2853S), and 
anti- γ-H2AX Ser139 (No. 9718) antibodies were ordered in the Cell Signaling Technology. Anti-DNA-PKcs (No. 200618-
6D1), anti-p-DNA-PKcs Ser2056 (No. 380800), anti-CHK2 (No. R23921), anti-p-CHK2 Thr68 (No. 240766) and anti-CHK1 
(No. 380200) antibodies were ordered from ZENBIO. Anti-ATM (No. HX12561) and anti-XRCC4 (No. HX19688) 
antibodies were obtained from Huaxingbio. Anti-β-actin (No. 66009-1-Ig) and anti-p-CHK1 Ser345 (No. GTX100065) 
antibodies were from Proteintech and Genetex, respectively. The procedures were performed as described previously[28].

MTT and colony formation assays for evaluating the sensitivity of cancer cells to ATM inhibitor
For assessment of the sensitivity of ESCC cells to different reagents, MTT assay was employed. Cells were grown in 96-
well plates with 2000 cells for each well, and treatment was performed after seeding for 24 h. The IC50 was evaluated by 
treatment with gradient dilution of cisplatin (Selleck, No. S1166) for 48 h. The sensitivity of three different cell lines to 
AZD0156 (MCE, No. HY-100016), an ATM inhibitor, was tested using DNA damaging cell models induced by low dose 
cisplatin with gradient dilution of AZD0156 for 48 h. GraphPad Prism software was employed for data analysis.

Colony formation assays were performed using 35 mm dishes. For chemosensitivity detection, KYSE30, KYSE450, and 
KYSE510 cells were inoculated with the density of 3 × 103 cells each well. They were cultured in medium supplemented 
with 1 μmol/L and 2 μmol/L of cisplatin for 24 h. Then the medium was changed for growing 14 d. To assess the impact 
of SLFN11 on DDR, ESCC cell models induced with 0.05 μmol/L cisplatin were treated with 0.20 μmol/L AZD0156. The 
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medium was changed after 24 h of growth for a total of 14 d. The cell colonies were then fixed with 75.0% ethanol and 
stained with 0.2% crystal violet (Solarbio, No. G1063) for 30 min. The relative efficiency of colony formation was 
determined by normalizing the colony areas to the control. This process was repeated in three independent experiments.

KYSE30 cell xenograft mouse model for drug sensitivity detection
Four-week-old BALB/c nude mice weighing around 20 g were procured from SPF Company (Beijing, China) and housed 
under conditions that met standard pathogen-free requirements. SLFN11 silenced and re-expressed KYSE30 cells (6 × 106 
cells in 0.15 mL sterilized PBS) were injected subcutaneously into the mice. A caliper was used for tumor size measuring. 
The volume was calculated as the formula: V = length × width2/2. Once the average tumor volume reached 50 mm3, both 
SLFN11 unexpressed and re-expressed xenograft mice were randomly divided into four groups (six mice per group). 
Mice were administrated with 0.9% saline, cisplatin (2 mg/kg), AZD0156 (30 mg/kg) or combined cisplatin and AZD0156 
for every three days in different groups. Cisplatin was administered via intraperitoneal injection, and AZD0156 was 
administered orally. The Animal Ethics Committee of the Chinese PLA General Hospital (approval number: 2022-X18-72) 
approved the animal experimental procedures, with strict adherence to protocols aimed at minimizing the discomfort of 
mice.

Statistical analysis
SPSS 21.0 (NY, United States) and GraphPad Prism 8.0 (CA, United States) were used for statistical analysis. P < 0.05 was 
regarded significantly difference. The association between methylation status and clinical-pathological factors was 
examined with the χ2 test. Quantitative data were described as mean ± SD and analyzed using the student’s two-tailed t 
test.

RESULTS
Methylation regulation of SLFN11 expression in ESCC
To assess the relation between the expression of SLFN11 and its methylation status in the promoter region, 171 cases of 
ESCC data were extracted from The Cancer Genome Atlas (TCGA) database (http://xena.ucsc.edu/). The reverse 
association between SLFN11 mRNA levels and CpG sites (cg13341380, cg18108623, cg05224998, cg18608369, cg01348733, 
cg14380270, cg26573518, and cg05504685, all P < 0.05) methylation around the transcript start sites was observed, as 
depicted in Figure 1A.

