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Abstract

The mixture cure model is widely used to analyze survival data in the presence of a cured 

subgroup. Standard logistic regression-based approaches to model the incidence may lead to 

poor predictive accuracy of cure, specifically when the covariate effect is non-linear. Supervised 

machine learning techniques can be used as a better classifier than the logistic regression due to 

their ability to capture non-linear patterns in the data. However, the problem of interpret-ability 

hangs in the balance due to the trade-off between interpret-ability and predictive accuracy. We 

propose a new mixture cure model where the incidence part is modeled using a decision trees-

based classifier and the proportional hazards structure for the latency part is preserved. The 

proposed model is very easy to interpret, closely mimics the human decision-making process, 

and provides flexibility to gauge both linear and non-linear covariate effects. For the estimation 

of model parameters, we develop an expectation maximization algorithm. A detailed simulation 

study shows that the proposed model outperforms the logistic regression-based and spline 

regression-based mixture cure models, both in terms of model fitting and evaluating predictive 

accuracy. An illustrative example with data from a leukemia study is presented to further support 

our conclusion.
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1 Introduction

Survival analysis is a branch of statistics that has gained much popularity in the field of 

biomedical science, specifically in cancer clinical trials. In standard survival analyses, such 

as the Cox proportional hazards (PH) model, the proportional odds (PO) model, and the 

accelerated failure time (AFT) model, researchers study and model censored time-to-event 

data by primarily assuming that all patients in the study will eventually experience the event 

of interest within a time period of clinical relevance. Here, the event of interest could be 

recurrence of a disease, death from a disease, or relapse of a particular type of cancer. 

Now, in clinical trials with good overall prognoses, it is quite possible that a significant 

proportion of patients would reach a stage where the disease can no more be detected and is 

harmless. As such, this group of patients would never experience the event of interest even 

if the follow-up is extended for a sufficiently long period of time. Such a group is called the 
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“long-term survivors” or “cured”. The remaining group of patients who remain susceptible 

to the event of interest is called the “susceptible” or “non-cured”. As a result, the overall 

patient population can be regarded as a mixture of these two groups of patients. In such 

a case, the Kaplan-Meier survival curve shows a long plateau that levels off to a non-zero 

value, indicating the presence of a cured subgroup.1–5

To capture the mixture patient population, mixture cure model (MCM) and associated 

estimation methods have been proposed as extensions to the standard survival models; see 

the recent monograph by Peng and Yu for a book-length account on MCM.6 The cured 

statuses of patients or their survival probabilities are often the primary parameters of interest 

in predictions and prognoses. However, from a given survival data, it is impossible to 

identify whether a right censored observation can be considered as cured. This is because 

even if a patient survives the end of a study period (and hence becomes right censored), the 

patient may still be susceptible to the event of interest. This makes the cured status a latent 

variable, and hence poses a big challenge to unbiased estimation of a treatment-specific cure 

rate. MCM allows for such estimation of the cure probabilities (or cure rates) as well as 

the survival probabilities of the uncured group of patients. It is also of primary interest to 

assess the effects of prognostic factors or covariates on both cure probability and survival 

distribution of the uncured patients.

Let U denote the latent cured status variable, where U = 0 indicates that a patient is cured 

with respect to the event and U = 1 indicates that a patient is susceptible to the event. 

Furthermore, let T1 denote the time-to-event (or lifetime) for a susceptible patient and T0

denote the same for a cured patient. Here, T0 is such that P T0 = ∞ = 1. Then, if T  denotes 

the time-to-event for any patient in the mixture population, the MCM is defined through the 

survival function of T , which is known as the population or long-term survival function, and 

is expressed as

Sp t; x, z = P T > t; x, z = 1 − π z + π z Su t; x ,

(1)

where Su t; x = P T1 > t  is the susceptible survival function and π z = P U = 1  with 

z = z1, z2, …, zp ′ and x = x1, x2, …, xq ′ denoting the vectors of covariates affecting the 

incidence (i.e., π z  or 1 − π z ) and the latency (i.e., Su t; x ), respectively. Predominantly, 

most studies on MCM have considered the sigmoid or logistic link function, defined as 

π z = exp z′γ
1 + exp z′γ , to model the effect of covariates on the incidence part of MCM, where 

γ is the vector of regression coefficients (including the intercept term) corresponding to 

z.7–9 The probit link function, defined as Φ−1 π z = z′γ with Φ ⋅  denoting the cumulative 

distribution function of the standard normal distribution, and the complementary log-log 

link function, defined as log − log 1 − π z = z′γ, have also been used in some studies 

as alternatives to the logistic link function.10,11 A major issue with the aforementioned 

parametric link functions is that they can only capture linear effects of z on the incidence; 

meaning they implicitly assume the boundary separating the cured and non-cured patients 

to be linear. Since the cured statuses remain unknown for all patients whose lifetimes 
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are censored, the validity of a linear classification boundary cannot be checked. As such, 

the assumption of a logistic link function (or the alternatives stated above) may result in 

impreciseness when it comes to estimation and prediction of the incidence, specifically 

when the true classification boundary is complex and non-linear. Few non-parametric 

strategies were also proposed to model the incidence, however, their performances were 

only validated in the presence of a single covariate.12,13 Another approach, based on the 

generalized additive models for location, scale and shape with smooth effects of covariates, 

was proposed to capture non-linear effects of covariates on the incidence, but the effects 

still turned out to act on the incidence through the logistic function14. Other competing 

approaches to non-parametrically model the incidence include the spline-based method 

that may not be efficient when the true non-parametric form contains several interaction 

terms.15,16 More recently, a non-parametric single-index model was proposed to model the 

uncure probability in a mixture cure model.17 Thus, there is a big room for improvement 

as far as modeling the incidence part of MCM is concerned with an objective to capture 

more complex (non-linear) effects of covariates on the incidence. This naturally calls for 

the need to identify a suitable classification function which can model the incidence part 

more accurately by effectively capturing complex separating boundaries (with respect to the 

covariates) between the cured and non-cured patients.

