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Abstract

The complement component 4 gene loci, composed of the C4A and C4B genes and located on 

chromosome 6, encodes for complement component 4 (C4) proteins, a key intermediate in the 

classical and lectin pathways of the complement system. The complement system is an important 

modulator of immune system activity and is also involved in the clearance of immune complexes 

and cellular debris. C4A and C4B gene loci exhibit copy number variation, with each composite 

gene varying between 0–5 copies per haplotype. C4A and C4B genes also vary in size depending 

on the presence of the human endogenous retrovirus (HERV) in intron 9, denoted by C4(L) for 

long-form and C4(S) for short-form, which affects expression and is found in both C4A and C4B. 

Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with 

the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on 

C4B protein. C4A and C4B copy number variation has been implicated in numerous autoimmune 

and pathogenic diseases. Despite the central role of C4 in immune function and regulation, 
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high-throughput genomic sequence analysis of C4A and C4B variants has been impeded by the 

high degree of sequence similarity and complex genetic variation exhibited by these genes. To 

investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic 

pipeline for comprehensive, high-throughput characterization of human C4A and C4B sequences 

from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole 

genome sequence data as input, C4Investigator determines the overall gene copy numbers, as 

well as C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S). Additionally, C4Ivestigator reports the 

full overall C4A and C4B aligned sequence, enabling nucleotide level analysis. To demonstrate the 

utility of this workflow we have analyzed C4A and C4B variation in the 1000 Genomes Project 

Dataset, showing that these genes are highly poly-allelic with many variants that have the potential 

to impact C4 protein function.
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Introduction

The C4A and C4B genes, located in human chromosomal region 6p21.33, encodes for 

complement component 4 (C4) proteins, key intermediate in the classical and lectin 

pathways of the complement system(1). The complement system is an important modulator 

of immune system activity, can activate the innate and adaptive immune response 

systems(2–4) and is also involved in the clearance of immune complexes and cellular debris. 

C4A and C4B loci exhibit copy number variation (CNV), with each composite gene varying 

between 0–5 copies per haplotype, and importantly, the gene copy number of C4A and 

C4B correlate to C4 protein levels(5). C4A and C4B loci also vary in size depending on 

the presence of a complete endogenous retrovirus in the intron 9 of C4A and C4B, named 

HERV-K(C4) (Figure 1A), denoted by C4(L) for long-form and C4(S) for short-form, which 

correlates with expression and is found in both C4A and C4B resulting in four distinct 

genomic forms of C4 (C4A(L), C4B(L), C4A(S), and C4B(S))(5).

C4 is mainly expressed by liver cells, white blood cells, and intestinal epithelial cells(6), 

but also by central nervous system cells(7). C4 is expressed as two isotypes, C4A and 

C4B, encoded by the C4A and C4B genes, respectively. The isotypes have nearly identical 

sequence but are differentiated by a short peptide sequence motif at positions 1120–1125 

(Figure 1B), which are PCPVLD for C4A and LSPVIH for C4B. Additionally, human 

blood group antigens Rodgers (Rg) and Chido (Ch) are located on the C4 protein at 

positions 1207–1210(8–10). The Rg epitope is generally found on C4A protein, and the 

Ch epitope is generally found on C4B protein. The relative locations of the C4A/B specific 

single nucleotide polymorphisms (SNPs) and the Rg/Ch major epitope encoding SNPs are 

shown in Figure 1A.

C4A and C4B CNV has been implicated in the neurological diseases schizophrenia(11,12) 

and Alzheimer’s(13), and there is a large body of evidence connecting C4A deficiency and 

the development of systemic lupus erythematosus (SLE)(14–16), an autoimmune disease. 
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Additionally, while the role of C4A and C4B CNV has yet to be studied in the context 

of COVID-19 pathology, recent studies have implicated complement hyperactivation with 

severe SARS-CoV-2 complications(17–19).

Currently, interrogation of C4A and C4B CNV is accomplished through both digital 

droplet polymerase chain reaction (ddPCR)(11,20) and real time PCR quantification 

(15,21,22) which are capable of quantifying gene copy number for overall C4A and C4B, 

C4A(L), C4A(S), C4B(L) and C4B(S). While these methods produce accurate results 

for C4A and C4B gene copy number and phasing with long and short form, they are 

intractable for identifying additional sequence variation at scale, including loss of functional 

variations(23,24) and recombinations (25,26), and are completely blind to novel sequence 

variation. High-throughput genomic sequence analysis of C4A and C4Bvariants has been 

impeded by the complex genetic variation exhibited by these genes. One recent tool for 

assessing C4A and C4B sequence variation is the analysis workflow hosted on Terra 

(https://app.terra.bio/#workspaces/mccarroll-genomestrip-terra/C4AB_Analysis) (27), which 

was developed using the Genome STRiP software (28) to analyze C4A and C4B from 

whole genome sequencing (WGS) data. However, this tool is currently unpublished and is 

restricted to analysis of copy number variation of C4A and C4B specific SNPs and the 

HERV-K(C4).