The expression and promoter region methylation were detected by semi-quantitative RT-PCR and MSP. SLFN11 was 
highly expressed in KYSE510 and colon680n cells whereas SLFN11 was silenced in KYSE520, KYSE450, KYSE180, 
KYSE150, KYSE140, and KYSE30 cell lines (Figure 1B). SLFN11 was unmethylated in KYSE510 and colo680n cells, and 
completely methylated in KYSE520, KYSE450, KYSE180, KYSE150, KYSE140, and KYSE30 cell lines (Figure 1C), 
indicating the correlation between loss of expression and promoter region hypermethylation. To further validate the 
regulatory role of DNA methylation in SLFN11 expression, 5-aza, an inhibitor of DNA methyltransferase, was employed. 
The induction of SLFN11 expression by 5-aza was observed in methylated ESCC cells (Figure 1B), suggesting that DNA 
methylation regulates the expression of SLFN11.

Methylation of SLFN11 is in progressive tendency during esophageal carcinogenesis
To explore the epigenetic changes of SLFN11 during esophageal carcinogenesis, methylation status was detected in 142 
cases of ED and 1007 cases of primary ESCC tissues. Methylation of SLFN11 was found in 9.15% (13/142) of ED and 
25.62% (258/1007) of ESCC samples, indicating a progressive tendency during carcinogenesis (Figure 1D). Furthermore, 
SLFN11 methylation was significantly associated with poor tumor differentiation and tumor size (both P < 0.05, Table 1). 
However, no significant association was observed between methylation and age, gender, smoking, alcohol consumption, 
TNM stage or lymph node metastasis (Table 1).

Methylation of SLFN11 sensitized ESCC cells to cisplatin
To evaluate the impact of SLFN11 on cisplatin sensitivity, we utilized SLFN11 epigenetic silenced and knockout ESCC 
cell models. As shown in Figure 2A, the IC50 value of cisplatin was 12.45 μmol/L ± 1.16 μmol/L vs 7.03 μmol/L ± 0.69 
μmol/L in KYSE30 cells (P < 0.01) and 8.57 μmol/L ± 0.87 μmol/L vs 4.30 μmol/L ± 0.71 μmol/L in KYSE450 cells (P < 
0.01) before and after re-expressing SLFN11, indicating that SLFN11 increased the sensitivity of ESCC cells to cisplatin. In 
SLFN11 highly expressed KYSE510 cells, the IC50 value was 0.79 μmol/L ± 0.12 μmol/L vs 1.93 μmol/L ± 0.09 μmol/L (P 
< 0.001) before and after deletion of SLFN11, demonstrating that deletion of SLFN11 reduced sensitivity to cisplatin.

To further investigate the impact of SLFN11 on cisplatin sensitivity, colony formation assay was performed. Before and 
after the restoration of SLFN11 expression in KYSE30 cells, the normalized colony efficiency was 73.59% ± 12.51% vs 
55.73% ± 12.18% (1 μmol/L cisplatin), and 38.52% ± 2.13% vs 9.49% ± 2.25% (2 μmol/L cisplatin), respectively (both P < 
0.05, Figure 2B). The normalized colony efficiency was 77.86% ± 8.26% vs 20.79% ± 1.54% (1 μmol/L cisplatin) and 38.15% 
± 9.95% vs 9.16% ± 1.79% (2 μmol/L cisplatin) in KYSE450 cells before and after the expression of SLFN11, respectively 
(both P < 0.05, Figure 2B). In KYSE510 cells, the normalized colony efficiency was 25.30% ± 5.40% vs 76.24% ± 4.34% (1 
μmol/L cisplatin) and 5.15% ± 1.55% vs 17.92% ± 3.05% (2 μmol/L cisplatin) before and after knockout of SLFN11, 
respectively (both P < 0.01, Figure 2B). Above results validated the chemo-sensitive role of SLFN11 in human ESCC.

http://xena.ucsc.edu/
http://xena.ucsc.edu/
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Figure 1 The expression and methylation status of Schlafen-11 in esophageal squamous cell carcinoma. A: Correlation analysis between 
Schlafen-11 (SLFN11) mRNA expression and methylation levels of 8 CpG sites around transcription start site retrieved from TCGA datasets (n = 171). Scatter plots 
shown inverse relevance of SLFN11 expression and methylation status in representative CpG sites (cg18108623, cg13341380, and cg26573518); B: Semi-
quantitative RT-PCR showing the expression of SLFN11 in esophageal squamous cell carcinoma (ESCC) cell lines before and after treatment with 5-aza-2’-
deoxycytidine (5-aza); C: Detection of the methylation status of SLFN11 by methylation-specific polymerase chain reaction (MSP) in ESCC cells; D: Representative 
MSP results of SLFN11 in esophageal tissue samples. TSS: Transcription start site; KYSE30, KYSE140, KYSE150, KYSE180, KYSE450, KYSE510, KYSE520, and 
colo680n are ESCC cells; 5-aza: 5-aza-2’-deoxycytidine; GAPDH: Internal control of RT-PCR; H2O: Double distilled water; (-): Absence of 5-aza; (+): Administration of 
5-aza; U: Unmethylated alleles; M: Methylated alleles; IVD: In vitro methylated DNA as methylation control; NL: Normal peripheral lymphocytes DNA as unmethylation 
control; ED: Esophageal dysplasia; EC: Esophageal squamous cell carcinoma.