To this end, we can think of integrating a suitable machine learning technique with MCM, 

given that machine learning techniques are well known to capture non-linearity in data.18 

In particular, decision trees (DT)-based classifiers have been proved to be more robust 

and flexible than the logistic (or the probit) classifier and has become very popular with 

the growth of data mining.19 The main advantages of DT are the fact that they are 

better for categorical data, easy to interpret and can deal co-linearity better than other 

classification models such as the support vector machine (SVM).20 In addition, DT is 

expected to be computationally much less expensive when compared to random forests 

and neural networks. Motivated by this, we propose a novel decision trees (DT)-based 

mixture cure model, where we model the incidence using the DT classifier and the latency 

using a semi-parametric proportional hazards structure with an unspecified baseline hazard 

function.21 To the best of our knowledge, this is the first work that employs DT to capture 

non-linearity in the incidence part of MCM. We call our proposed model as MCM-DT. To 

estimate the model parameters we develop an estimation method based on the expectation 

maximization (EM) algorithm. We show that our proposed model outperforms both logistic 

regression-based MCM (MCM-Logit) and spline regression-based MCM (MCM-Spline) 

models, noting that MCM-Spline can also capture non-linearity in the data.

The rest of this paper is organized as follows. In Section 2, we discuss the formulation 

of the MCM-DT model. In Section 3, we discuss the development of the EM algorithm. 

In Section 4, a detailed simulation study is carried out to demonstrate the performance 

and superiority of our proposed model. In Section 5, we illustrate the applicability of our 

proposed model and the estimation algorithm using a data on leukemia patients who went 

through bone marrow transplantation. Finally, in Section 6, we make some concluding 

remarks and discuss few potential future research problems.

Aselisewine and Pal Page 3

Stat Med. Author manuscript; available in PMC 2024 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Decision trees-based mixture cure model

2.1 Censoring mechanism, latency modeling, and likelihood structure

We consider a practical scenario where the observed data is subject to right censoring 

and the censoring mechanism is non-informative. If Y  denotes the true lifetime and C
denotes the right censoring time, then, the observed lifetime, denoted by T , is given by 

T = min Y , C . Furthermore, let δ denote the censoring indicator, i.e., δ = 1 if the true 

lifetime is observed (i.e., T = Y ) and δ = 0 if the true lifetime is right censored (i.e., 

T = C). If n denotes the number of patients in the study, the observed data is defined as: 

DO = ti, δi, xi, zi , i = 1,2, ⋯, n . Now, we define the set of observed and censored lifetimes as: 

Δ1 = i:δi = 1  and Δ0 = i:δi = 0 , respectively. Note that the cured status Ui is known to take 

the value 1 if i ∈ Δ1. However, if i ∈ Δ0, Ui can be either 0 or 1 (i.e., unknown).

Next, we turn our attention to modeling the effect of covariates on the latency. For this 

purpose, we assume the lifetime distribution of the uncured or susceptible patients to follow 

a proportional hazards structure without assuming any particular form for the baseline 

hazard function. Thus, we express the hazard function of the uncured patients as:

ℎu t; x = ℎu0 t exp x′β ,

(2)

where β is the associated vector of regression coefficients (without the intercept term) and 

ℎu0 ⋅  is an unspecified baseline hazard function that does not involve x. The MCM in 

eqn.(1) can then be rewritten as

Sp t; x, z = 1 − π z + π z Su0 t exp x′β ,

(3)

where Su0 t = exp −∫0
tℎu0 u du  is the baseline survival function. One is of course free to 

use any other modeling approaches for the susceptible lifetime such as the piecewise linear 

model22 or the accelerated failure time model11 or a completely parametric model.23–25

Now, considering the unobserved Ui’s to be the missing data, the complete data can be 

defined as: DC = ti, δi, Ui, xi, zi , i = 1,2, ⋯, n . Hence, the complete data likelihood function 

can be expressed as:

Lc = ∏
i = 1

n
π zi fu ti; xi

Ui δi 1 − π zi
1 − Ui π zi Su ti; xi

Ui 1 − δi,

(4)

where Su ti; xi = Su0 ti
exp xi

′β  and fu ti; xi  is the density function corresponding to Su ti; xi . 

From eqn.(4), the corresponding log-likelihood function can be expressed as:
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lc = lc1 + lc2,

(5)

where

lc1 = ∑
i = 1

n
Ui log π zi + 1 − Ui log 1 − π zi

(6)

and

lc2 = ∑
i = 1

n
Ui log Su ti; xi + δi log ℎu ti; xi

(7)

with ℎu ti; xi  being as in eqn.(2). It is interesting to note that lc1 involves parameters related 

to the incidence part only and lc2 involves parameters related to the latency part only. 

Furthermore, note that Ui’s are linear in both lc1 and lc2. These simplify the development of 

the EM algorithm which is described in Section 3.

2.2 Incidence modeling using decision trees

To help develop our theory, let us assume that Ui i = 1,2, ⋯, n  is known through some 

mechanism (see Section 3). Then, the DT algorithm seeks to build the optimal decision 

boundary between the two distinguishing classes (cured and uncured) by automatically and 

recursively partitioning the predictor space into a series of hierarchical non-overlapping 

regions such that the final tree is made up of internal and terminal nodes. The terminal nodes 

are the predicted values of the tree.19 Let zi, Ui , for i = 1,2, ⋯, n, with zi = zi1, zi2, ⋯, zip  be 

the observed data consisting of p inputs (covariates) and a binary response variable Ui (cured 

status, which takes the value 0 if cured and 1 if uncured). Suppose we have a partition into 

M regions, R1, R2, ⋯, RM, and we can model the response as binary in each region by letting 

m denoting the index for terminal node, then, in node m, which represents region Rm with nm

observations, define

P mk = Pmk U = k ∣ z = 1
nm

∑
zi ∈ Rm

I Ui = k

(8)

as the proportion of class k (where k takes a value of 0 if cured and 1 if uncured) 

observations in node m. Observations in node m are classified to the class k with the majority 

points, that is, k m = argMaxkP̂ mk.18 For classification problems, although different measures 

Aselisewine and Pal Page 5

Stat Med. Author manuscript; available in PMC 2024 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of node impurity can be considered, in this paper, we decided to use the Gini index, Gmk, 

defined as:

Gmk = ∑
k ≠ k′

P mkP mk′ = ∑
k = 1

K
P mk 1 − P mk ,

(9)

where K is the number of classes, which in the given context is 2. The size of the tree 

is a tuning parameter that controls the complexity of the DT model. The recursive binary 

splitting technique results in growing a very large tree for classification problems. However, 

large trees are too flexible and tend to over-fit the data. To mitigate this, the cost-complexity 

pruning or weakest link pruning is used in this paper to prune the full tree to help narrow 

down to a number of sub-trees for comparisons. Let T0 denote the full tree, T* ⊂ T0 denote a 

sub-tree obtained by pruning T0, and T*  denote the number of terminal nodes in T*. Then, 

we define the cost-complexity criterion as

Cα T* = 1
n ∑

m = 1

T*
nmGmk + α T*  such that nm ≥ nmin,

(10)

where α is the cost complexity tuning parameter (cp), nm is the minimum number of 

observations that must exist in a node in order for a split to be attempted (minsplit) and 

nmin is the minimum number of observations in any terminal or leaf node (minbucket). The 

goal is to find the sub-tree that minimizes eqn.(10) for each α. Observe that α controls 

the trade-off between the size of the tree and its flexibility of fit to the data. This means 

that as α increases, the number of terminal nodes in the sub-tree decreases and vice versa. 

Specifically, when α = 0, there’s no penalty and the best sub-tree is T0, created through 

recursive binary splitting.26 Detailed discussions on obtaining the hyper-parameters(α, nm, 

and nmin) are presented in the next subsection.

2.3 Tuning decision trees

To avoid over-fitting and unwanted bias associated with the estimates of the uncured 

probabilities, we split the data into two sets, i.e., a training set and a validation or testing 

set. The training set is used to train the MCM-DT model and the testing set is used to 

validate the performance of the MCM-DT model. Since decision trees can easily over-fit 

the training data, a two-way modeling approach is further adopted to prevent over-fitting the 

MCM-DT model. Firstly, the grid-search ten-fold cross-validation technique is performed 

on the training set to obtain the optimal hyper-parameters of the model, i.e., α and nm. 

Three different possible values are specified for each hyper-parameter; nm is specified as 

(11, 20, 25) and α is specified as (0.001, 0.005, 0.01). On the other hand, nmin is set as 
nm
3 . The best hyper-parameters obtained through this search are then used to grow the first 

tree in the first approach. Secondly, we perform cost-complexity pruning on the first tree 
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obtained in the first approach. The cost-complexity pruning parameter, cpmin, is also obtained 

using cross-validation. The cpmin corresponding to the lowest cross-validation error is used to 

prune the tree grown in the first approach. The pruned tree obtain in the second approach 

is very simple and easy to interpret, and, therefore, will be considered as the final optimal 

MCM-DT model for predictions on unseen data. Furthermore, we validate the performance 

of the final optimal MCM-DT model using the test set. Model performance evaluation 

criteria such as the graphical receiver operating characteristic (ROC) curve and it’s area 

under the curve (AUC) are used to assess the performance of the final model.

2.4 Platt scaling on decision trees output

We apply the Platt scaling technique to transform the predictions of the DT model into 

well-defined calibrated posterior probabilities of uncured by passing the predictions through 

a sigmoid function.27 Suppose we let g z  denote the output of the DT model. Such an 

output is treated as raw or uncalibrated predictions defined on [0, 1] for classification. To 

obtain the calibrated posterior probabilities, we pass these outputs through the following 

function:

π z = P U = 1 ∣ g z = 1
1 + exp Ag z + B ,

(11)

where A and B are unknown parameters to be estimated. The parameters A and B are the 

solutions to the following minimization problem, which can be solved using the gradient 

descent technique:

argminA, B − ∑
i = 1

n
Ui log p zi + 1 − Ui log 1 − p zi ,

(12)

where

p zi = 1
1 + exp Ag zi + B .

(13)

Now, using the same data to train the DT model and the sigmoid can cause unwanted bias in 

the sigmoid training set, which can lead to poor fitted results. To resolve this, we use k-fold 

cross validation to allow the DT model and the sigmoid to be trained on the full training 

set. For the k-fold cross validation method, the data is split into k-folds in which at each 

iteration, one fold is set aside as an independent validation or testing set whereas k − 1 folds 

are used to train the model. The k validation sets are then used to estimate the sigmoid 

parameters. We apply a 3-fold cross-validation in this paper.27 Unlike the splitting method, 

cross validation produces larger sigmoid training set and thus gives lower variance estimates 

for the parameters A and B. Furthermore, to avoid over-fitting to the training set, we use the 
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out-of-sample model by letting N+ and N− respectively denote the number of uncured and 

cured subjects in the training set, and for each subject, Platt calibration uses outcome values 

U+ and U− instead of 1 and 0, respectively, where

U+ = N+ + 1
N+ + 2 and U− = 1

N− + 2 .

(14)

Observe that the out-of-sample target values U+ and U− are non-binary but only converges to 

1 and 0, respectively, when the training size approaches infinity.

3 Estimation method: EM algorithm

As discussed earlier, the cured status Ui remains unknown (missing) for all patients whose 

lifetimes are right censored. To handle these missing observations ingrained to the problem 

set-up and the model structure, we propose to develop the EM algorithm to estimate the 

unknown parameters of the proposed DT-based MCM.9,28 For this purpose, we compute the 

conditional expectation of the complete data log-likelihood function given the observed data 

and current values of the parameters. This reduces to computing the conditional expectation 

of the cured status variable Ui. Such a conditional expectation at the k-th iteration step is 

given by

wi
k = δi + 1 − δi

π k − 1 zi Su
k − 1 ti; xi

1 − π k − 1 zi + π k − 1 zi Su
k − 1 ti; xi

, i = 1, ⋯, n,

(15)

where Su
k − 1 ti; xi = Su0

k − 1 ti
exp xi

′β k − 1
. Note that wi

k  is interpreted as the conditional 

probability of Ui taking the value 1. Once we obtain wi
k ’s, we replace Ui’s in eqns.(6) and (7) 

with wi
k ’s, for i = 1, ⋯, n. Thus, the expectation step (E-step) of the EM algorithm replaces lc1

and lc2 by

Q1 = ∑
i = 1

n
wi

k log π zi + 1 − wi
k log 1 − π zi

(16)

and

Q2 = ∑
i = 1

n
wi

k log Su ti; xi + δi log wi
k ℎu ti; xi ,

(17)

respectively, after noting that δilogwi
k = 0 and δiwi

k = δi.
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In the maximization step (M-step) of the EM algorithm, the standard approach in the 

context of MCM is to carry out two maximization problems independently. The first one 

is with respect to the function Q1 to obtain estimates of π zi , i.e., the incidence, and the 

second one is with respect to the function Q2 to obtain estimates of β, Su0 ⋅ , i.e., the 

latency. However, in this work, we do not maximize Q1 to estimate π zi . Instead, we use 

the DT, as discussed in Section 2.2, to obtain π zi . Now, to employ the DT, note that we 

mentioned earlier that the values of Ui’s should be known for all i = 1,2, ⋯, n. However, Ui’s 

are unknown for i ∈ Δ0. To circumvent this issue, we propose to impute the values of missing 

