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Abstract

Autism Spectrum Disorder (ASD) is a heterogeneous condition that includes a broad range of 

characteristics and associated comorbidities; however, the biology underlying the variability in 

phenotypes is not well understood. As ASD impacts approximately 1 in 100 children globally, 

there is an urgent need to better understand the biological mechanisms that contribute to features 

of ASD. In this study, we leveraged rich phenotypic and diagnostic information related to 

ASD in 2001 individuals aged 4 to 17 years from the Simons Simplex Collection to derive 

phenotypically driven subgroups and investigate their respective metabolomes. We performed 

hierarchical clustering on 40 phenotypes spanning four ASD clinical domains, resulting in 

three subgroups with distinct phenotype patterns. Using global plasma metabolomic profiling 

generated by ultrahigh-performance liquid chromatography mass spectrometry, we characterized 

the metabolome of individuals in each subgroup to interrogate underlying biology related to the 

subgroups. Subgroup 1 included children with the least maladaptive behavioral traits (N = 862); 

global decreases in lipid metabolites and concomitant increases in amino acid and nucleotide 

pathways were observed for children in this subgroup. Subgroup 2 included children with the 

highest degree of challenges across all phenotype domains (N = 631), and their metabolome 

profiles demonstrated aberrant metabolism of membrane lipids and increases in lipid oxidation 

products. Subgroup 3 included children with maladaptive behaviors and co-occurring conditions 

that showed the highest IQ scores (N = 508); these individuals had increases in sphingolipid 

metabolites and fatty acid byproducts. Overall, these findings indicated distinct metabolic patterns 
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within ASD subgroups, which may reflect the biological mechanisms giving rise to specific 

patterns of ASD characteristics. Our results may have important clinical applications relevant to 

personalized medicine approaches towards managing ASD symptoms.
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1. Introduction

Autism Spectrum Disorder (ASD) is a heterogeneous disorder that encompasses a broad 

range of phenotypic characteristics related to cognition, language ability, and behavior. 

It is often accompanied by co-occurring conditions, including sleep disorders, seizures, 

anxiety, and depression, among others (Lord et al., 2020). ASD affects approximately 1 

in 100 children globally (Zeidan et al., 2022), with characteristics that vary across the 

spectrum of cases (Braden et al., 2022) and contribute to heterogeneity of the disorder. 

While genetic and environmental contributors have been identified (Braden et al., 2022; 

Fischbach and Lord, 2010; Hassan and Mokhtar, 2019), additional research is needed to 

uncover the biological drivers that give rise to varied ASD symptomology. Identifying 

phenotypically homogenous subgroups of ASD cases may improve the understanding of the 

molecular mechanisms underlying clinical manifestation and presentation, ultimately aiding 

the development of novel management strategies targeted to specific subgroups (Persico and 

Sacco, 2014). Investigating biological patterns within and between subgroups has proven 

beneficial in neurological research and has enlightened patterns of disease pathogenesis 

and features (Crouse et al., 2018) to enhance clinical approaches in ASD (Rubin and 

Panzano, 2002). Subtyping approaches have also been successfully applied to many other 

heterogeneous conditions that arise from diverse underlying biology (Oron and Elliott, 

2017), such as asthma (Kelly et al., 2022), diabetes (Jun et al., 2020; Zaghlool et al., 2022), 

and cancer (Cao et al., 2021; Gumpenberger et al., 2021) improving personalized medicine 

approaches for these diseases. These methods may similarly benefit ASD research and 

facilitate improved understanding of the processes that give rise to the diverse and unique 

sets of symptoms.

A number of environmental risk factors have been identified in ASD development and 

progression, including infections during pregnancy, maternal zinc deficiency, and gestational 

diabetes, among others (Georgiades et al., 2013; Grabrucker, 2012), and these environmental 

components are thought to interact with underlying genetics to impact ASD risk and 

presentation (Fischbach and Lord, 2010; Sanders et al., 2015), etiology (Kalsner et al., 2018; 

Skaar et al., 2005), and symptomology (Clements et al., 2020; Nayar et al., 2021). These 

genetic-environmental interactions ultimately drive downstream components of the central 

biological dogma, and the metabolome represents the downstream products of genetic, 

epigenetic, proteomic, and environmental influences contributing to altered physiological 

states (Rattray et al., 2018; Walker et al., 2019). This property makes the metabolome an 

attractive target to understand disruptions to underlying biology that are tied to disease 
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mechanisms, such as phenotypic patterns expressed by individuals with ASD. Previous 

metabolomic investigations of children with ASD have identified biomarkers for clinical 

evaluation (Orozco et al., 2019) and development (Smith et al., 2020) and noted important 

pathways that distinguish individuals with ASD from typically developing peers (Liang 

et al., 2020; Smith et al., 2019). However, these studies have not yet attempted to 

evaluate differences in the metabolome across phenotypically driven subgroups within ASD. 

