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ABSTRACT: Infrequent Metadynamics is a popular method to
obtain the rates of long time-scale processes from accelerated
simulations. The inference procedure is based on rescaling the first-
passage times of the Metadynamics trajectories using a bias-
dependent acceleration factor. While useful in many cases, it is
limited to Poisson kinetics, and a reliable estimation of the
unbiased rate requires slow bias deposition and prior knowledge of
efficient collective variables. Here, we propose an improved
inference scheme, which is based on two key observations: (1)
the time-independent rate of Poisson processes can be estimated
using short trajectories only. (2) Short trajectories experience
minimal bias, and their rescaled first-passage times follow the unbiased distribution even for relatively high deposition rates and
suboptimal collective variables. Therefore, by basing the inference procedure on short time scales, we obtain an improved trade-off
between speedup and accuracy at no additional computational cost, especially when employing suboptimal collective variables. We
demonstrate the improved inference scheme for a model system and two molecular systems.

■ INTRODUCTION
Molecular dynamics (MD) simulations are widely used to
study complex systems at the microscopic level. Their atomic
resolution allows evaluating thermodynamic and kinetic
properties, but it also limits the accessible time scales.1−4

Therefore, long time-scale processes, such as protein folding or
crystal nucleation, are almost never studied using brute-force,
long simulations.5 Instead, enhanced sampling methods are
usually employed.
Various methods were developed to study long time-scale

processes through MD simulations. Some use a series of short
simulations to sample the unbiased kinetics, such as mile-
stoning,6,7 Markov state models,8,9 stochastic resetting
(SR),10,11 and many others. Another approach is to introduce
an external bias potential, enhancing the sampling along a low-
dimensional collective variable (CV) space. The chosen CVs
are usually slow modes that can distinguish between
metastable states.1−5 Methods following this approach include
umbrella sampling,12,13 conformational flooding,14 adiabatic
free-energy dynamics,15−17 on-the-fly probability enhanced
sampling (OPES),18,19 Metadynamics (MetaD),3,20,21 and
Hyperdynamics.22

Here, we focus on infrequent MetaD (iMetaD), a method to
extract unbiased kinetics from accelerated MetaD simulations.
In iMetaD, several biased trajectories are initiated and stopped
after a first-passage criterion is fulfilled. The first-passage time
(FPT) of each trajectory is then rescaled by an acceleration
factor that depends on the external bias deposited along the
trajectory.1,3 The method assumes that the underlying process

obeys Poisson kinetics, and the unbiased rate is estimated by
fitting the rescaled FPTs to an exponential distribution.2

The key assumption of iMetaD is that no bias is deposited
near the transition state.1,5 This assumption fails for high bias
deposition rates or suboptimal CVs that lead to hysteresis and
bias overdeposition.2,5,23 Unfortunately, finding good CVs in
complex systems remains a great challenge,24,25 despite recent
developments.26−33 Thus, to improve the inference, one is
usually forced to limit the bias deposition rate, but this also
reduces the acceleration, resulting in a trade-off between
speedup and accuracy.4,11,23

The reliability of iMetaD is usually assessed through a
procedure suggested by Salvalaglio et al.2,5 A Kolmogorov−
Smirnov (KS) test34 is performed to accept or reject the
hypothesis that the rescaled FPTs are taken from an
exponential distribution. The results are considered reliable
for a p-value greater than 0.05 (though there are examples of
erroneous results that pass the test35,36) and the unbiased
mean FPT (MFPT) is then estimated as the mean of the
exponential fit to the rescaled FPT distribution. Trajectories
with hysteresis or overdeposition contribute unrealistically long
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rescaled FPTs, leading to distributions that are broader than
exponential and failure of the KS test. In this paper, we
propose an improved inference scheme which deals with this
prevalent problem, extending the range of applicability of
iMetaD. We also compare our method with the Kramers time-
dependent rate (KTR) method that was recently introduced
with a similar goal in mind.4,5