Ui’s and use a multiple imputation-based technique to estimate π zi . At the k-th iteration 

step of the EM algorithm, the multiple imputation technique is described as follows: for a 

chosen positive integer N, generate Ui
r , i = 1, ⋯, n; r = 1, ⋯, N  from a Bernoulli distribution 

with probability of success wi
k . Given the generated Ui

r , i = 1, ⋯, n  for each r = 1, ⋯, N, 

estimate π zi  by using the DT followed by the Platt scaling method. Let us denote these 

estimates by π r zi . Calculate the final estimate of π zi  as π zi = 1
N ∑r = 1

N π r zi . For all 

practical purposes, the number of imputations N can be chosen as 5, which is consistent 

with the existing works.20,29

As far as the maximization of Q2 is concerned, the estimating eqn.(17) can be approximated 

by the partial log-likelihood function9

∑
j = 1

nk
log exp sj

′β
∑i′ ∈ Rj wi′

k  exp xi′
′ β dj

,

(18)

where τ1 < τ2 < ⋯ < τnk are nk distinct ordered uncensored failure times, dj denotes number 

of uncensored failure times equal to τj,  Rj denotes the risk set at τj, and sj = ∑ i: ti = τj xi, 

for 1 ≤ j ≤ nk. Noting that eqn.(18) is independent of any baseline functions, we use the 

“coxph()” function in R software to estimate β where we treat logwi
k  as an offset term. Once 

the estimate of β is obtained, the baseline survival function Su0 ⋅ , which is needed to update 

the E-step in eqn.(15), can be estimated by a Breslow-type estimator. The E- and M-steps are 

finally repeated until some convergence criterion is achieved such as

∥ θ k − θ k − 1 ∥2
2

< ϵ,

(19)

where θ denotes the vector of unknown model parameters, i.e., 

θ = π zi , β, Su0 ⋅ , i = 1,2, ⋯, n, ϵ > 0 is a chosen tolerance (e.g., 10−3) and ∥ ⋅ ∥2 is the 

L2-norm.

Due to the complexity of the proposed EM algorithm, the standard errors of the estimators 

are not easily available. We propose to use a bootstrap technique.9,20 For this purpose, we 

first fix the number of bootstrap samples, say R. Each bootstrap sample is obtained by 
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re-sampling with replacement from the original data, noting that the size of the bootstrap 

sample is the same as the size of the original data. Then, for each bootstrap sample, we 

estimate the model parameters by employing the EM algorithm. This gives us R estimates 

for each model parameter. For a given parameter, the standard deviation of these estimates 

gives us the estimated standard error of the parameter’s estimator. The steps involved in the 

development of the EM algorithm can be summarized as follows:

Step 1: Use the censoring indicator δi to initiate the value of wi. That is, take the initial value 

of wi as wi = 1 if δi = 1 and wi = 0 if δi = 0, for i = 1, ⋯, n.

Step 2: Use the initial value of wi to impute the values of Ui, for i = 1, ⋯, n, and then apply 

the DT together with the Platt scaling method to estimate π zi . The final estimate of π zi  is 

calculated as the average of π zi ’s from multiple imputation.

Step 3: From eqn.(18), use the “coxph” function in R to obtain β̂ and then calculate Su0 ti

and, finally, Su ti; xi .

Step 4: Use the estimates of π zi  and Su ti; xi  to update wi using eqn.(15).

Step 5: Repeat steps (2)-(4) above until convergence is achieved.

Step 6: Use the bootstrap method to calculate the standard errors of the estimators.

4 Simulation study

4.1 Data generation

In this section, we assess the performance of the proposed MCM-DT model and the 

EM-based estimation algorithm through a detailed Monte Carlo simulation study. We also 

compare the performance of MCM-DT with the MCM-Logit and MCM-Spline models. 

In addition, we compare the MCM-DT with two other recently proposed machine learning-

based mixture cure models, namely the neural network (NN)-based mixture cure model 

(MCM-NN) and the random forests (RF)-based mixture cure model (MCM-RF).30,31 The 

comparisons are done through the calculated bias and mean square error (MSE) of different 

quantities of interest, and also through the predictive accuracy of cure. For the simulation 

study, we consider different sample sizes as n = 300, 600, and 900. For any considered model, 

two-third of the data is used to train the model and the remaining one-third of the data is 

used to test the model. Furthermore, we consider the following four scenarios to generate the 

true uncured probabilities:

Scenario 1:  π z = exp 0.3 − 5z1 − 3z2
1 + exp 0.3 − 5z1 − 3z2

,

Scenario 2:  π z = exp 0.3 − 5z1z2 − 3z1z2
1 + exp 0.3 − 5z1z2 − 3z1z2

,

Scenario 3:  π z = exp −exp 0.3 − 5z1z2 − 3cos z2 , 
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Scenario 4: 

π z = exp −exp 0.3 − 5z1z4 + 3tanh z2z3 −8z3z4z5 4 − 2z4z5 3 − 1.4z3z5 + log abs z1 + z5
.

In scenarios 1, 2 and 3, z1 and z2 are generated from the standard normal distribution. In 

scenario 4,  z1 and z2 are generated from the Bernoulli distribution with success probabilities 

0.6 and 0.3, respectively, whereas z3,  z4, and z5 are generated from the standard normal 

distribution. In all scenarios, we consider z = x, i.e., we use the same set of covariates in 

the incidence and latency parts. It is clear that Scenario 1 is the traditional logistic function 

which implies that the cured and uncured subjects can be linearly separated with respect to 

the covariates. Scenario 2 is a logistic-type function, however, it has interaction terms, which 

implies that the cured and uncured subjects cannot be linearly separated. Scenarios 3 and 

4 represent non-logistic functions that can produce complex classification boundaries with 

Scenario 4 having several covariates and complicated interaction terms.