Characterizing metabolomic differences across subsets of individuals with ASD who share 

similar symptomology could reveal important insights into pathway alterations related to 

specific symptom patterns and severity.

In the current study, we sought to derive phenotypically-driven subgroups of individuals 

with ASD in 2001 well-characterized children from the Simons Simplex Collection (SSC) 

(Fischbach and Lord, 2010) using unsupervised hierarchical clustering. We then investigated 

metabolic differences between subgroups to gain biological insight into pathways associated 

with ASD traits. Our hypothesis was that phenotypically distinct subgroups would 

demonstrate differences in the metabolome corresponding to altered underlying biology, 

thereby identifying pathways that may have clinical relevance for ASD management.

2. Materials and methods

2.1. Simons Simplex Collection (SSC)

The Simons Foundation Autism Research Initiative (SFARI) SSC study recruited families 

with only one child with ASD across twelve clinical and university sites between 2007 

and 2011 (Fischbach and Lord, 2010). Clinical psychologists at each site comprehensively 

evaluated families to assess diagnostic measures and core features of autism, including 

intellectual ability, adaptive behaviors, emotional and behavioral problems, motor function, 

and language. An extensive medical history was obtained for children, including prenatal 

and perinatal history, developmental milestones, immunizations, medications, dietary 

supplements, and common behavioral treatments; investigators also collected information on 

co-occurring conditions and commonly associated “comorbidities” including gastrointestinal 

complaints, sleep irregularities, and seizures. Children were aged 4 to 17 years, and 

exclusion criteria included: nonverbal mental age below 18 months, severe neurological 

deficits, birth trauma, prenatal complications, or genetic evidence of Fragile X or Down 

syndromes. A detailed description of recruitment and exclusion/inclusion criteria can be 

found at http://sfari.org. A total of 2001 ASD cases from SSC were included in our study, 

based on availability of complete phenotype information and suitability of a blood sample 

for metabolomic profiling.

2.2. Clinical and phenotypic features

A diverse set of phenotypes across multiple symptom domains of ASD were chosen based 

on previous phenotype analyses in the SSC (Hirota et al., 2020; Matta et al., 2018; Narita 

et al., 2020; Sullivan et al., 2019) and consultation with clinical psychologists affiliated 

with the Simons Foundation. The full list of included phenotypes used is shown in Table 

1. Phenotypes spanned four clinical domains: 1) core ASD traits measures from diagnostic 

instruments (Autism Diagnostic Interview-Revised [ADI-R], Autism Diagnostic Observation 
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Schedule [ADOS], Social Responsiveness Scale [SRS], Vineland Adaptive Behavior Scale-

II [VABS-II], Aberrant Behavior Checklist [ABC], and Repetitive Behavior Scale [RBS]); 2) 

cognitive and adaptive functioning scores (verbal and nonverbal intelligence quotient [IQ], 

VABS-II), 3) language and communication scores (VABS-II, ADI-R), and 4) maladaptive 

behavioral and co-occurring conditions (ABC, RBS, Child Behavior Checklist [CBCL], and 

seizures). The categorization of phenotypes into these domains did not affect the clustering 

process and was used solely for interpretation purposes.

Some phenotype scores were modified prior to clustering according to previously utilized 

methods. ADOS social affect (SA) and restricted and repetitive behaviors (RRB) scores 

were converted to Calibrated Severity Scores (CSS) to adjust for effects of age and sex 

using methods described and validated by Hus et al. (2014). Four additional phenotypes 

based on the SRS questionnaire were altered to account for impacts of age and sex using 

methods similar to those applied by Hus et al. and Frazier et al. (Frazier et al., 2014). 

These were: 1) SRS Parent Total T-scores were adjusted by regressing out age to account 

for potential confounding; SRS Parent raw scores for 2) Communication, 3) Awareness, 

and 4) Mannerisms were adjusted by regressing out age and sex to account for potential 

confounding. Scores for all 40 phenotypes were standardized to a mean of 0 and a standard 

deviation of 1 prior to clustering.

2.3. Global metabolomic profiling of plasma samples

The SSC collected non-fasting blood samples from study participants during baseline 

clinical site visits. Blood draws were collected using EDTA tubes, and plasma was separated 

and stored at −80 °C until analysis. Plasma samples included in this study were selected 

from the SSC repository, and global metabolomic profiling was performed on 2001 samples 

by Metabolon, Inc. (NC, USA) through ultrahigh-performance liquid chromatography 

coupled to tandem mass spectrometry (UPLC-MS/MS) using their global profiling platform. 