Most C4 analysis workflows are targeted at characterizing the region of C4A and C4B 
specific SNPs, which encode for an important active site that causes C4A and C4B to have 

unique biochemistries. However, there are many other vital locations along C4 amino acid 

sequence that, when mutated, have drastic functional consequences (Figure 1B). First are 

amino acid positions 477 and 478; mutations at these positions can disrupt C5 convertase 

activity (29,30), an important step in the classical and lectin complement cascade pathways 

that form the membrane attack complex (MAC). Positions 756 and 757 are the site of 

C1/MASP-2 cleavage(31) to produce C4a and C4b, which is the initial modification made 

to C4 proteins to initiate the complement cascade. Positions 1405–1427 and 1716–1732 are 

binding sites for C1/MASP-2 (32,33). Positions 763–770 make up a binding site for C2a 

(34), an intermediary of the classical and lectin cascade pathways that binds with C4b to 

make a C3 convertase. Positions 1236 and 1238 are known binding positions for C3b (35), 

an intermediary that binds with the C4b·C2a complex to make a C5 convertase. Finally, 

there are known frame-shift mutations on exon 13 and 29 that both result in premature 

terminations (Figure 1A) (24).

Due to the importance of C4 in complement cascade activity, coupled with the high degree 

of allotypic variation (36,37), we believe that full genomic sequence characterization of C4 
is of vital importance to advancing our understanding of its in human health. To investigate 

C4A and C4B variation using genomic sequencing data, we have developed a bioinformatic 

pipeline for comprehensive, high-throughput characterization of human C4A and C4B copy 

number and sequence variation from short-read sequencing data, named C4Investigator. 

Using whole genome sequence data as input, C4Investigator determines gene copy number 

for overall C4A and C4B, C4A, C4B, C4(Rg), C4(Ch), C4(L), and C4(S); additionally, 

C4Investigator reports full genomic sequence and highlights frame-shift mutations and 

potential recombinations.
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To demonstrate the utility of C4Investigator, we have applied the workflow to the 1000 

Genomes Project (1KGP) high depth 30x WGS data(38,39), a dataset consisting of 3,202 

samples, characterizing C4A and C4B copy number and sequence variation for the first 

time in this dataset to provide a snapshot of population-level differentiation at this important 

genomic region.

Materials and Methods

1.1 C4Investigator overview

Due to the high degree of sequence similarity between C4A and C4B, the C4Investigator 

workflow combines alignments of these two genes into an overall alignment. A long-form 

C4A sequence and a short-form C4B sequence are used as a reference for this alignment. 

A custom alignment processing workflow, similar to that outlined in Marin et al.(40), was 

developed to integrate the C4A and C4B alignments into the overall alignment. From the 

overall alignment, C4A and C4B copy numbers are determined by comparing the median 

alignment depth across C4A and C4B to the average depth of the Tenascin XB (TNXB), 
a nearby copy-stable gene. Gene copy numbers of C4A, C4B, C4(Ch), C4(Rg), C4(L) and 

C4(S) are determined by multiplying the ratios of C4A/C4B specific SNPs, Rg/Ch specific 

SNPs and the HERV-K(C4) insertion region, to the overall C4 copy. C4A-Ch and C4B-Rg 
recombinants are identified using read-based phasing. A limitation of this approach is that 

because of the genomic distance between the C4A and C4B specific SNPs to the HERV-

K(C4) region, this method is unable to phase C4A and C4B with long and short-form.

In addition to gene copy number analysis, C4Investigator outputs the full overall C4A-C4B 
aligned sequences as an SNP table.

The pipeline is available at: https://github.com/hollenbach-lab/C4Investigator.

1.1.1 Alignment workflow—The structural variation of C4A and C4B loci and the 

high-degree of sequence similarity between them necessitates a custom alignment and 

processing workflow. The first step of the workflow is a Bowtie2(41) alignment to a 

reference consisting of a short form of C4B, the long form of C4A, and TNXB, which 

is used as a close proximity normalizer gene. Subsequently, the reads aligned to both C4A 
and C4B are combined, formatted, and indexed according to the aligned read formatting 

procedure outlined in Marin et al. (2021) to generate an overall C4A-C4B alignment 

used for downstream analysis. The output of this workflow is a C4A and C4B depth 

table spanning from position −285 5’UTR to position 341 3’UTR with depths marked 

independently for A, T, C, G, deletions, and insertions.