Our scheme relies on two key observations: (1) Since
exponential distributions are characterized by a single
parameter (their time-independent kinetic rate), short
simulations, showing a single transition each, are sufficient to
estimate the full distribution reliably. (2) The rescaling
procedure of iMetaD is more reliable for short trajectories,
experiencing minimal bias. This can be seen from the rescaled
FPT distribution, which often follows the unbiased distribution
at short times, even when using high bias deposition rates or
suboptimal CVs. The improved scheme is inspired by our
previous work, combining MetaD with SR.11 Previously, we
showed that SR provides enriched sampling of short time
scales, leading to an improved trade-off between speedup and
accuracy. Interestingly, these observations are not limited to
simulations with SR.
We next show how to exploit our observations to build an

improved kinetic inference scheme for iMetaD simulations. We
refer to this scheme as short-time iMetaD (ST-iMetaD). ST-
iMetaD extends the applicability of iMetaD to higher bias
deposition rates and suboptimal CVs, reducing the prediction
errors by orders of magnitude in comparison to the standard
procedure. We demonstrate its advantages in three systems of
increasing complexity: the two-dimensional Wolfe−Quapp
potential, alanine dipeptide in vacuum, and the unfolding of
the chignolin miniprotein in water.

■ ST-IMETAD SCHEME
We present ST-iMetaD through the example of the Wolfe−
Quapp potential. It is a two-state model previously used to
study the performance of suboptimal CVs.23,24 Its exact form is

given in the Methods section, as are all simulation details. We
first performed 1000 brute-force, standard MD simulations to
obtain the unbiased FPT distribution and found the MFPT to
be ∼110 ns. A KS test confirmed that the unbiased distribution
is exponential (p-value of 0.81).
Next, we performed 200 iMetaD simulations with a good

CV and a slow bias deposition rate of 10 ns−1, updating the
bias every 105 timesteps. The quality of the CV was proved
using a committor analysis37,38 (see the Supporting Informa-
tion for details). With this choice of parameters, we expect the
underlying assumptions of iMetaD to be valid and the original
inference scheme to be accurate. Indeed, the MFPT estimated
through the standard inference procedure is 119 ns, in good
agreement with the true value. A p-value of 0.25 confirms the
reliability of the results. The left panel of Figure 1a shows the
cumulative distribution function (CDF) P(τ ≤ t) for both the
unbiased FPTs (blue solid line) and the rescaled FPTs (green
dashed line). An exponential fit to the CDF of the rescaled
FPTs is given in an orange dashed−dotted line. We find a good
agreement between all three curves, showing that the standard
inference procedure is adequate in this case.
We then performed iMetaD simulations using the same CV

but with a higher bias deposition rate of 1000 ns−1 (every 1000
timesteps), which is expected to give poor inference due to
hysteresis. The obtained MFPT, 953 ns, overestimates the true
value by an order of magnitude, and the p-value of the KS test
drops to 2 × 10−11, indicating that the results are unreliable.
The middle panel of Figure 1a again shows the CDF for the
unbiased and rescaled FPTs, as well as the exponential fit to
the rescaled CDF. In this case, we find that the rescaled CDF is
not exponential and clearly deviates from the unbiased CDF.
Consequently, the exponential fit results in the wrong estimate
of the rate and MFPT. Nevertheless, we find that the unbiased
and rescaled CDFs are in very close agreement at short times.
This is the first key observation of this work: short trajectories
experience minimal bias, and thus their rescaled CDF reflects