Details of UPLC-MS/MS methods are available in the Supplementary Methods. Following 

data collection, missing metabolite values were imputed by replacement with half of the 

lowest observed value in all samples, for each metabolite individually; metabolites missing 

data in more than 75% of samples and unnamed features were omitted from analysis, 

resulting in 989 metabolites included in our analysis. Metabolite values were then log-10 

transformed and Pareto-scaled.

2.4. Unsupervised hierarchical clustering to generate subgroups

We performed an exploratory, hypothesis-generating analysis using unsupervised 

hierarchical clustering to identify subgroups of children with similar phenotype patterns. 

Unsupervised hierarchical clustering was conducted using the 40 ASD phenotypes included 

in this study (Table 1) and Ward’s method. The number of clusters was determined using 

the Elbow method by plotting total within sum of squares (Thorndike, 1953) as well 

as visual inspection of the clustering dendrogram. Cluster analysis was performed in R 

version 4.1.3 (Team, 2020) using the NbClust (Charrad et al., 2014) version 3.0.1 and 

Cluster (Maechler et al., 2022) version 2.1.4 packages. Generated clusters are hereafter 

referred to as subgroups. Following subgroup assignments, pairwise comparisons between 

all pairs of groups were performed for each of the 40 phenotypes using Tukey’s Honest 
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Significant Difference (HSD) test to investigate differences in phenotype scores and patterns 

of phenotype expressions between subgroups.

2.5. Logistic regression models to assess metabolite associations with subgroups

Associations between the 989 metabolites included in analysis and subgroup assignment 

were evaluated using logistic regression to identify metabolites associated with membership 

in each subgroup and to characterize metabolomic profiles of individuals within each of the 

three phenotype driven subgroups. Metabolites were treated as independent variables, and 

the dependent variable was a binary yes/no variable assignment into a particular subgroup 

vs. all other subgroups. Adjustment covariates for potential confounding were based on a 
priori considerations, including age, sex, body mass index (BMI) z score, maternal education 

level, and household income. Multiple testing correction to control false discovery rate 

(FDR) was performed using the Benjamini and Hochberg method of P-value correction 

(Benjamini and Hochberg, 1995). Logistic regression analysis was evaluated using the stats 

package in R version 4.1.3. For metabolites that were significantly associated with subgroup 

membership at an FDR < 0.05 threshold, we visually inspected the linearity between the 

metabolite and membership in each group to assess validity.

2.6. Biological pathway enrichment analysis

Enrichment analysis of biological pathways was performed for each subgroup based 

on Metabolon sub-pathway assignments and using results of logistic regression models, 

specifically the odds ratio estimates and P-values for each metabolite association. We 

utilized the Chemical Similarity Enrichment Analysis (ChemRICH) (Barupal and Fiehn, 

2017) package in R to identify enriched pathways and directions of pathway alterations for 

each ASD subgroup. ChemRICH uses a one-sample Kolmogorov-Smirnov test to calculate 

a P-value for each biological pathway, including all individual metabolites categorized in 

that sub-pathway. ChemRICH was advantageous for this purpose given its self-contained 

p-values and non-reliance on database curation (Barupal and Fiehn, 2017). In order for a 

pathway to be enriched through ChemRICH analysis, a minimum of three metabolites must 

be detected in that pathway after quality control procedures were applied to UPLC-MS/MS 

metabolomics data. Pathways with only one or two metabolites present cannot be identified 

as enriched. The number of altered metabolites is given by the ChemRICH output, as well 

as the increase ratio, which indicates the number of metabolites with a positive direction of 

effect in logistic regression analyses over the total number of altered metabolites detected for 

a given pathway.

3. Results

3.1. Demographic characteristics of SSC cohort

ASD individuals included in this study ranged in age from 4 to 17 years (mean [SD]: 

8.94 [3.34]) and were predominantly male (87.0%) and White (79.6%), which is reflective 

of the overall makeup of the SSC cohort (Fischbach and Lord, 2010). The average BMI 

z score was 0.63 with a standard deviation of 1.36. Of the 2001 individuals included in 

this study, 30.1% of families reported “low” maternal education (high school education or 

below), 44.2% reported “medium” maternal education (associate or baccalaureate degree), 
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and 25.7% reported “high” maternal education (graduate degree or above). Household 

income categories were also assessed, and 16.2% reported household annual income of 

$50,000 or less, categorized as “low”; 41.4% reported household income between $51,000-

$100,000, categorized as “medium”, and 42.7% reported household income above $100,000, 

categorized as “high.”