1.1.2 C4A and C4B copy number determination—The median depth of the overall 

C4A-C4B alignment is normalized by the median depth of TNXB, which determines 

the overall copy number of C4A and C4B. The relative depth ratios of the C4A and 

C4B specific SNPs, at positions E26.129, E26.132, E26.140, E26.143, and E26.145, are 

multiplied by the overall gene copy number to determine individually the copy numbers 

of C4A and C4B. Similarly, the Rg and Ch major epitope-specific SNPs, at positions 

E28.111, E28.116, E28.125, and E28.126, are processed to determine the C4(Rg) and 
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C4(Ch) copy number. Finally, the depth ratio of the HERV-K(C4) insertion, across positions 

I9.276-I9.6642, is multiplied by the overall gene copy number to determine the long-form 

and short-form copy number.

Exon 29 TC insertion sequence depth ratio is multiplied by the overall C4 copy to determine 

the copy of loss of function alleles, this value is subtracted from C4A gene copy number to 

give the functional C4A copy number. While it is possible for the TC insertion to exist in 

a C4B sequence, this variant is very rare(23,42) and there is no solid evidence of it in the 

datasets we analyzed. A similar approach is utilized for the exon 13 C deletion in C4B to 

give the functional C4B copy number.

1.1.3 C4A and C4B sequence analysis—The overall depth table is processed to 

generate a SNP table for positions passing a minimum depth threshold (6 for whole genome 

sequence data and 20 for targeted sequence data). Heterozygous positions are identified 

using a depth ratio of 0.5 normalized by the determined C4A and C4B gene copy number. 

The output of this step is an overall SNP table with the combined sequence for C4A and 

C4B.

1.2 Application and validation of C4Investigator

1.2.1 Targeted sequencing dataset generation and analysis with 
C4Investigator—Targeted-capture next-generation sequencing (NGS) was applied in a 

cohort of 38 African Americans and 37 European Americans from the United States. 

These healthy individuals were unrelated and part of the INDIGO (The Immunogenetics 

for Neurological DIseases working GrOup) cohort(43).

A total of 100 ng of high-quality DNA is fragmented using the Twist EF Kit 2.0 l (Twist 

Bioscience), incubating for 5 minutes at 37 °C. Subsequently, the fragmented DNA have 

their ends repaired, poly-A tail added, and are ligated through PCR to Illumina compatible 

dual index adapters uniquely barcoded. After ligation, fragments are purified with 0.8X ratio 

Ampure XP magnetic beads (Beckman Coulter) followed by double size selection (0.42X 

and 0.15X ratios) to select libraries of approximately 800 bp. Finally, libraries are amplified 

and purified with magnetic beads. After quantification by quantitative PCR, 60 ng of each 

sample are precisely pooled using ultrasonic acoustic energy, and the enrichment targeted 

capture is performed with hybridization kits from Twist Bioscience. Briefly, the libraries 

are bound to 33,620 biotinylated 120 bp probes target the entire MHC (chr6:28525013–

33457522, hg38). By using streptavidin magnetic beads, the targeted fragments are captured 

and then amplified and purified. Enriched libraries are analyzed in BioAnalyzer (Agilent) 

and quantified by digital-droplet PCR. Finally, enriched libraries are sequenced using 

NovaSeq6000 (Illumina) with paired-end 150bp sequencing protocol.

C4Investigator was run over the targeted sequencing datasets using a minimum depth of 20X 

for variant calling and a ratio of 0.50, normalized by the total copy of C4A and C4B, for 

heterozygous position identification.

1.2.2 ddPCR genotyping for validation of C4Investigator—Copy numbers for 

C4A, C4B, C4(L) and C4(S) were determined by ddPCR as described previously (11) 
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for the INDIGO cohort subset described above. Copy number results determined by 

C4Investigator were compared to ddPCR determined results to quantify the copies of C4A, 

C4B, C4(L) and C4(S) that were identified by both methods.