SLFN11 affects the sensitivity of ESCC cells to cisplatin by involving DDR
To elucidate the mechanism of SLFN11 in ESCC, low dose cisplatin induced DNA damage cell models were employed. 
The majority of chemotherapeutic reagents primarily induce DNA double strand breaks (DSBs), which are the most 
harmful DNA lesions. DSBs are repaired through two major signaling pathways, namely homologous recombination 
repair (HR) and non-homologous end-joining (NHEJ). Subsequently, the expression levels of ATM, ATR, p-CHK1, p-
CHK2, DNAPKcs, and XRCC4 were examined in SLFN11 expressed and unexpressed ESCC cells. Under the treatment of 
low dose cisplatin, the expression of p-DNAPKcs and XRCC4 was elevated in KYSE30 and KYSE450 cells by re-
expressing SLFN11, indicating that the NHEJ pathway was activated by SLFN11 (Figure 3A). The involvement of SLFN11 
in NHEJ signaling pathway was then further demonstrated through SLFN11 knockout in KYSE510 cell lines (Figure 3A). 
As shown in Figure 3B and C, the expression of p-ATR and p-CHK1 was elevated, while the expression of p-ATM and p-
CHK2 was suppressed after re-expression of SLFN11 in KYSE30 and KYSE450 cell lines, suggesting that SLFN11 activates 
ATR/CHK1 signaling and inhibits ATM/CHK2 signaling in ESCC cells. These results were further validated by deletion 
of SLFN11 in KYSE510 cell lines.

Defects of SLFN11 sensitize ESCC cells to AZD0156
SLFN11 is regulated by promoter region methylation, and its expression suppresses ATM signaling. Then, the effects of 
AZD0156 were assessed in SLFN11 deficient ESCC cells. As shown in Figure 4A, the IC50 value was 5.91 μmol/L ± 1.35 
μmol/L vs 13.04 μmol/L ± 2.54 μmol/L (P < 0.05) in KYSE30 cells and 5.79 μmol/L ± 0.83 μmol/L vs 10.77 μmol/L ± 1.08 
μmol/L (P < 0.01) in KYSE450 cells before and after re-expressing SLFN11, respectively, demonstrating that epigenetic 
silencing of SLFN11 sensitizes ESCC cells to AZD0156. The IC50 value was 3.52 μmol/L ± 0.48 μmol/L vs 1.62 μmol/L ± 
0.29 μmol/L (P < 0.01) in SLFN11 highly expressed and deleted KYSE510 cells, respectively (Figure 4A), further 
supporting the notion that SLFN11 deficiency sensitizes ESCC cells to AZD0156.

To further evaluate the sensitivity of SLFN11 to AZD0156, colony formation assay was applied. Under the treatment of 
low dose cisplatin and AZD0156, the normalized colony efficiency was 8.67% ± 1.93% vs 30.36% ± 5.01% (P < 0.001) in 
KYSE30 cells and 10.72% ± 1.78% vs 27.94% ± 7.76% (P < 0.01) in KYSE450 cells before and after re-expressing SLFN11, 
hinting that the relative colony formation efficiency was inhibited by SLFN11 (Figure 4B). The relative colony formation 
efficiency was 30.53% ± 8.56% vs 12.18% ± 1.42% (P < 0.01) in KYSE510 cells before and after deleting SLFN11, 
respectively, providing further evidence for the role of SLFN11 in sensitizing AZD0156. The levels of γ-H2AX, a DNA 
damage marker, were detected in these cells with or without SLFN11 expression (Figure 4C). The levels of γ-H2AX were 
elevated by administration of AZD0156 in ESCC cells without SLFN11, further validating above results.

Epigenetic silencing of SLFN11 increased the sensitivity of KYSE30 cell xenografts to AZD0156 in mice
To further investigate the impact of SLFN11 on ATM inhibitor in vivo, KYSE30 cell xenograft models were employed. The 
tumor volume and weight in control groups, which did not receive cisplatin or AZD0156 treatment, were normalized as 
100%. When subjected to low dose cisplatin, AZD0156 or a combination of both, the relative normalized tumor volumes 
were 84.33% ± 8.87% vs 84.83% ± 5.33% (P > 0.05), 26.07% ± 6.00% vs 57.90 ± 9.92% (P < 0.0001), and 12.43% ± 3.81% vs 
31.95% ± 4.17% (P < 0.0001) in SLFN11 silenced and re-expressed xenografts, respectively (Figure 5C and D).