3.2. ASD subgroup assignments were associated with differences across phenotype 
domains

Our analysis identified three subgroups of children with ASD in the SSC. Pairwise 

comparisons of each of the 40 ASD phenotypes revealed significantly different phenotype 

patterns across each of the three subgroups. Phenotypes that did not significantly differ 

between subgroups at FDR < 0.05 are marked with a superscript and footnote in Table 2. 

A summary of phenotype differences is provided in Fig. 1, and phenotype comparisons are 

described in detail in the following paragraphs.

Subgroup 1 (N = 862 individuals) showed the lowest degree of maladaptive behaviors and 

co-occurring conditions. However, they demonstrated greater challenges in the majority 

of cognitive and adaptive functioning scores and language and communication scores 

compared to Subgroup 3, but had less challenges in these areas than Subgroup 2. This 

pattern was retained for 7 core ASD trait measures derived from ADOS and ADI-R scores 

but not in 13 core ASD traits derived from SRS, ABC, and RBS scores.

Subgroup 2 (N = 631 individuals) included children with the highest degree of challenges 

in any subgroup. These children reflected the most impaired performance in scores across 

all four phenotype domains compared to other subgroups, including 37 of the total 40 total 

phenotypes included, at these findings were significant at FDR < 0.05 (Table 2). They 

demonstrated higher impairment on 22 of 23 core ASD trait measures, all cognitive and 

adaptive functioning scores, all language and communication scores, and the majority of 

maladaptive behaviors and co-occurring conditions.

Subgroup 3 (N = 508 individuals) included children with the second highest impairment 

in maladaptive behavioral and co-occurring conditions following Subgroup 2, but these 

individuals reported highest IQ of any subgroup. They also showed the second greatest 

degree of impairment in 13 core ASD traits measured by SRS, ABC, and RBS 

questionnaires.

Differences in demographic variables between the three generated subgroups were also 

evaluated through pairwise comparisons for each pair of subgroups. No significant 

differences were observed between any pairs of subgroups in sex, age, race, ethnicity, or 

BMI z score, indicating these were not significantly associated with subgroup differences. 

However, maternal education category and reported household annual income category 

differed significantly in Subgroup 2 compared to Subgroups 1 and 3; Subgroups 1 and 

3 were not significantly different at FDR < 0.05. A larger proportion of individuals in 

Subgroup 2 reported “low” and “medium” categories for education and income.
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3.3. Biological pathway enrichment reveals differing biology between subgroups

Logistic regression evaluated metabolites significantly associated with membership in 

a particular subgroup, using a one-versus-all approach. Results of logistic regression 

analyses of each subgroup are shown in Supplementary File S1 and were used as input 

for ChemRICH biological pathway analysis to look for metabolic differences between 

subgroups; enrichment results are summarized in Table 3 and Fig. 1.

Children in Subgroup 1 showed the least maladaptive behavioral challenges and lowest 

co-occurring conditions, but these individuals demonstrated the second highest challenges 

in 7 core ASD traits, cognitive & adaptive functioning, and language & communication 

domains. Eighteen pathways were significantly enriched for this subgroup. Of these 

eighteen, thirteen were lipid metabolism pathways, ten of which showed decreased 

metabolite levels (Table 3). Of the remaining 5 enriched pathways, two were amino 

acid, two were nucleotide, and one was a peptide pathway (Table 3); all but one 

nucleotide pathway showed increased levels of metabolites. There were nine individual 

metabolite associations that met FDR-corrected P-value < 0.05 for membership in 

Subgroup 1, including three metabolites in the Hexosylceramide (HCER) lipid pathway 

(ORs = 0.034 to 0.12, P = 1.28 × 10−5 to 0.04), one Lysophospholipid metabolite 

(OR = 0.10, P = 0.02), one Sphingolipid synthesis metabolite (OR = 1.80, P = 

0.04) and one Monoacylglycerol metabolite (OR = 0.31, P = 0.04). Associations with 

individual metabolites are available in Supplementary File S1. Six pathways were 

significantly enriched across both Subgroups 1 and 2, but five were lipid pathways with 

opposite directions of effect: Monoacylglycerol, Diacylglycerol, Phosphatidylinositol (PI), 

Phosphatidylethanolamine (PE), and Lysophospholipid metabolism Supplementary File S2. 

Only one nucleotide pathway, Adenine containing purine metabolism, showed similar 

directions of effect between Subgroups 1 and 2. The Tryptophan pathway was not enriched 

in any subgroup, but increased levels of serotonin (OR = 1.84, P = 0.01; Supplementary 

File S1) and N-acetylkynurenine (OR = 2.70, P = 0.04) were significantly associated with 

membership in Subgroup 1. Increased levels of nicotinamide (OR = 2.94, P = 0.04) were 

associated with Subgroup 1 membership, but this metabolite did not belong to any enriched 

pathways.