For the latency, we consider the hazard function of the uncured subjects to be of the 

following form: ℎu t; x = αtα − 1exp x′β . We select the true values of α, β1, β2  for scenarios 

1, 2 and 3 as (0.5,1,0.5), whereas we select the true values of α, β1, β2, β3, β4, β5  for scenario 4 

as (0.9,0.8,1.2,0.5,1.1,−0.6). To generate the observed lifetime data corresponding to the i-th 

subject i = 1,2, ⋯, n , we generate a random variable V i from Uniform(0,1) distribution and a 

right censoring time Ci from Uniform(0,20) distribution. If V i ≤ 1 − π zi , we set the observed 

lifetime T i to Ci, i.e., T i = Ci. On the other hand, if V i > 1 − π zi , first, we generate a true 

lifetime Y i from the considered hazard function ℎu y; x = αyα − 1exp x′β , which is equivalent 

to generating the true lifetime from a Weibull distribution with shape parameter α and scale 

parameter exp x′β − 1
α . Then, we set T i = min Y i, Ci . In all cases, if T i = Ci, we set the 

censoring indicator δi = 0; otherwise, we set δi = 1. With these, the true cure probability 

corresponding to scenario 1 is roughly 0.40, whereas the true cure probability for scenarios 

2 and 4 are roughly 0.50. The censoring proportion is roughly 0.60 in all these cases, which 

ensures enough observed events (effective sample size). On the other hand, the true cure 

probability for scenario 3 is around 0.30 with the censoring proportion being 0.40. Thus, the 

above four scenarios allow us to study the performance of our model for varying cure rates 

and censoring proportions.

4.2 Simulation results

All simulation results are based on M = 500 Monte Carlo runs. For the MCM-DT model, 

the number of multiple imputations is chosen as 5 which is along the lines of Li et al.20 In 

Table 1, we present the biases and MSEs of the estimates of π z  obtained from the proposed 

MCM-DT model and compare these with the ones obtained from the MCM-Spline and 

MCM-Logit models. For the MCM-Spline model, we fit a non-parametric additive model 

using a thin plate spline and use the “gam” function of R package “mgcv”. This allows the 

effective degrees of freedom of each covariate function to be automatically selected. We use 

the following formulae to calculate the bias and MSE of the estimate of π z , denoted by 

π̂ z :
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Bias π z = 1
M ∑

r = 1

M 1
n ∑

i = 1

n
π r zi − π r zi

(20)

and

MSE π z = 1
M ∑

r = 1

M 1
n ∑

i = 1

n
π r zi − π r zi

2
.

(21)

In eqns.(20) and (21), π r zi  and π r zi  denotes respectively the true and estimated 

non-cured probabilities corresponding to the i-th subject and r-th Monte Carlo run 

i = 1, ⋯, n; r = 1, ⋯, M . From Table 1, it is clear that when the cured and uncured subjects 

are linearly separable (i.e., under scenario 1), MCM-Logit performs better both in terms of 

bias and MSE. This is not surprising since logistic regression-based models are expected to 

capture linear patterns in the data better than other models. However, when the cured and 

uncured subjects are not linearly separable (i.e., scenarios 2–4), MCM-DT outperforms both 

MCM-Spline and MCM-Logit models. This implies that the proposed DT-based classifier 

to model the incidence performs better in capturing complex relationships between the 

covariates and uncured probabilities when compared to the existing spline-based and logistic 

regression-based techniques to model the incidence. Intuitively, this should also improve 

the predictive accuracy of cure. We confirm this with the ROC curves, presented in Figure 

A3.1 of the supplemental material, and the corresponding AUC values, reported in Table 

2. It is clear that for scenarios 2–4, and for all considered sample sizes, the proposed 

MCM-DT model results in the highest predictive accuracy. In particular, when compared to 

the MCM-Spline model, which is also known to capture complex relationships, note the gain 

in predictive accuracy that our proposed model provides under scenarios 2–4. Furthermore, 

the closeness of the training and testing AUC values, specifically for larger sample size in 

scenarios 2–4, clearly demonstrates that there is no issue with over-fitting.

In Table 3, we present the biases and MSEs of the estimates of the overall survival 

probabilities obtained from the proposed MCM-DT model and compare these with the ones 

obtained from the MCM-Spline and MCM-Logit models. The formulae used to calculate 

the biases and MSEs of the overall survival probability are similar to the ones in eqns.(20) 

and (21) with the non-cured probability being replaced by the overall survival probability. 

Noting that the overall survival probability is a function of both incidence and latency 

parameters, we can easily see that the proposed MCM-DT model also results in the smallest 

bias and MSE of the overall survival probability under scenarios 2–4. Thus, improving the 

incidence part with the proposed DT-based approach also improves the estimation results 

corresponding to the overall survival probability, which is an interesting finding. For the 

susceptible survival probability, which is a pure function of only the latency parameters, 

the biases and MSEs obtained from different models are comparable (see Table 4). For 

interested readers, we present the biases and MSEs of the estimates of the baseline survival 
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function in Table A4.1 of the supplemental material for n = 600. Once again, the results are 

comparable for different models.

In Table 5, we present the computation time (in seconds) to produce the incidence and 

latency estimates along with the standard errors (obtained using a bootstrap sample of size 

100) for one Monte Carlo run (i.e., M = 1) and for different sample sizes. Noting that the 

MCM-DT model requires multiple imputation to produce the incidence estimates unlike the 

MCM-Logit and MCM-Spline models, we can say from Table 5 that the MCM-DT model 

produces results in a very reasonable amount of time. This is specifically true for non-linear 

classification boundaries, i.e., scenarios 2–4. In Table A4.2 of the supplemental material, we 

present the estimates and standard errors (using a bootstrap sample of size 100) of individual 

latency parameters for n = 900. For other sample sizes, the observations are similar and 

hence not reported for the sake of brevity. From Table A4.2, we note that when the true 

classification boundary in non-linear (i.e., under scenarios 2–4) the overall performance of 

MCM-DT is better than MCM-Spline and MCM-Logit models in the sense that MCM-DT 

results in more accurate estimates of the latency parameters and smaller standard errors.