1.2.3 1000 Genomes Project analysis and C4Investigator validation via 
comparison to existing annotation workflow.—As an additional means of validation, 

C4Investigator copy number results for the 1KGP dataset were compared to results from 

the analysis workflow utilizing Genome STRiP(38) implemented in Terra (27). For each 

1KGP individual, short reads aligned to C4A and C4B and the nearby region were 

extracted from GRCh38 aligned CRAM files using the coordinates outlined in Table S1 

using Samtools(44). The extracted reads were converted to paired-end FASTQ files using 

Bazam(45). C4Investigator was run over the paired-end FASTQ files using a minimum 

depth of 6 for variant calling and a ratio of 0.50, normalized by the total copy of C4A 
and C4B, for heterozygous position identification. Copy number results were stratified by 

superpopulation. Population totals and abbreviations are outlined in Table 1.

Then, C4Investigator annotations were compared to the Genome STRiP Terra workflow 

annotations for this set of 1KGP individuals. For overall C4A and C4B, all results across 

both datasets were compared. For C4A and C4B comparison, samples marked as C4A1, 

C4A2, C4B1, or C4R1, which represented rare variants, by the Genome STRiP Terra 

workflow were excluded, representing a total of 55 samples excluded from the comparison. 

For C4(L) and C4(S) all results were compared. C4A1, C4A2, C4B1, and C4R1 results 

for C4Investigator were generated by confirming correct phase across positions E26.128 

– E26.145, based on the k-mers provided for these variants by the Terra workflow, then 

determining the copy number of these variants based on the relative SNP depth.

Chi-squared testing was carried out to compare observed C4A and C4B copy number 

frequencies between superpopulations. For each gene, copy numbers with low observed 

frequencies were summed together so that each observation had a value >0. Binned 

frequencies were then analyzed using the chisq.test function in R.

Results

1.3 Performance evaluation – ddPCR copy number comparison

Evaluation of C4Investigator copy number determination performance compared to ddPCR 

results for European and African datasets show perfect concordance between the two 

methods for C4A and C4B copy number determination (Table 2), 94% for C4(S) and 98% 

for C4(L) for the European dataset, and 89% for C4(S) and 91% for C4(L) for the African 

dataset.

1.4 Performance evaluation – C4A/B Terra copy number comparison

To benchmark C4Investigator performance against another bioinformatic workflow, we 

compared results for the 1000 Genomes Project dataset (N=3199) against results from the 

unpublished Terra workflow(27), a bioinformatic pipeline that utilizes Genome STRiP(38) 

to quantify C4A and C4B copy numbers.
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Overall copy determination performance was highly concordant with the Terra workflow, at 

99.95% (N=12977). C4A and C4B copy identification concordance was 99.12% (N=6942) 

for C4A and 98.96% (N=5976) for C4B. C4(L) and C4(S) copy identification concordance 

was 99.60% (N=8700). Comparing the additional C4A and C4B variants quantified by Terra 

workflow showed an overall concordance of 96.6% (N=59).

Investigation into the discordant C4A and C4B samples showed the ratios of C4A were near 

the copy thresholds for both methods (Figure S1A). Further examination into the C4A and 

C4B Terra k-mer quality scores showed the discordant samples had a median quality of 9, 

while concordant samples had a median quality of 62.7 (Figure S1B). A similar analysis was 

performed for the C4(L) and C4(S) discordant samples, which showed the C4Investigator 

ratios were near the copy thresholds, while the Terra workflow ratios were clustered near the 

center of the copy intervals (Figure S2). These results suggest that poor kmer quality and 

differences in the functionalities of C4Investigator and Terra may be driving the observed, 

albeit limited, discordancies.

1.5 1000 Genomes Project – C4A and C4B copy number analysis

Analysis of C4A and C4B copy number variation across superpopulations showed most 

individuals across all superpopulations had 4 copies overall, 2 copies of C4A, and 2 copies 

of C4B, and there were very few individuals with 0 copies (Figure 2). The African (AFR) 

and European (EUR) superpopulations had higher occurrences of 3 overall copies of C4, 

almost double that observed in the other superpopulations, and lower occurrences of 5 and 6 

overall copies of C4A and C4B. In contract, the South Asian (SAS) superpopulation had the 

lowest occurrence of 3 overall copies of C4A and C4B, but the highest of 5 and 6. One of 

the largest differences observed was with C4L copy 2 for the AFR superpopulation, which 

was observed at over double the rate of the other superpopulations; this superpopulation 

also had substantially lower C4L copy 3 occurrence and virtually no occurrence of 4 

copies. The C4S copy 0 occurrence for the AFR superpopulation was negligible, while 

other superpopulations were over 20%. Chi-square testing of copy number frequencies 

across superpopulations confirmed a significant association between copy number and 

superpopulation for each of the C4 genes (Table S2).