In Subgroup 2 children with the highest degree of impairment, ten biological pathways were 

enriched, as shown in Table 3. Of these ten pathways, six fell into lipid categories, and the 

remaining four were categorized into peptide, amino acid, nucleotide, and cofactor classes. 

All enriched pathways in this subgroup showed increases in metabolite levels, except the 

cofactor pathway Hemoglobin and Porphyrin Metabolism, which showed decreased levels 

of metabolites. Only two metabolites demonstrated significant associations with Subgroup 2 

membership following FDR correction (Supplementary File S1), and both belonged to the 

Diacylglycerol pathway: oleoyl-arachidonoyl-glycerol (18:1/20:4) (OR = 4.33, P = 0.03) and 

linoleoyl-arachidonoyl-glycerol (18:2/20:4) (OR = 4.07, P = 0.04).

Subgroup 3 children were least severe in core ASD traits related to ADOS and ADI-R 

and cognitive & adaptive functioning domains, but second highest needs in core ASD 

traits related to SRS, RBS, and ABC, as well as maladaptive behavioral and co-occurring 

conditions. These children demonstrated high IQ (Table 2), as described in previous 
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sections. Children of this subgroup showed enrichment of seven pathways; of these seven, 

six were lipid pathways with four demonstrating increases in metabolite levels, and the 

remaining pathway was a peptide pathway showing decreased metabolite levels (Table 

3). Despite similar patterns in maladaptive behaviors and co-occurring conditions between 

Subgroups 2 and 3, there were no overlaps in enriched biological pathways between these 

two groups. Five pathways overlapped between Subgroups 1 and 3, but all five demonstrated 

opposite directions of enrichment (Table 3). Four of these were lipid pathways: Sphingolipid 

synthesis, Sphingosines, Sphingomyelins, and Fatty acid-Dicarboxylates; the remaining 

pathway was metabolism of Dipeptides. No individual metabolites demonstrated significant 

associations with Subgroup 3 membership at an FDR-corrected P-value threshold of 0.05.

4. Discussion

ASD is a heterogeneous condition characterized by a broad range of phenotype 

presentations (Lord et al., 2020), but the underlying biological factors associated with 

differences in phenotype presentations are not well understood. In this analysis, we 

generated three subgroups of ASD children through unsupervised hierarchical clustering 

of a diverse range of clinical ASD measures to capture subgroups of individuals. We then 

interrogated the biological differences between these subgroups by leveraging metabolomic 

data and demonstrated unique alterations in global metabolomic profiles correlated to each 

subgroup. Previous studies have illustrated the utility of clustering approaches to form 

subgroups in ASD (Matta et al., 2018; Narita et al., 2020), observing correlations between 

the genome and phenotypes, while others have investigated patterns of ASD traits to identify 

groups that varied in degree of symptoms (Sullivan et al., 2019). To our knowledge, this 

is the first study to apply hierarchical clustering within only ASD-affected individuals to 

understand metabolomic alterations in underlying biological pathways related to diverse 

ASD symptomology and traits. Unlike these previous studies, we incorporated metabolomic 

data to interrogate altered biological pathways that could ultimately be leveraged to enhance 

symptom treatment and provide a better understanding of the pathways that may be related 

to these traits.

Individuals in Subgroup 1 showed the lowest degree of impairment related to behavioral 

and co-occurring condition domains of any subgroup in this study. As behavioral issues 

have previously been associated with comorbidities in the SSC cohort (Hirota et al., 

2020; Mazurek et al., 2013), it was unsurprising that Subgroup 1 showed consistently 

lower indices of severity for phenotypes related to both maladaptive behaviors and co-

occurring conditions. Metabolomic investigation demonstrated predominant decreases in 

lipid metabolites belonging to lipid metabolism pathways, unlike Subgroups 2 and 3 that 

showed only increases in metabolites of lipid metabolism pathways. Several lipid pathways 

showed opposite directions of effect to other subgroups, such as monoacylglycerol (MAG), 

diacylglycerol (DAG), lysophospholipid (LPL), and PE pathways compared to Subgroup 

2, or sphingomyelin, sphingolipid synthesis, sphingosines, and dicarboxylated fatty acid 

pathways compared to Subgroup 3. Several metabolites belonging to these pathways showed 

strong associations with Subgroup 1 membership and could be potential driving metabolites 

between subgroups or biomarkers for future consideration, including 1-linoleoyl-GPE 