Figure 1. (a) CDF profiles and (b) survival functions for simulations of the Wolfe−Quapp potential. Results for unbiased FPTs (blue solid lines),
rescaled FPTs (dashed green lines), exponential fits to the rescaled CDF in the entire range (orange dashed−dotted lines), and linear fits to the
survival functions at t ≤ t* (pink dotted lines). Results are shown for iMetaD simulations using a good CV and a bias deposition rate of 10 ns−1
(left), a good CV and a bias deposition rate of 1000 ns−1 (middle), and a suboptimal CV and a bias deposition rate of 200 ns−1 (right). The black
dashed lines mark t = t*.
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the correct statistics for small FPTs even at high bias
deposition rates.
A similar phenomenon is observed when suboptimal CVs

are used. We select a moderate bias deposition rate of 200 ns−1
and intentionally reduce the quality of the CV by rotating it at
an angle θ = 56° relative to the good CV. The right panel of
Figure 1a presents the resulting CDF profiles. Once again, the
rescaled CDF is far from exponential (p-value of 7 × 10−9),
and the MFPT is overestimated (579 ns). However, even
though the rescaled CDF deviates from the unbiased CDF at
long times, they match closely at short times.
When employing iMetaD, it is common practice to present

the rescaled CDF profile, which is used for the KS test.2,4,5

However, for the rest of this paper, it would be more
convenient to examine the survival function, 1 − P(τ ≤ t),
since its logarithm decays linearly for exponential distributions.
Figure 1b gives log[1 − P(τ ≤ t)] at t ≤ 100 ns for the
unbiased FPTs (blue solid lines) and the rescaled FPTs (green
dashed lines) of the simulations presented in Figure 1a. The
unbiased survival function decays linearly, as expected. When
the assumptions of iMetaD hold (left panel), the rescaled
survival function closely follows the unbiased one. When they
break (middle and right panels), the rescaled survival function
matches the unbiased one up to some finite time, t = t*, and
decays slower at t > t*. As a result, the exponential fits to the
rescaled data (orange dashed−dotted lines) decay much slower
than the unbiased curves. This explains the overestimated
MFPT values. Note that we fit the rescaled survival function
for all t but only display t ≤ 100 ns.
We improve the inference by fitting a linear function S(t) =

−kt to the rescaled survival function only at t ≤ t* (dotted pink
lines in Figure 1). We then estimate the MFPT as k−1. Notice
that we only fit a single parameter k as the survival function
must fulfill log[1 − P(τ ≤ t = 0)] = 0 due to normalization. In
all three cases, we find that these short-time fits are closer to
the unbiased survival function and therefore lead to an
improved estimate of the MFPT, as we show below. First, we
explain how to choose an adequate value of t*.
We use the Pearson correlation coefficient R, which

quantifies the quality of the linear fit to the survival function.
Practically, we perform multiple fittings, with different choices
of t*, and select the fit resulting in the highest value of R2. Our
results show that this approach correctly identifies reasonable
values of t*, such that the rescaled survival functions match the
unbiased ones at t ≤ t*. Specifically, for a good CV and a low

bias deposition rate, where the results are reliable, we find t* =
148 ns. For the same CV and a high bias deposition rate and
for a poor CV and a moderate rate, we obtain lower values, t*
= 21 ns and t* = 32 ns, respectively (black dashed lines in
Figure 1b).
To summarize our method, the main modification to the

original inference scheme is that instead of fitting an
exponential distribution to all of the data, as is customary,
we limit the analysis to short time scales. We perform a series
of linear fits to the logarithm of the survival function at times t
≤ t*, with different choices of t*. The parameter k of the best
fit is taken as the kinetic rate, and the MFPT is estimated as
k−1. This enables accurate estimations of the MFPT, even with
frequent bias deposition or a suboptimal CV.