In Table 6, we present the biases and MSEs of different quantities of interest when we 

compare the MCM-DT with MCM-NN and MCM-RF. In Table 7, we present the AUC 

values and the computation times. For this purpose, we use n = 900 and M = 200. For other 

sample sizes n , the observations are similar and are not reported for the sake of brevity. 

For the MCM-NN, we fit a two hidden layers network with (12, 24) number of neurons 

respectively in the first and second layers. The sigmoid activation function is considered to 

fit the fully connected neural network. For the MCM-RF on the other hand, we consider a 

random forests model with the number trees used in aggregation set to a fixed value (ntree 

= 200). However, the hyper-parameter, mtry (the number of covariates to randomly sample 

as candidates at each split), of the random forests model is obtained using the grid-search 

cross-validation technique. We consider the repeated cross-validation method in fitting the 

random forests model. The number of resampling iterations and the number of complete sets 

of folds to compute are specified as 7 and 5, respectively. From Table 6, we note that when 

the true classification boundary is linear (i.e., under scenario 1) MCM-DT performs better 

than MCM-NN, however, MCM-RF performs better than both MCM-DT and MCM-NN. 

On the other hand, when the true classification boundary is non-linear (i.e., under scenarios 

2–4) MCM-DT performs better than both MCM-NN and MCM-RF under scenario 2. Under 

scenario 3, MCM-DT performs better than both MCM-NN and MCM-RF in the estimation 

of the uncured probability. In this scenario, MCM-DT once again performs better than the 

MCM-NN and MCM-RF models in the estimation of the overall and susceptible survival 

probabilities except in three cases. Finally, under scenario 4 MCM-DT performs better than 

MCM-RF in all cases. In this scenario, MCM-DT performs better than MCM-NN only in 

the estimation of the susceptible survival probability. A similar conclusion can be drawn 

from the AUC values reported in Table 7, noting the similarity in the testing AUC values 

from all models under scenarios 2 and 3. Now, it is worth mentioning that even in cases 

where the MCM-NN or MCM-RF performed better than MCM-DT we must pay attention to 

the computing times. In some cases (as in scenario 4) the computing times for MCM-RF and 

MCM-NN can be respectively 178 times and 133 times that of MCM-DT. Given these heavy 

Aselisewine and Pal Page 13

Stat Med. Author manuscript; available in PMC 2024 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computing times for both MCM-RF and MCM-NN and coupled with the fact that both 

MCM-RF and MCM-NN are difficult to explain to medical professionals, we may prefer 

to use the proposed MCM-DT model even in cases where the performance of MCM-RF 

or MCM-NN is slightly better than MCM-DT. Finally, in Table A4.3 of the supplemental 

material, we present the estimation results (estimates and standard errors) corresponding to 

the individual latency parameters.

5 Application to leukemia data

In this section, we present an application of the proposed MCM-DT model and the 

EM-based estimation algorithm to a data from a study on leukemia patients who went 

through bone marrow transplantation.32 A total of 137 leukemia patients were registered 

in the study. These patients were followed up to 2640 days and a total of 54 patients, 

representing 39.4% of total patients, were right censored (i.e., disease free survival) at 

the end of the study. The event of interest is the relapse or death due to leukemia 

following bone marrow transplantation. The covariate information available in this data 

includes the following: patient’s age (in years), donor’s age (in years), donor’s sex (1-Male, 

2-Female), methotrexate (MTX) used as a graft-versus-host-prophylactic (1-Yes, 0-No), 

patient’s and donor’s cytomegalovirus (CMV) immune status (1-CMV positive, 0-CMV 

negative) which was determined based on a serologic study, and waiting time from diagnosis 

to transplantation (in days).

The complete data set is readily available for downloads in the R package “KMsurv”. In 

Figure A3.2 of the supplemental material, we present a plot of the Kaplan-Meier estimates 

of the survival probabilities. The observed long plateau that levels off to non-zero survival 

probabilities indicates the presence of a cured subgroup. This suggests that the proposed 

MCM-DT model is suitable for this data set. For the purpose of comparison, along with 

the MCM-DT model, we also fit the MCM-Logit and MCM-Spline models. To resolve the 

issue with over-fitting and given the moderate sample size for the leukemia data, we apply 

a 10-fold cross-validation technique that allows us to train both DT and sigmoid models on 

the full data, which is along the lines of Hastie et al.18 The number of multiple imputations 

is chosen as 5 and we use 100 bootstrap samples to estimate the standard errors of the 

estimated parameters.20

First, we consider a simple case where we study the effects of two covariates, patient’s age 

and donor’s age, on both incidence and latency parts of the MCM-DT model (i.e., p = q = 2). 

Focusing on the incidence part first, in Figure 1, we present a plot of the estimates of the 

non-cured probabilities along with their 95% confidence bounds. Clearly, the MCM-DT 

and MCM-Spline models capture the complex age effects on the uncured probabilities 

unlike the MCM-Logit model. Under all models, non-cured probabilities tends to reach 

a local minimum when donor’s age is between 20 and 40 and patient’s age is between 

10 and 30. Unlike the MCM-Logit model, the non-cured probabilities for MCM-DT and 

MCM-Spline are not monotonic functions of patient’s and donor’s ages and tends to rise 

slowly as patient’s age and donor’s age increases Now, it is of utmost importance to 

understand whether capturing this complex pattern can result in better predictive accuracy. 

For this purpose, we compute the AUC values based on the ROC curves. In this regard, 
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Amico et al. proposed estimators of ROC and AUC based on the mixture cure model.33 

However, their formulation heavily depends on the assumption of existence of a known 

“cured time” beyond which all censored observations are considered as cured. We propose 

a completely different approach to compute the ROC curves which is independent of such 

assumption and is more practical. To compute the ROC curves, since the cured statuses are 

unknown for the set of censored observations, first, we propose to impute these unknown 

cured statuses. To do this, we estimate the conditional probability of uncured for each 

censored observation using eqn.(15) and use it to generate a Bernoulli random variable 

that represents the cured/uncured status. We repeat this process 500 times and, in Figure 

2, we present the averaged ROC curves. The corresponding AUC values for the MCM-DT, 

MCM-Spline and MCM-Logit models turn out to be 0.736, 0.678 and 0.609, respectively. 