(18:2) in the LPL pathway, sphinganine of the sphingolipid synthesis pathway, and 1-
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oleoylglycerol (18:1) of the MAG pathway. Decreased levels of metabolites of 10 lipid 

pathways observed for Subgroup 1 may suggest reduced neuroinflammation that has 

previously been attributed to ASD traits (Chauhan and Chauhan, 2006; Tamiji and Crawford, 

2010). This contrast could partially explain the lower degree of maladaptive behaviors and 

co-occurring conditions compared to the other subgroups. Additionally, increased serotonin 

levels were observed in children of this subgroup, another likely contributor to these 

differences. Depleted serotonin has been implicated in behavioral issues of ASD (Muller 

et al., 2016) and has historically been associated with comorbidities such as depression 

(Moncrieff et al., 2022), which were lowest in this subgroup. Increased levels of serotonin 

and N-acetylkynurenine may be reflecting a lesser impact of comorbidities and behavioral 

issues observed for this subgroup. Concomitant increases in levels of nicotinamide may 

be related to increases in these two metabolites of the tryptophan pathway, as increased 

nicotinamide is correlated with increased plasma serotonin (Tian et al., 2013). However, 

Subgroup 1 individuals displayed some impairment in other ASD domains, including the 

second highest in severity of cognitive & adaptive functioning scores and language & 

communication scores. They also showed the second highest severity in core ASD traits 

derived from ADOS and ADI-R scores, following Subgroup 2. Purine metabolism of 

adenine nucleotides showed consistently higher metabolite levels across Subgroups 1 and 

2 that showed higher impairment of these two domains. Disruptions to purine metabolism 

have previously been associated with ASD (Geryk et al., 2020; Naviaux, 2018), and our 

results indicated that aberrant metabolism and a subsequent buildup of purine metabolism 

products may be associated with these deficits. Finally, increases in metabolites of other 

pathways previously linked to autism, such as increased glycine, serine, and threonine 

metabolism (Orozco et al., 2019) and urea cycle metabolism (Page and Coleman, 2000) 

were observed for Subgroup 1 individuals and may be related to the unique pattern across 

phenotype domains that characterizes these children.

Subgroup 2 represented children with the highest degree of impairment across all four 

phenotype domains, showing worse scores for 37 of the 40 total phenotypes explored. 

In Subgroup 2, we observed increased levels of metabolites belonging to membrane lipid 

classes such as phosphatidylinositol (PI) and phosphatidylethanolamine (PE) metabolites. 

Lipid metabolism errors have been linked to inflammation, impaired immunity, and 

oxidative stress associated with ASD symptoms, as they induce neuroinflammation 

(Chauhan and Chauhan, 2006), so this could reflect increased neuroinflammation associated 

with worse phenotype scores. Individual metabolite associations with DAG metabolites 

further support this, demonstrating increases in second messenger DAG metabolites that 

function as components of the lipids that make up cellular membranes (Eichmann and 

Lass, 2015). These increases in PI and PE lipid breakdown showed concomitant increases 

in pathways to counteract associated inflammation and stress, as corticosteroid, gamma-

glutamyl amino acid, and S-adenosylmethionine (SAM) metabolism pathways that were 

also enriched uniquely in this subgroup. These three pathways involve mechanisms to 

counteract oxidative species and prevent cellular damage (de Kloet et al., 2008; Ohja et 

al., 2018; Villalobos et al., 2000; Whitfield, 2001), suggesting subsequent disruption to 

oxidative balance in response to lipid breakdown in more severe ASD. Our results supported 
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these findings, implying that lipid oxidative pathways could hold important clinical value to 

counteract severe ASD symptoms.

Subgroup 3 included children with the highest IQ scores, but these individuals still 

reported maladaptive behavioral traits and co-occurring conditions, including core ASD 

trait measures related to behaviors derived from SRS, ABC, and RBS evaluation. The 

pattern of children with with ASD reporting high IQ that express maladaptive behaviors 

has been observed in previous subtyping analyses (Reardon et al., 2022), so this may 

represent a distinct group that would benefit from personalized treatment regimens to 

address their specific needs. Individuals in this subgroup showed increases in six lipid 

pathways related to sphingolipid and fatty acid metabolism, and decreased metabolite 

levels of one dipeptide pathway. Fatty acid acylation of the sphingoid base structure 

produces ceramides (Levy and Futerman, 2010), so increases in products of fatty acid 

and sphingolipid metabolism pathways observed with Subgroup 3 membership are likely 

related by this common conversion mechanism. Further, elevated sphingolipid metabolism 

has been observed in other neurological conditions (Ben-David and Futerman, 2010), and 

sphingosine-1-phosphate has even been proposed as a serum biomarker for ASD (Wang et 

al., 2016), emphasizing the importance of this pathway in ASD. Our findings suggested 

sphingolipid metabolism pathways could be particularly relevant for children in Subgroup 

3. While sphingosines and sphingolipid synthesis pathways were significantly enriched in 

both Subgroups 1 and 3, they demonstrated opposite directions of effect, further supporting 

the unique metabolomic profiles of these phenotypically distinct groups. Notably, there were 

no overlaps in enriched pathways between Subgroups 2 and 3, suggesting that despite some 

commonalities in phenotype expression related to maladaptive behaviors and co-occurring 

conditions, diverse underlying biology may give rise to differing degree of challenges.