■ RESULTS AND DISCUSSION
Wolfe−Quapp Potential. We first demonstrate the

advantages of ST-iMetaD using the Wolfe−Quapp potential,
showing that we can use higher bias deposition rates, providing
higher speedups with minimal penalty to the inference
accuracy. We define the speedup as the ratio between the
unbiased MFPT and the MFPT from the biased simulations
without rescaling. We ran a total of 1000 trajectories and
performed a bootstrapping analysis on 1000 randomly sampled
sets, each containing 200 samples. Figure 2a shows the
estimated MFPT as a function of the speedup using a good CV
and different bias deposition rates in the range of 10−1000
ns−1. The boxes show the range between the first and third
quartiles (interquartile range, IQR), and the whiskers show
extreme values within 1.5 IQR below and above these quartiles.
When employing standard iMetaD (orange), the estimated
MFPT increases with speedup, reaching values about an order
of magnitude larger than the true value at high speedups. On
the other hand, when employing ST-iMetaD (pink), the
estimations remain close to the true value for all speedups.
Our scheme also improves the inference from simulations

performed with suboptimal CVs. For a fixed bias deposition
rate of 200 ns−1, we gradually reduce the quality of the CV by
rotating it with respect to a good CV. Figure 2b shows that the
estimated MFPT increases as the quality of the CV decreases
for both inference schemes. However, the deviation from the
true value is much smaller for ST-iMetaD. The errors remain
within an order of magnitude of the true value, in comparison
to more than 2 orders of magnitude for standard iMetaD, even

Figure 2. (a) Estimated MFPTs as a function of the speedup for the Wolfe−Quapp potential using a good CV and different bias deposition rates
from 10 to 1000 ns−1. (b) Estimated MFPTs for a bias deposition rate of 200 ns−1 and different choices of CV. The blue lines mark the unbiased
MFPT value. We employed either standard iMetaD (orange) or ST-iMetaD (pink). The boxes show the range between the first and third quartiles
and the whiskers show extreme values within 1.5 IQR below and above these quartiles.
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for very poor CVs. In the Supporting Information, we also
provide a detailed comparison with the KTR method.4

We tested the sensitivity of ST-iMetaD to the number of
sampled trajectories. For each column in Figure 1, we ran a
total of 1000 trajectories and performed a bootstrapping
analysis on 1000 randomly sampled sets, each containing 10,
20, 50, 100, 200, and 500 samples. Figure 3 shows the
estimated MFPT using either iMetaD (orange) or ST-iMetaD
(pink) as a function of the number of samples. In Supporting
Information Figure S2, we also plot the dependence of t* on
the batch size. We find that iMetaD has a systematic error that
is almost independent of the number of samples, while both
the systematic and statistical errors of ST-iMetaD diminish
with additional data. With limited data of 10 or 20 samples,
ST-iMetaD gives results comparable to those of iMetaD, but
50 samples are already sufficient for a major improvement. For

the remainder of the paper, we report results obtained with
bootstrapping sets of 200 random samples. Equivalent figures
with smaller sample sizes are provided in the Supporting
Information.
Alanine Dipeptide. We next apply ST-iMetaD in two

molecular systems, starting with the well-studied example of
alanine dipeptide in vacuum. Alanine dipeptide has two stable
conformers, C7eq and C7ax, and is usually described by two
dihedral angles, ϕ and ψ, with ϕ serving as a good CV and ψ as
a suboptimal one1,2,18,23 (see ref 1 for definitions of conformers
and angles). Transitions from the C7eq conformer to the C7ax
conformer have an estimated MFPT of ∼3.5 μs (see
Supporting Information for more details). We performed
MetaD simulations with bias deposition rates in the range of
20 to 1000 ns−1 and either the ϕ or ψ angle as a CV. Full
simulation details are given in the Methods section.

Figure 3. Estimated MFPT as a function of the number of sampled trajectories in each bootstrapping batch using iMetaD (orange) or ST-iMetaD
(pink) for simulations of the Wolfe−Quapp potential using a (a) good CV and a bias deposition rate of 10 ns−1, a (b) good CV and a bias
deposition rate of 1000 ns−1, and a (c) suboptimal CV and a bias deposition rate of 200 ns−1. The unbiased MFPT is given in blue dashed lines.
The boxes show the range between the first and third quartiles and the whiskers show extreme values within 1.5 IQR below and above these
quartiles.