1.6 1000 Genomes Project – SNP analysis

The SNP tables output by C4Investigator, which represent combined C4A and C4B 
sequence, were parsed to identify sequence variation, and any identified exonic nucleotide 

variants are evaluated for amino acid coding change. From these results we have 

summarized non-synonymous mutations in Table 3, and SNP variation that is not 

represented in the main assembly of the GRCh38 reference in Figure 3.

Analysis of allele frequencies for C4A and C4B non-synonymous sequence variation 

showed large variations in frequencies across populations (Table 3). The variant p.H549P 

was very common in the EAS superpopulation, and was found in most populations, but 

very rare in the AFR superpopulation. The variant p.L141V was the major allele in the 

CDX population, was highly frequent across the EAS superpopulation, and was found 

at appreciable frequencies across all populations. The variants p.T229I, p.K325M, and 
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p.M328I were only found in the EAS superpopulation. And the variants p.P478L, p.P726L, 

p.R791H, p.R916Q, p.A1413P, and p.P1530S were only found in the AFR superpopulation.

An analysis into non-reference SNVs, which are variants not represented in the main 

assembly of GRCh38, for the 1KGP dataset across C4A and C4B showed 251 variant 

positions with total non-reference variant copy of at least 10 (Figure 3A, Table S3). 

Examination of the positional distribution of these variants across C4A and C4B showed 

50 exonic variant positions accounting for 0.955% of all exonic positions (N=5235), 138 

intronic variant positions accounting for 1.56% of all intronic positions (N=8831, exclusive 

of HERV-K(C4)), and 59 HERV-K(C4) variant positions accounting for 0.927% of all 

HERV-K(C4) positions (N=6367).

An examination of the proportion of the 1KGP dataset that carry rare variants showed that 

almost 25% of the samples carried exonic variants with global allele frequencies at or below 

1% (Figure 3B, Table S3), and about 50% carried intronic variants. Looking at the carrier 

distribution of more common variants showed that about 70% of the samples carried exonic 

variants with global allele frequencies below 5%, and about 85% carried intronic variants.

1.7 1000 Genomes Project – recombinant analysis

Analysis of carrier frequencies for C4A/C4B and Rodger/Chido recombinants, C4A-Ch 
and C4B-Rg, showed higher overall frequencies of the C4A-Ch recombinant compared 

to C4B-Rg (Table 4). The C4A-Ch recombinant was highly prominent in the AFR 

superpopulation, with a 37.4% carrier frequency in the MSL population, 20% in GWD 

and YRI, 14.1% in LWK, 13.5% in ASW, 11.2% in ACB, and 8.1% in ESN. The AMR 

superpopulation also showed appreciable C4A-Ch carrier frequencies, the highest being the 

PEL population at 7.4%, followed by PUR at 5.8%, MXL at 5.2% and CLM at 4.5%. While 

carrier frequencies of the C4B-Rg recombinant were generally lower overall, with many 

populations showing no carriers, the frequencies of this recombinant were not negligible, 

with 8 of the populations displaying at least 4.5% carrier frequency. The AMR and SAS 

superpopulations showed the highest frequencies of the C4B-Rg recombinant, the highest 

being the STU population at 7.0%, followed by CLM at 6.8%.

1.8 Performance evaluation – phasing of C4A and C4B with Rodger and Chido I

Phasing completeness between the C4A and C4B specific SNP group with the SNPs that 

define Rg and Ch was estimated by comparing the number of samples with read-backed 

phasing for the non-recombinant variants, C4A-Rg and C4B-Ch, to the total number of 

samples carrying C4A-Rg and C4B-Ch, respectively. Phasing completeness for C4A-Rg was 

97.69% (N=3167) and C4B-Ch was 96.60% (N=3113).

Discussion

Comparison of C4Investigator C4A and C4B copy number determination to ddPCR results 

showed high concordance between the two methods across divergent populations (Table 2). 

C4(L) and C4(S) copy determination performance was acceptable for the European dataset, 

but poor for the African dataset.
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Comparison of C4Investigator to the C4A and C4B Terra workflow, another bioinformatic 

pipeline, on the 1KGP WGS dataset showed high concordance between the two workflows, 

especially for the overall copy numbers. An investigation into discordant copy number 

results showed that the discordant samples had lower base quality scores on average (Figure 

S1B), with neither method showing clear copy number results for the discordant samples 

(Figure S1A). In contrast, the investigation into discordant HERV-K(C4) results showed a 

marked difference between the two methods, with the Terra workflow showing clear copy 

numbers for these samples while C4Investigator had unclear determinations (Figure S2). 