While there were distinct phenotype patterns observed in our exploratory subgroup 

analysis, the range of severity in SSC was limited by recruitment criteria. The SSC 

excluded individuals with nonverbal mental age below 18 months, those with presence 

of severe neurological deficits, or those with genetic evidence of Fragile X or Down 

syndromes (Fischbach and Lord, 2010). Future studies may likely find additional subgroups 

corresponding to ASD populations with other symptoms and/or a broader range of 

severity. Additionally, the SSC sample was predominantly male and White, so these 

results may suffer from current bias in ASD evaluation (Durkin et al., 2010) and fail 

to capture symptoms that characterize more demographically diverse populations. Further, 

socioeconomic indices of income and education status were significantly lower in children 

of Subgroup 2 that reflected the highest degree of impairment, including metabolites 

indicative of increased oxidative stress. We were not able to explicitly evaluate the impacts 

of socioeconomic factors and stress in this study, but it is an important future consideration 

for ASD severity and treatment (Kelly et al., 2019). Associations between metabolites 

and subgroups were based on logistic regression, which may have led to some false 

negative findings if some metabolites did not meet the assumption for linearity. Further, 

the enrichment method used required at least two metabolites, which limited pathway-level 

summary. Lastly, blood draws were non-fasting, which may face confounding by diet. The 

SSC did not collect comprehensive diet information at the time of blood collection, so 

the effects of diet on the observed associations with metabolites could not be explored. 
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Despite some limitations, our analysis revealed novel metabolomic pathways that aid in the 

understanding of the specific expression of ASD traits.

5. Conclusion

In this study, we interrogated subgroups of individuals with ASD to facilitate improved 

biological understanding through the metabolome. While previous research has utilized the 

metabolome to successfully identify metabolomic differences between children with ASD 

and controls, our analysis is the first, to our knowledge, to interrogate the metabolome 

between subgroups of only individuals with ASD. Our findings revealed increased levels 

of membrane lipids and increased oxidative stress may be relevant in children with higher 

ASD impairment, and elevated lipid metabolism at large may contribute to a higher degree 

of maladaptive behavioral issues and co-occurring conditions. Higher levels of adenine 

nucleotides may be relevant to impaired cognition, as this was enriched consistently in 

subgroups with lower cognitive scores. These findings provide novel information about the 

underlying biology that gives rise to diverse ASD traits, and these pathways may represent 

important targets for personalized medicine approaches to alleviate the burden of these 

symptoms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by a grant from SFARI (674423, awarded to RSK and JALS). We are grateful to all of 
the families at the participating Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. 
Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goin-Kochel, E. Hanson, D. Grice, 
A. Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. 
Piggot, C. Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman). We appreciate obtaining 
access to phenotypic data on SFARI Base as well as access to biospecimens from SSC to perform metabolomic 
profiling.

Role of the funding source

This project was funded through the Simons Foundation (grant ID 674423, Simons Foundation, United States) 
awarded to RSK and JALS. Effort from RSK was additionally supported by K01HL146980 from NIH/NHLBI. 
Effort from NP was supported by NIHT32HL007427 from NIH/NHLBI. The external funders played no role in the 
design or conduct of the study, collection, management, analysis, or interpretation of the data, preparation, review, 
approval of, or decision to submit the manuscript.

Abbreviations:

ABC Aberrant Behavior Checklist

ADHD Attention-deficit/hyperactivity disorder

ADI-R Autism Diagnostic Interview, Revised

ADOS Autism Diagnostic Observation Schedule

ASD Autism Spectrum Disorder

Prince et al. Page 11

Brain Behav Immun. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BMI body mass index

CSS calibrated severity score

CBCL Child Behavior Checklist

DAG diacylglycero

EDTA ethylenediaminetetraacetic acid
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Fig. 1. 
Summary of phenotype and metabolic pathway patterns between the three ASD subgroups 

identified in this study. A total of 2001 individuals with ASD from the SSC cohort were 

included and split into subgroups via unsupervised hierarchical clustering of 40 diverse 

ASD characteristics and traits. Assessment of phenotype patterns revealed Subgroup 1 

children showed the least maladaptive behaviors of any subgroup, Subgroup 2 children had 

the highest degree of impairment in all domains, and Subgroup 3 children demonstrated 

the highest IQ scores but still reported the second highest maladaptive behaviors and co-

occurring conditions. These were associated with metabolic pathway disruptions to lipids, 

amino acids, and nucleotides in each subgroup.
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Table 1

Means and standard deviations (SD) of 40 phenotype scores utilized in clustering. Means and SDs are shown 

prior to standardization for clustering. Adjusted phenotypes and additional information are denoted with 

superscripts and footnotes.