Clearly, the proposed MCM-DT model results in the highest predictive accuracy among the 

competing models, noting that the performance of MCM-Spline is close to MCM-DT. In 

Figure A3.3 of the supplemental material, we present the predicted overall and susceptible 

survival probabilities when patient’s age and donor’s age are fixed at their mean values. 

Next, we increase the complexity by adding more covariates to the model and consider the 

following scenarios: p = q = 3 (patient’s age, donor’s age, MTX), p = q = 4 (patient’s age, 

donor’s age, MTX, donor’s CMV), and p = q = 7 (patient’s age, donor’s age, waiting time, 

donor’s sex, patient’s CMV, donor’s CMV, MTX). In all cases, we see that the predictive 

accuracy of the MCM-DT model is the highest (see Table 8 for the AUC values and Figure 

2 for the ROC curves). Furthermore, we note that as the number of covariates increases, the 

difference in predictive accuracy between the MCM-DT and MCM-Spline models becomes 

more prominent. We present the variable importance plots for all scenarios in Figure A3.4 

of the supplemental material. It is clear that in all cases donor’s age has the highest relative 

importance followed by patient’s age. In Figure A3.5 of the supplemental material, we 

present the decision tree plot for the full model with seven covariates. It is clear that only 

donor’s age, patient’s age, and waiting time gets selected among the seven covariates, and 

this observation supports the findings from Figure A3.4. It is interesting to point out that 

the MCM-DT also performs some form of covariate selection and can easily identify any 

interaction effect among covariates; as can be seen in Figure A3.5. For readers interested 

in the results corresponding to the estimation of the latency parameters, we present these 

in Table A4.4 of the supplementary material. In Table A4.5 of the supplemental material, 

we present the computing times and the findings are similar to those obtained from the 

simulation study.

Using the leukemia data, we also compare the MCM-DT with MCM-NN and MCM-RF 

models. For this purpose, we use the patient’s age and donor’s age as two covariates 

of interest (i.e., p = q = 2). This comparison can be easily extended to cases where more 

covariates are included in the model. In Figure A3.6 of the supplemental material, we 

present the plots of the estimated non-cured probabilities with respect to the covariates along 

with their 95% confidence bounds. As expected, it is easy to see that all three models 

under comparison can capture complex age effects. To find out which of the three machine 

learning-based models provide the highest predictive accuracy and how much computation 

cost is associated with it, we also calculated the AUC values and the computing times. The 

AUC values for the MCM-DT, MCM-NN and MCM-RF models turned out to be 0.736, 
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0.865 and 0.712, respectively. The corresponding computation times (in seconds) turned out 

to be 103.100, 640.213 and 8008.150. It is clear that the predictive accuracy of MCM-DT 

is better than MCM-RF, but not when compared to MCM-NN. Now, given that MCM-DT 

is easy to interpret and computationally less expensive compared to both MCM-NN and 

MCM-RF models it is important to ask whether there is any significant difference in the 

AUC values of 0.736 and 0.865 corresponding to the MCM-DT and MCM-NN models, 

respectively. We leave this as an interesting future study. For interested readers, we also 

present the latency parameter estimates along with the estimates of standard errors and 

p-values in Table A4.6 of the supplementary material.

6 Conclusion

We proposed a new mixture cure rate model by employing the DT algorithm to model the 

incidence part. We preserved the proportional hazards structure for the latency part because 

of it’s explanatory ability. To estimate the parameters of this new model, we developed an 

EM-based estimation procedure. From the simulation study, it is clear that the proposed 

model can capture complex relationships between the covariates and uncured probabilities 

better than the existing logistic regression-based and spline regression-based mixture cure 

models. This results in more accurate (i.e., lower bias) and more precise (i.e., lower MSE) 

estimates of the uncured probabilities. Furthermore, this also improves the estimation results 

related to the overall survival probability. In addition, from the real data analysis, we 

have shown that as the model complexity increases, the difference in predictive accuracy 

between our proposed model and the existing ones becomes more pronounced, with the 

predictive accuracy of our proposed model being always the highest. As an immediate future 

work, it is of great interest to study the performance of the proposed model when the 

dimension of covariates is high (i.e., the effective sample size is smaller than the covariate 

dimension). In this regard, it is of interest to develop computationally efficient penalized 

estimation procedures. Another potential research problem is to extend the current DT-based 

modeling framework to incorporate competing risks34–36 and accommodate elimination 

process of competing risks.37–44 It will then be of interest to propose flexible modeling for 

the latent count on competing risks that can accommodate both over-dispersion and under-

dispersion.28,45 Other future research works include integrating machine learning techniques 

in the context of some recently proposed transformation cure models and studying whether 

it improves the predictive accuracy of cure.46,47 We are currently looking at some of these 

open problems and hope to report the findings in a future manuscript.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
3-dimensional surface plane of uncured probabilities, along with 95% confidence bounds, as 

a function of patient’s age and donor’s age
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Figure 2: 
ROC curves for different models corresponding to the leukemia data
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Table 1:

Comparison of bias and MSE of the uncured probability for different models

Bias MSE

Scenario n DT Spline Logit DT Spline Logit

300 0.2058 0.1364 0.1307 0.0862 0.0417 0.0312

1 600 0.1884 0.1183 0.1083 0.0734 0.0328 0.0222

900 0.1815 0.1094 0.0978 0.0675 0.0281 0.0180

300 0.1572 0.3486 0.3552 0.0499 0.1614 0.1656

2 600 0.1452 0.3517 0.3565 0.0391 0.1639 0.1671

900 0.1420 0.3504 0.3558 0.0357 0.1679 0.1712

300 0.1963 0.2993 0.3661 0.0894 0.1461 0.1797

3 600 0.1764 0.2980 0.3529 0.0738 0.1461 0.1760

900 0.1650 0.2961 0.3517 0.0651 0.1453 0.1752

300 0.2426 0.4431 0.4517 0.1024 0.2162 0.2214

4 600 0.1799 0.4533 0.4579 0.0716 0.2210 0.2236

900 0.1592 0.4566 0.4598 0.0620 0.2225 0.2242
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Table 2:

Comparison of AUC values for different models and scenarios

Scenario n Training AUC Testing AUC

DT Spline Logit DT Spline Logit

300 0.9226 0.9550 0.9715 0.8681 0.9482 0.9695

1 600 0.9359 0.9592 0.9725 0.8938 0.9539 0.9711

900 0.9386 0.9611 0.9729 0.9031 0.9581 0.9722

300 0.9268 0.5652 0.5335 0.8541 0.5510 0.5444

2 600 0.9235 0.5463 0.5225 0.8775 0.5432 0.5322

900 0.9185 0.5352 0.5198 0.8835 0.5285 0.5250

300 0.8955 0.7411 0.5357 0.8280 0.6955 0.5369

3 600 0.9132 0.7338 0.5254 0.8624 0.7129 0.5305

900 0.9148 0.7345 0.5207 0.8716 0.7164 0.5235

300 0.9262 0.6230 0.5905 0.7150 0.5446 0.5476

4 600 0.9589 0.5920 0.5720 0.8366 0.5380 0.5386

900 0.9654 0.5810 0.5656 0.8763 0.5352 0.5362
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Table 3:

Bias and MSE of the overall survival probability for different models

Overall Survival Probability (Sp t; x, z )

Scenario n Bias MSE

DT Spline Logit DT Spline Logit

300 0.1073 0.0776 0.0871 0.0263 0.0139 0.0163

1 600 0.0910 0.0654 0.0713 0.0199 0.0105 0.0118

900 0.0830 0.0606 0.0642 0.0167 0.0092 0.0099

300 0.1055 0.2125 0.2170 0.0241 0.0722 0.0753

2 600 0.0923 0.2107 0.2148 0.0176 0.0710 0.0737

900 0.0881 0.2046 0.2099 0.0158 0.0672 0.0704

300 0.1120 0.1644 0.2102 0.0297 0.0521 0.0825

3 600 0.0921 0.1616 0.2007 0.0214 0.0509 0.0771

900 0.0821 0.1600 0.1996 0.0174 0.0501 0.0771

300 0.1751 0.3119 0.3186 0.0601 0.1302 0.1340

4 600 0.1294 0.3194 0.3235 0.0412 0.1329 0.1353

900 0.1130 0.3214 0.3245 0.0350 0.1334 0.1353
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Table 4:

Bias and MSE of the susceptible survival probability for different models

Susceptible Survival Probability (Su t; x )

Scenario n Bias MSE

DT Spline Logit DT Spline Logit

300 0.0865 0.0650 0.0596 0.0226 0.0150 0.0133

1 600 0.0767 0.0526 0.0472 0.0185 0.0106 0.0091

900 0.0737 0.0457 0.0407 0.0172 0.0084 0.0072

300 0.0814 0.0792 0.0803 0.0215 0.0210 0.0214

2 600 0.0690 0.0648 0.0660 0.0167 0.0158 0.0161

900 0.0610 0.0613 0.0627 0.0136 0.0139 0.0142

300 0.0884 0.0883 0.0989 0.0201 0.0202 0.0247

3 600 0.0764 0.0772 0.0950 0.0154 0.0158 0.0231

900 0.0742 0.0749 0.0947 0.0144 0.0148 0.0225

300 0.0452 0.0456 0.0459 0.0073 0.0074 0.0074

4 600 0.0330 0.0326 0.0326 0.0042 0.0042 0.0042

900 0.0278 0.0271 0.0269 0.0033 0.0032 0.0031
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Table 5:

Computation times for different models under varying scenarios and sample sizes

Scenario Model Computation Time (in seconds)

n = 300 n = 600 n = 900
Logit 3.037 4.907 7.434

1 Spline 93.87 127.729 237.701

DT 374.496 392.608 402.533

Logit 2.333 3.805 10.394

2 Spline 55.078 87.355 172.660

DT 115.2 130.879 158.346

Logit 3.88 9.675 10.755

3 Spline 81.399 109.027 101.891

DT 121.257 153.558 178.288

Logit 2.894 3.398 6.284

4 Spline 99.355 117.53 174.155

DT 156.74 202.758 272.711
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Table 6:

Comparison of DT, NN, and RF models through the biases and MSEs of different quantities of interest for 

n = 900

Scenario Model π z Sp t; x, z Su t; x
Bias MSE Bias MSE Bias MSE

DT 0.1765 0.0618 0.0808 0.0156 0.0719 0.0166

NN 0.2280 0.1389 0.1412 0.0473 0.0939 0.0257

1 RF 0.1418 0.0341 0.0684 0.0107 0.0584 0.0119

DT 0.1134 0.0223 0.0744 0.0113 0.0677 0.0135

NN 0.1659 0.0729 0.1221 0.0365 0.0982 0.0232

2 RF 0.1485 0.0352 0.0871 0.0440 0.0687 0.0138

DT 0.1650 0.0651 0.0821 0.0174 0.0742 0.0144

NN 0.1946 0.1170 0.1283 0.0445 0.0880 0.0181

3 RF 0.2001 0.0709 0.0850 0.0140 0.0701 0.0132

DT 0.1687 0.0653 0.1178 0.0372 0.0255 0.0028

NN 0.0831 0.0477 0.0697 0.0252 0.0312 0.0037

4 RF 0.4059 0.1812 0.2887 0.1115 0.0281 0.0032
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Table 7:

Comparison of DT, NN, and RF models through the AUC values and computation times for n = 900

Scenario Model Training AUC Testing AUC Computation Time (in seconds)

DT 0.9372 0.9041 402.533

1 NN 0.9645 0.8827 15218.178

RF 0.9533 0.9491 20642.211

DT 0.9386 0.8951 158.346

2 NN 0.9727 0.8759 18205.223

RF 0.9127 0.9053 23148.207

DT 0.9148 0.8716 178.288

3 NN 0.9706 0.8949 10698.232

RF 0.9158 0.9001 16978.322

DT 0.9667 0.8916 272.711

4 NN 0.9842 0.9152 36372.963

RF 0.7991 0.7102 48499.398
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Table 8:

Comparison of AUC values under different models

p AUC values

MCM-DT MCM-Spline MCM-Logit

2 0.736 0.678 0.609

3 0.714 0.657 0.560

4 0.714 0.654 0.557

7 0.723 0.667 0.565
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