This is likely due to the additional structural variant processing of the Terra workflow, 

which incorporates Genome STRiP (38), a workflow specifically developed for identifying 

copy number variation in WGS data. The Terra workflow for C4A and C4B strictly focuses 

on identifying copy number variation, which appears to perform very well. In contrast, 

C4Investigator takes a different approach, focusing on identifying nucleotide variants in a 

copy variable system through the utilization of custom alignment processing algorithms, 

which has enabled the identification and quantification of SNP variation across C4A and 

C4B genes.

An analysis of C4A and C4B copy number variation between superpopulations (Figure 2) 

demonstrated some specific patterns, such as a median overall C4A and C4B copy number 

of 4, and a median copy number for C4A and C4B of 2 each, but also important distinctions 

between populations, such as the strikingly high number of individuals carrying 2 copies of 

C4L in the AFR superpopulation, and the general imbalance between overall C4A and C4B 
copy number of 3 and 5, which was unique for each superpopulation. Differences of this 

nature might suggest evolutionary pressure or unique genomic makeups that are specific to 

the different superpopulations and modulate the fitness of different haplotype structures.

An essential innovation of C4Investigator is demonstrated by its capacity to reveal important 

differences in sequence variation between populations, with likely important functional 

implications. An analysis of non-synonymous exonic sequence variants demonstrated that 

C4A and C4B sequence makeup can differ greatly between populations, with some variants 

with seemingly rare global allele frequencies showing high allele frequencies in specific 

populations. For example, the p.A1413P and the p.P1530S mutations were absent in most 

populations, but both had 10.2% allele frequency in the MSL population (Table 3). The fact 

that both mutations have the same allele frequency raises the question of if these mutations 

are in-phase, unfortunately, there is a 2046bp gap between these variants which was outside 

the scope of our phasing approach. However, an examination of the individuals that carried 

each mutation showed a high overlap, where 28 individuals carried both mutations compared 

to total 33 individuals carrying the p.A1413P mutation and 31 individuals carrying the 

p.P1530S mutation. A structural interrogation of C4·MASP-2 binding shows the p.A1413P 

mutation occurs in the middle of a MASP-2 exosite (33) (Figure 1), while the change from 

alanine to proline would not likely change the electrostatic interactions between C4 and 

MASP-2, it could potentially alter the structure of the binding site. Another sequence variant 

with potential to impact function is the p.P478L mutation, which causes severe reduction 

of hemolytic activity by disruption of C5 binding(30). Similar analyses in the context of 

disease association studies are likely to reveal important insights into immune-mediated 

pathogenesis.
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An analysis into C4A and C4B non-reference variants demonstrated that these genes are 

highly poly-allelic, with extensive variation across introns, exons, and the HERV-K(C4) 

region (Figure 3A). Further examination into rare variant carrier frequencies demonstrated 

that exonic variants under 5% global allele frequency are carried by around 70% of the 

1KGP samples (Figure 3B). This analysis demonstrates the value of nucleotide level analysis 

of C4A and C4B, which reveals important features of genomic variation not otherwise 

evident with existing methods.

One important aspect of SNP variation identification is the ability to phase variants. 

However, phasing high-copy variants (gene copy number > 2) is very complex and it 

is difficult to be certain of phasing completeness due to the high potential for missing 

information. Due to the high sequence similarity between C4A and C4B, the alignments 

must be treated as a single gene, exacerbating the high-copy phasing problem. This issue of 

variant phasing may be solved in the future, with the development of long-read sequencing 

protocols designed for C4A and C4B analysis. Though the C4Investigator algorithm is 

designed specifically for short read data, the copy number ratio conceptual framework could 

be re-implemented with long read specific tools and statistical models in future work.

Until such solutions are developed, we have implemented read-backed phasing that enables 

us to determine whether two variants in proximity are in-phase, but the potential for missing 

information means in many cases we cannot make the determination that two variants 

are not in-phase; essentially, we can make more confident true positive phasing calls than 

true negative. Because the distance between the SNPs that define C4A and C4B SNPs 

with those that define the Rg and Ch is only 440bp, we can determine the presence of 

recombinants between the two SNP groups. An estimate of phasing completeness between 

C4A-Rg and C4B-Ch showed this phasing approach only missed a small percentage of 

samples. Utilization of this phasing approach to identify C4A-Ch and C4B-Rg recombinants 

showed high C4A-Ch carrier frequencies across the AFR superpopulation (Table 4), and 

appreciable carrier frequencies for the C4B-Rg recombinant and the AMR and SAS 

superpopulations. Since C4A-Rg and C4B-Ch is the predominant linkage pattern observed 

in human populations (8), the observation of the C4A-Ch recombinant is unexpected. 