Figure 4. Upper row: estimation of the MFPT as a function of speedup for the C7eq−C7ax conformer transition of alanine dipeptide in vacuum.
Simulations using either the (a) ϕ angle or (b) ψ angle as a CV, with iMetaD (orange) or ST-iMetaD (pink). The boxes show the range between
the first and third quartiles and the whiskers show extreme values within 1.5 IQR below and above these quartiles. The blue dashed lines show the
unbiased MFPT. Lower row: survival functions log[1 − P(τ ≤ t)] at t ≤ 1 μs for unbiased simulations (blue solid lines) and rescaled iMetaD
simulations (green dashed lines), biasing either the (c) ϕ angle or (d) ψ angle, with a bias deposition rate of 50 ns−1. Additional lines show
exponential fits to the rescaled CDF in the entire range (orange dashed−dotted lines) and linear fits to the survival functions at t ≤ t* (pink dotted
lines). The black dashed line marks t = t*.
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Figure 4a shows the estimated MFPT as a function of the
speedup for simulations biasing the ϕ angle through the
original iMetaD scheme (orange) and ST-iMetaD (pink). The
unbiased MFPT is given in a dashed blue line. The two
schemes provide similar, very accurate estimations, even with
frequent bias deposition. This confirms that ST-iMetaD is
consistent with standard iMetaD, when the latter is reliable.
On the other hand, when ψ, a suboptimal CV, is employed,

we find a major difference between the schemes, as
demonstrated in Figure 4b. With standard iMetaD, the
estimated MFPT rapidly increases with speedup (notice the
logarithmic scale), reaching errors of more than 3 orders of
magnitude. However, with ST-iMetaD, we obtain estimations
within up to about an order of magnitude from the true value
for all speedups.
We validate the underlying assumptions of ST-iMetaD by

examining the survival functions. Panels (c,d) of Figure 4 show
the survival functions for the unbiased FPT distribution (solid
blue lines), the rescaled FPT distributions (dashed green

lines), the fit of iMetaD (dashed−dotted orange lines), and the
fit of ST-iMetaD (pink dotted lines). Results are shown for
simulations with a moderate bias deposition rate of 50 ns−1,
which is standard for iMetaD.1,2 Using the ϕ angle as a CV, the
rescaled survival function decays at a rate similar to that of the
unbiased one [panel (c)]. We determine t* = 12.6 μs using the
procedure described above, and the two fits coincide. Using
the ψ angle as a CV, the rescaled survival function quickly
deviates from the unbiased one but is accurate at short times
[panel (d)]. We correctly determine t* = 0.13 μs, and we
obtain an MFPT estimation of 3.4 μs, improving by an order of
magnitude over standard iMetaD.
Chignolin Miniprotein. We close this paper with a more

complex example: the unfolding of chignolin in explicit water
(simulations of 5889 atoms). Chignolin is a miniprotein
composed of 10 amino acids,39 previously used to benchmark
enhanced sampling methods.11,23,40−42 A linear combination of
six interatomic contacts, optimized via harmonic linear
discriminant analysis (HLDA) by Mendels et al.,26 serves as

Figure 5. Results for the simulation of solvated chignolin using the HLDA-based CV (left), the radius of gyration (middle), and the C-alpha RMSD
(right). (a) FESs. The vertical dashed line marks the first-passage criterion and the dotted vertical lines mark the average radius of gyration and C-
alpha RMSD at first-passage events. The horizontal green and red lines highlight average maximal bias heights at t* and 10t*, respectively. The
black stars mark the values of the CVs at the initial folded configuration. (b) Estimated MFPTs obtained with standard iMetaD (orange) and ST-
iMetaD (pink). The boxes show the range between the first and third quartiles and the whiskers show extreme values within 1.5 IQR below and
above these quartiles. The blue dashed lines show the unbiased MFPT. (c) Survival functions for unbiased FPTs (blue solid lines), rescaled FPTs
of simulations with a bias deposition rate of 1 ns−1(dashed green lines), exponential fits to the rescaled CDF in the entire range (orange dashed−
dotted lines), and linear fits to the survival function at t ≤ t* (pink dotted lines). The black dashed lines show the estimated t*.
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a good CV. The radius of gyration (Rg) and the C-alpha root-
mean-square deviation from a folded configuration (RMSD)
serve as examples of suboptimal CVs. All simulation details are
provided in the Methods section.
Figure 5a gives the free-energy surfaces (FES) along all CVs,