The results showed that in the cisplatin, AZD0156, and combined cisplatin with AZD0156 treatment groups, the 
normalized tumor weight was 92.62% ± 2.36% vs 90.25% ± 1.65% (P > 0.05), 37.98% ± 2.13% vs 64.93% ± 4.20% (P < 0.001), 
and 17.67% ± 1.97% vs 40.92% ± 1.56% (P < 0.0001) in SLFN11 silenced and re-expressed xenografts, respectively 
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Figure 2 Schlafen-11 was correlated with chemoresistance to cisplatin in esophageal squamous cell carcinoma cells. A: MTT assay showing 
the sensitivity to cisplatin in KYSE30 and KYSE450 cells before and after re-expression of Schlafen-11 (SLFN11), and in KYSE510 cells before and after knockout of 
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SLFN11, data are representative of three independent experiments; B: Representative colony formation assay under the treatment of 1 μmol/L and 2 μmol/L cisplatin 
for 14 d in esophageal squamous cell carcinoma cells. Each experiment was repeated in triplicate. The average normalized colony efficiency was indicated by a bar 
diagram. Statistical significance was analyzed by t test (aP < 0.05, bP < 0.01, cP < 0.001, dP < 0.0001). KO: Knockout; SLFN11: Schlafen-11.

Figure 3 The role of Schlafen-11 on DNA damage repair network in esophageal squamous cell carcinoma cells. A: The levels of Schlafen-11 
(SLFN11), p-DNAPKcs, DNAPKcs, and XRCC4 under the treatment of 1 μmol/L cisplatin for 12 h and 24 h in KYSE30 and KYSE450 cells before and after SLFN11 
re-expression and in KYSE510 before and after SLFN11 knockout; B: The effects on ATR/CHK1 signaling in KYSE30 and KYSE450 cells after SLFN11 re-expression 
and in KYSE510 cells after SLFN11 knockout under the treatment of 1 μmol/L cisplatin for 12 h and 24 h; C: The effects on ATM/CHK2 signaling in KYSE30 and 
KYSE450 cells after the restoration of SLFN11 and in KYSE510 cells after SLFN11 knockout under the treatment of 1 μmol/L cisplatin for 12 h and 24 h. β-actin: 
Internal control.
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Figure 4 Schlafen-11 silencing sensitized esophageal squamous cell carcinoma cells to AZD0156. A: MTT assay to evaluate the sensitivity of 
esophageal squamous cell carcinoma (ESCC) cells to AZD0156 under the treatment of low dose cisplatin, data are representative of three independent experiments; 
B: Representative colony formation assay under the treatment of low dose cisplatin, AZD0156 and combined mini-dose cisplatin with AZD0156 for 14 d in ESCC 
cells, each experiment was repeated in triplicate, the average normalized colony efficiency was indicated by a bar diagram, statistical significance was analyzed by t 
test (bP < 0.01, cP < 0.001, dP < 0.0001); C: The protein levels of ATM/CHK2 signaling and γ-H2AX in ESCC cells under the treatment of low dose cisplatin, AZD0156 
and combined cisplatin with AZD0156 in ESCC cells. KO: Knockout; β-actin: Internal control.

(Figure 5E). The combined cisplatin and AZD0156 treatment led to a significant reduction in tumor volume and weight in 
SLFN11 silenced KYSE30 cell xenografts, demonstrating that the loss of SLFN11 expression increased the sensitivity of 
ESCC cells to AZD0156 in vivo.