However, to-date, few studies have thoroughly characterized C4A and C4B variation with 

the resolution we achieved in populations of African ancestry, thus, this is a novel finding. 

Interestingly, complement system activation has been shown to be altered in individuals with 

sickle cell disease (SCD) (46,47), which also has a high prevalence in African populations, 

due to its protective effect against malaria (48,49). It is possible that the unique combination 

of C4A-specific SNPs with the Chido group SNPs has a role in mediating the molecular 

response to sickle cell disease. Future studies may be able to better interpret this novel 

observation.

In conclusion, C4Investigator fills a critical role in the investigation of C4A and C4B 
variation, processing WGS data to provide copy number variation and full genomic 

sequence information. Here, we have demonstrated the utility of this workflow on the 

Thousand Genomes Project dataset, revealing that C4A and C4B copy number varies 

between superpopulations, that alleles with low global allele frequencies can have high 

population specific frequencies, the presence and distribution of recombinant variants, and 
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population specific carrier frequencies for rare alleles. Additionally, we have demonstrated 

that C4Investigator can identify variation that is known to alter C4 function. To the best of 

our knowledge, C4Investigator is the only bioinformatic workflow currently available for 

nucleotide level characterization of C4A and C4B from WGS data, and as such, promises 

to contribute to our understanding of the role of this genomic region in human health and 

disease.
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Figure 1. Sequence features of C4A and C4B genes and C4 proteins.
(A) Positions of C4A and C4B genomic sequence features shown for a long-form of the 

genes. Exon positions are marked in black, the HERV-K(C4) sequence is marked in red, 

and select sequence variants are shown above the exons. Positions are based on the C4A 
and C4B combined alignment reference, which includes 5’UTR and 3’UTR sequence. The 

C-del variant and the TC-ins variant are frame-shift mutations that result in premature 

terminations. (B) Positions of C4A and C4B protein sequence features. The major chains, α, 

β, and γ, are shown in the bottom row, the cleavage products, C4a and C4d, are shown on 

the middle row, and important binding locations and sequence variants are shown in the top 

row. The amino acid positions include the leading 19 amino acid signal peptide.
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Figure 2. Superpopulation distributions of C4A and C4B copy number results for the 1KGP 
dataset.
C4A and C4B overall copy represents the total copy number of C4A and C4B, C4S 
represents the total copy number for the short-forms of C4A and C4B, and C4L represents 

the total copy number for the long-forms of C4A and C4B. AFR = African, AMR = 

Admixed American, EAS = East Asian, EUR = European, SAS = South Asian.
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Figure 3. SNV variation across the 1KGP dataset.
(A) Total copy of combined C4A and C4B non-reference variants, which are variants not 

represented in the main assembly of GRCh38, by C4A and C4B position for the 1KGP 

dataset. The copy number of all non-reference variants for a position across the 1KGP 

dataset are summed to get the non-reference variant copy, which was then filtered to only 

show variant positions with total copy of at least 10. Positions of exon and HERV-K(C4) 

regions are marked. (B) Global carrier frequencies for non-reference variants in the 1KGP 

dataset for increasing global allele frequency thresholds from 0.00–0.05 for introns, exons, 

and the HERV-K(C4) region. The y-axis represents the total proportion of carriers that carry 

a non-reference allele that is at or below the global allele frequency threshold on the x-axis. 

For example, nearly 25% of the 1KGP dataset carried exonic variants with a global allele 

frequency of 1% or lower.
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Table 1.