obtained from umbrella sampling simulations (see the
Methods section for details). The values of the CVs at the
initial folded configuration are marked with black stars. We
define the first-passage criterion as reaching a value < 0.8 nm
for the HLDA-based CV (dashed black line). This process has
an estimated MFPT of ∼376 ns (see Supporting Information
for details). We note that the dynamics for reaching a stable
unfolded state (HLDA < 0.2 nm) leads to an MFPT that is
longer by an order of magnitude.23 However, since the
underlying assumptions of iMetaD are valid for escaping a
single energy well, we limit our discussion to overcoming the
first energy barrier along the HLDA-based CV. In addition, we
note that the suboptimal CVs do not have a second minimum
in the FES for the stable unfolded state. Moreover, they do not
fully distinguish between the unfolded and folded states.
Therefore, even when biasing the suboptimal CVs, we used the
value of the HLDA-based CV to determine the FPTs. The
dotted lines in the middle and right panels of Figure 5a show
the average values of those CVs when the first-passage criterion
is fulfilled.
Figure 5b shows the estimated MFPT as a function of

speedup using the different CVs, with bias deposition rates in
the range of 1−50 ns−1. We observe trends similar to those in
the previous examples. In all cases, we find that ST-iMetaD
leads to a better trade-off between speedup and accuracy. Most
notably, it is able to predict the MFPT rather successfully, even
for deposition rates where the standard approach leads to large
errors.
As with the former examples, we verify our assumptions by

plotting the survival functions for the slowest bias deposition
rate, 1 ns−1 (Figure 5c). For all CVs, the rescaled and unbiased
results match at short times. The suboptimal CVs are
associated with short t*, while the value for the good CV is
out of the scope of the plot (425 ns).
As a final test, we estimate the average maximum bias

deposited up to t* and present it as a green horizontal dotted
line in Figure 5a. We find that it is lower than the barrier for
both suboptimal and good CVs. This analysis provides insight
into the onset of bias overdeposition. This is seen by looking at
the average bias deposited at 10t*, marked by horizontal
dotted red lines in Figure 5a, which are much closer to the
barrier. This confirms that our procedure identifies the right t*
within an order of magnitude.

■ CONCLUSIONS
To summarize, we present ST-iMetaD�an improved
inference scheme for iMetaD simulations. We find that the
rescaled FPT distribution provides the correct short-time
statistics, even for high bias deposition rates and suboptimal
CVs. By focusing on these time scales, the time-independent
rate of Poisson processes can be estimated reliably, resulting in
a better trade-off between speedup and accuracy in predicting
the unbiased MFPTs.
The benefits of ST-iMetaD are demonstrated for the

Wolfe−Quapp potential and two molecular systems: an
isolated alanine dipeptide molecule and chignolin in explicit
water. It reduces the prediction errors by orders of magnitude,
especially for simulations with frequent bias deposition or

suboptimal CVs. As a result, our method significantly extends
the range of applicability of iMetaD, though it will eventually
also break for unrealistically high deposition rates or
exceedingly bad CVs. The ST-iMetaD scheme can be applied
in postprocessing of existing iMetaD data, with no additional
cost in comparison to the standard approach, leading to
improved accuracy. Furthermore, the inference scheme is not
limited to iMetaD and could be applied to any enhanced
sampling approach based on the iMetaD rescaling scheme,
such as OPES flooding23 or variational flooding.43,44