Domain Phenotype Mean (SD)

Core ASD Trait measures ADOS Total CSS 7.44 (1.71)

ADOS Social affect CSS1 7.24 (1.76)

ADOS Restricted/repetitive behaviors CSS1 7.68 (2.06)

ADI-R A Social score 19.75 (5.63)

ADI-R B Verbal score 8.87 (3.42)

ADI-R B Non-verbal score 16.52 (4.29)

ADI-R C Restricted/stereotyped behavior score 6.67 (2.56)

ADI-R D Abnormality score 3.70 (1.10)

ADI-R q86 Age at first abnormality 3.63 (0.56)

VABS-II Social standard score 73.00 (11.55)

SRS Parent Total t-score2 79.02 (10.47)

SRS Parent Communication raw score3 32.79 (9.77)

SRS Parent Awareness raw score3 12.29 (3.50)

SRS Parent Mannerisms raw score3 18.49 (6.76)

ABC Stereotypy 4.60 (2.08)

ABC Lethargy 9.30 (6.87)

ABC Inappropriate speech 3.78 (2.94)

RBS Compulsive behaviors 4.00 (3.90)

RBS Self-injury 1.93 (2.75)

RBS Stereotypy 4.20 (3.17)

RBS Ritualistic behaviors 5.24 (3.98)

RBS Restricted behaviors 3.65 (2.80)

RBS Sameness behaviors 7.73 (5.90)

Cognitive & Adaptive Functioning scores Verbal IQ score 84.00 (26.11)

Non-Verbal IQ score 89.27 (22.52)

VABS-II Daily living skills score 78.62 (12.75)

Language & Communication scores VABS-II Communication standard score 79.92 (12.70)

ADI-R Language delay 4.35 (2.59)

Maladaptive behaviors and Co-occurring conditions ABC Irritability 11.34 (8.59)

ABC Hyperactivity 16.45 (10.33)

ABC Depressed mood4 0.32 (0.63)

CBCL Internalizing T-score 60.47 (9.54)

CBCL Externalizing T-score 56.66 (10.74)

CBCL Attention problems T-score 61.41 (8.16)

CBCL Affective problems T-score 60.91 (9.20)

CBCL Aggressive behavior T-score 61.46 (8.67)
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Domain Phenotype Mean (SD)

CBCL Anxiety problems T-score 59.49 (9.47)

RBS Sleeping problems5 0.99 (1.02)

Febrile seizures6 0.06 (0.31)

Non-febrile seizures7 0.15 (0.54)

Abbreviations: ABC, Aberrant Behavior Checklist; ADOS, Autism Diagnostic Observation Schedule; ADI-R, Autism Diagnostic Interview-
Revised; CBCL, Child Behavior Checklist; CSS, Calibrated Severity Score; IQ, Intelligence quotient; RBS, Repetitive Behavior Scale; SRS, Social 
Responsiveness Scale; VABS-II Vineland Adaptive Behavior Scale-II.

1
Calibrated severity scores for ADOS social affect and restricted/repetitive behaviors were derived using methods from Hus et al. (2014).

2
SRS parent Total t-score residuals were used in clustering after regressing out the effect of age.

3
SRS parent Communication, Awareness, and Mannerisms raw score residuals were used in clustering after regressing out age and sex.

4
Depressed mood scores were derived from the ABC questionnaire and categorized on a scale of 0–3 as: never a problem (0), slight problem (1), 

moderately serious problem (2), or severe problem (3).

5
Sleep problems scores were derived from the RBS questionnaire and categorized on a scale of 0–3 as: behavior does not occur (0), behavior 

occurs and is a mild problem (1), behavior occurs and is a moderate problem (2), or behavior occurs and is a severe problem (3).

6
Febrile seizure scores were coded on a scale of 0–2 as: no evidence for presence of febrile seizures (0), possible presence of febrile seizures (1), or 

reported febrile seizures (2).

7
Non-febrile seizures scores were coded on a scale of 0–3 as: no evidence for presence of non-febrile seizures (0), possible experience of 

non-febrile seizures (1), likely presence of non-febrile seizures (2), or epilepsy reported (3).
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