1000 Genomes Project population abbreviations and size.

Population N

European (EUR) 633

British in England and Scotland (GBR) 91

Finnish in Finland (FIN) 99

Iberian population in Spain (IBS) 157

Utah Residents with Northern and Western European ancestry (CEU) 179

Toscani in Italia (TSI) 107

East Asian (EAS) 582

Southern Han Chinese (CHS) 161

Chinese Dai in Xishuanagbanna, China (CDX) 92

Kinh in Ho Chi Minh City, Vietnam (KHV) 122

Han Chinese in Bejing, China (CHB) 103

Japanese in Tokyo, Japan (JPT) 104

Admixed American (AMR) 490

Puerto Rican from Puerto Rica (PUR) 139

Colombian from Medellian, Colombia (CLM) 132

Peruvian from Lima, Peru (PEL) 122

Mexican Ancestry from Los Angeles USA (MXL) 97

South Asian (SAS) 601

Punjabi from Lahore, Pakistan (PJL) 146

Bengali from Bangladesh (BEB) 131

Sri Lankan Tamil from the UK (STU) 114

Indian Telugu from the UK (ITU) 107

Gujarati Indian from Houston, Texas (GIH) 103

African (AFR) 893

African Carribean in Barbados (ACB) 116

Mandinka in The Gambia (GWD) 178

Esan in Nigera (ESN) 149

Mende in Sierra Leone (MSL) 99

Yoruba in Ibadan, Nigera (YRI) 178

Luhya in Webuye, Kenya (LWK) 99

American's of African Ancestry in SW USA (ASW) 74
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Table 2.
Evaluation of C4Investigator copy number determination performance compared to 
ddPCR for European and African datasets.

C4(S) = C4 short-form, C4(L) = C4 long-form

Ancestry C4A C4B C4(S) C4(L) 

African 1.00 N=76 1.00 N=66 0.89 N=61 0.91 N=81

European 1.00 N=82 1.00 N=70 0.94 N=34 0.98 N=118
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Table 3.
Population specific minor allele frequencies for C4A and C4B unphased, non-synonymous 
exonic sequence variants.

For this analysis we did not distinguish between C4A and C4B. This table shows amino acid frequencies, the 

amino acid position and nucleotide position, the nucleotide frequencies, and population allele frequencies for 

the minor allele. Major amino acids and nucleotides represent the most frequent global variant while minor 

amino acids and nucleotides represent the second most frequent variant. This data was filtered to only show 

variants with allele frequencies >= 2% for any population. Blank values represent absence of the variant. See 

Table 1 for population abbreviations.

aa pos 141 229 325 328 478 549 726 791 916 959 1286 1413 1530

major aa L T K M P H P R R E A A P

minor aa V I M I L P L H Q D S P S

nuc pos E3 157 E6 
60

E9 
62

E9 
72

E12 
92 E13 122 E17 

106
E18 
103

E21 
155 E23 23 E29 180 E33 6 E36 4

major nuc C C A G C A C G G A G G C

minor nuc G T T A T C T A A C T C T

EUR

GBR 6.1 2.6 7.8

FIN 8.4 5.9 2.2 4.5

IBS 3.2 2.1 4.6

CEU 6.1 5.5 8.2

TSI 4.1 4.1 3.8

EAS

CHS 35.8 14.3 8.6 3.6

CDX 53.3 18.7 17.7

KHV 33.7 2.1 4.4 4 10.2 13

CHB 25.8 2.9 2.9 12.8 4.6 5.6

JPT 13.3 4.4 4.2 8 13.1

AMR

PUR 8.7 3 3.1

CLM 7.7 3.9 2.4

PEL 16 6.8 2.7

MXL 15.8 7 2.2

SAS

PJL 4 4 5.7

BEB 16.1 3.8 7.4 4.8

STU 8 4 4.6

ITU 8.8 5.5 2.9 6.4

GIH 6.3 3.1 5.9

AFR

ACB 7 3.5 2.2 2.2 2.2

GWD 5.1 3.8 3.1 2.3 4.5

ESN 10.6 4.7 2.3

MSL 3.5 4.3 10.2 10.2

YRI 10.5 4.1 2.4 4 4
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LWK 10.7 3.1 2.1 2.9 3.7

ASW 10.7 2.5 2.1 2.8
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Table 4.
C4A-Ch and C4B-Rg carrier frequencies by population.

Carrier frequencies were calculated by the total C4A and C4B carrier count per population. C4A-Ch = C4A-
Chido, C4B-Rg = C4B-Rodger. See Table 1 for population abbreviations.

C4A-Ch C4B-Rg N

EUR

GBR 1.1 0 91

FIN 1.0 0 99

IBS 1.9 6.4 157

CEU 1.1 1.7 179

TSI 0 3.7 107

EAS

CHS 0.6 0 161

CDX 2.2 1.1 92

KHV 4.9 0.8 122

CHB 2.9 1.9 103

JPT 4.8 0 104

AMR

PUR 5.8 5.0 139

CLM 4.5 6.8 132

PEL 7.4 3.3 122

MXL 5.2 5.2 97

SAS

PJL 2.1 4.1 146

BEB 0 1.5 131

STU 0.9 7.0 114

ITU 0.9 4.7 107

GIH 1.0 4.9 103

AFR

ACB 11.2 0 116

GWD 20.2 4.5 178

ESN 8.1 0 149

MSL 37.4 0 99

YRI 20.2 0 178

LWK 14.1 0 99

ASW 13.5 2.7 74
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