■ METHODS
Wolfe−Quapp Potential. Simulations of the Wolfe−

Quapp potential were performed in the large-scale atomic/
molecular massively parallel simulator (LAMMPS).45 We
followed the motion of a single particle with a mass m = 40
a.u. The simulations were carried out in the canonical (NVT)
ensemble at a temperature of 300 K using a Langevin
thermostat.46 The integration time step was 1 fs and the
friction coefficient was 0.01 fs−1. MetaD was implemented
using PLUMED 2.7.1.47−49 We used a bias height of 0.5 kBT, a
bias factor of 5, a bias width of σ = 0.1 nm, and a grid spacing
of 0.01 nm.
The external potential was implemented in the LAMMPS

input files. Its structure is as described in previous
publications23,24 and is shown in Figure 6. The exact form
used is given in eq 1, with the distance given in units of nm and
the energy given in units of 1 kBT.

= + + + +V x y x y x y xy x y( , ) 4 2 2 0.1 0.84 4 2 2

(1)

Simulations were initiated from the global minimum (x =
1.564, y = −1.334) nm, marked with a star in Figure 6, with
velocities sampled from the Maxwell−Boltzmann distribution.
All trajectories were stopped using the COMMITTOR
command in PLUMED when reaching the second local
minimum, defined as x < −1.4 nm ∧ y > 1.0 nm, denoted by
dashed lines in Figure 6.
Alanine Dipeptide. Simulations of alanine dipeptide in

vacuum were performed in GROMACS 2019.6.50 We used
input files by Bonomi and Bussi,51 implementing the
AMBER99SB force field (FF). Simulations were performed
in the NVT ensemble at a temperature of 300 K using a
stochastic velocity rescaling thermostat.52 The integration time
step was 2 fs. MetaD was implemented once again using
PLUMED. We used a bias height of 0.5 kBT, a bias factor of 5,
a bias width of σ = 0.25 rad, and a grid spacing of 0.01 rad. All

Figure 6.Wolfe−Quapp potential. The initial position is marked with
a star and the target basin is marked with dashed lines.
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trajectories were initiated in a fixed position at the C7eq
conformer and stopped using PLUMED when reaching 0.5 <
ϕ < 1.5 rad. The stopping criterion was checked every 1 ps.
Chignolin. Simulations of chignolin in water were

performed using the same software as those for alanine
dipeptide. We used input files by Ray et al.,23 available at
PLUMED-NEST, the public repository of the PLUMED
consortium,49 as plumID:22.031. We used the CHARMM22*
FF53 for the protein and the CHARMM TIP3P FF54 for water.
The thermodynamic ensemble, thermostat, and integration
time step were the same as those employed for alanine
dipeptide, but the temperature was higher, 340 K.
We used a bias height of 0.5 kBT, a bias factor of 5, and a

grid spacing of 0.001 nm for all CVs. The bias width was 0.022,
0.005, and 0.006 nm for the HLDA, Rg, and RMSD-based CVs,
respectively. All trajectories were initiated from a fixed position
and stopped using PLUMED when reaching s < 0.8 nm, with s
being the HLDA-based CV. This stopping criterion was
checked every 1 ps.
To construct the FES featured in Figure 4a, we performed

32, 100 ns long umbrella sampling simulations12,13 for each
CV, with harmonic constraints centered at smin + iΔs, with i
going from 0 to 31. We used smin = 0.5, 6, and 0.25 Å and Δs =
0.5, 0.167, and 0.25 Å for the HLDA, Rg, and RMSD-based
CVs, respectively. The harmonic constant was k = 3 kBTÅ−2 for
all CVs. The value of the CV was saved every 1 ps, and the FES
was constructed through the weighted histogram analysis
method using the implementation of Grossfield.55

■ ASSOCIATED CONTENT
Data Availability Statement
Example input files, source data, and an example analysis script
to perform ST-iMetaD are available in the GitHub repository:
https://github.com/OfirBlumer/ST-iMetaD.
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