DISCUSSION
Human SLFN11 is a putative DNA/RNA helicase and recently more studies were focused on its chemosensitivity in 
various cancers by combination of different therapeutic reagents, including PARP inhibitor and PD1 antibody[27,29,30]. 
The expression of SLFN11 was shown to correlate with chemosensitivity broadly[29-32]. While a majority of tumors 
exhibit low levels or lack of SLFN11 expression, which varies depending on the cancer types[22,33]. And recent reports 
demonstrated that expression of SLFN11 did not exhibit sensitivity to all chemo-therapeutic agents, as evidenced by the 
analysis of multiple cancer types[30]. The mechanism of SLFN11 in chemosensitivity was mainly recognized to involve in 
DDR[34]. An early study found that the inhibition of ATR had substantial effect on DDR in SLFN11-negative cells[26]. 
Another investigation suggested that SLFN11 involved in ATR signaling by downregulation of type II tRNAs[35]. 
However, Murai et al[24] illustrated that the guarding of the genome by SLFN11 is independent of ATR. Additional stu-
dies have provided support for the notion that the primary function of SLFN11 is to inhibit HR, and the deletion of 
SLFN11 reduced the levels of mitomycin-induced chromosome breakage in FANCA or FANCD2 deficient cells[23,36]. 
The mechanisms of SLFN11 in DDR remain controversial, particularly in different cancer contexts. A better understan-
ding of the regulatory network of SLFN11 may optimize the regimens for cancer therapy. Our study demonstrated that 
SLFN11 was frequently methylated in primary esophageal cancer and its expression was regulated by DNA methylation. 
DNA methylation markers used for predicting chemosensitivity have been tested in various cancers, and epi-drug 
therapy has been explored for approximately two decades[37,38]. However, their application in clinical setting remains 
very limited because of lacking precise targets in cancer cells, especially in solid tumors[39]. Targeting DDR may precisely 
eliminate cancer cells with DDR defects, without hurting normal cells[10]. Aberrant epigenetic modifications were found 
to occur more frequently than gene mutations in DDR-related genes in cancers. DDR functional defects caused by 
epigenetic silencing of DDR-related genes offer a wide range of therapeutic targets in cancer[11]. The exploration of the 
mechanism of SLFN11 in DDR was aimed to identify more precise therapeutic strategies for ESCC. In cellular models 
treated with low doses of cisplatin, SLFN11 was found to promote ATR and NHEJ pathways, while inhibiting ATM 
signaling. These findings partially align with previous reports[23,24,26]. It is supposed that epigenetic silencing of 
SLFN11 would inhibit ATR and NHEJ signaling pathways, and activate ATM signaling. Therefore, we tested the 
efficiency of ATM inhibitor in ESCC cells. Epigenetic silencing of SLFN11 rendered KYSE30 and KYSE450 cells more 
susceptible to ATM inhibitor, and the effect was validated by deletion of SLFN11 in KYSE510 cells. The validity of these 
findings was reinforced through the use of SLFN11 silenced KYSE30 cell xenograft mouse models. Our results 
demonstrated that SLFN11 methylation increased the sensitivity of cells to ATM inhibitor in cisplatin induced DNA 
damage model, indicating the synthetic lethal effect of SLFN11 methylation and ATM inhibitor.
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Figure 5 In vivo efficacy of sensitivity of Schlafen-11 deficient cells to AZD0156. A: Schematic diagram of xenograft mouse models generation and 
medication; B: Tumors derived from Schlafen-11 (SLFN11) unexpressed and re-expressed KYSE30 cell xenografts in mice treated as indicated; C: Growth curves of 
xenograft tumors treated with 2 mg/kg cisplatin, 30 mg/kg AZD0156 and combination of 2 mg/kg cisplatin plus 30 mg/kg AZD0156; D and E: Normalized tumor 
volume and weight in KYSE30 unexpressed and re-expressed xenografts under different modes of treatment, statistical significance was analyzed by t test (dP < 
0.0001); F: Schematic model of synthetic lethality of SLFN11 with ATM inhibitor in esophageal squamous cell carcinoma cells.
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Table 1 Association of Schlafen-11 methylation and clinical factors in esophageal squamous cell carcinoma

SLFN11 methylation status
Clinical factor No.

Unmethylated, n = 749 (74.37%) Methylated, n = 258 (25.62%)
P value

Age (yr) 0.512

< 60 317 240 77

≥ 60 690 509 181

Gender 0.823

Male 677 505 172

Female 330 244 86

Smoking 0.883

No 562 417 145

Yes 445 332 113

Alcohol consumption 0.743

No 730 545 185

Yes 277 204 73

Tumor size (cm) 0.012a

≤ 4 633 454 179

> 4 374 295 79

Differentiation 0.002b

Well 173 147 26

Moderate 526 383 143

Poor 308 219 89

TNM stage 0.567

I + II 531 391 140

III + IV 476 358 118

Lymph node metastasis 0.973

Negative 526 391 135

Positive 481 358 123

aP < 0.05.
bP < 0.01.
P values are obtained from χ2 test. SLFN11: Schlafen-11.

CONCLUSION
Our findings revealed that methylation of SLFN11 is in an accumulating tendency during esophageal carcinogenesis. 
Methylation of SLFN11 is a sensitive marker for ATM inhibitor both in vitro and in vivo in ESCC.
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