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Abstract

The Carter Center has estimated that the addiction crisis in the United States (US), if continues 

to worsen at the same rate, may cost the country approximately 16 trillion dollars by 2030. In 

recent years, the well-being of youth has been compromised by not only the coronavirus disease 

2019 pandemic but also the alarming global opioid crisis, particularly in the US. Each year, 

deadly opioid drugs claim hundreds of thousands of lives, contributing to an ever-rising death 

toll. In addition, maternal usage of opioids and other drugs during pregnancy could compromise 

the neurodevelopment of children. A high rate of DNA polymorphic antecedents compounds the 

occurrence of epigenetic insults involving methylation of specific essential genes related to normal 

brain function. These genetic antecedent insults affect healthy DNA and mRNA transcription, 

leading to a loss of proteins required for normal brain development and function in youth. 

Myelination in the frontal cortex, a process known to extend until the late 20s, delays the 

development of proficient executive function and decision-making abilities. Understanding this 
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delay in brain development, along with the presence of potential high-risk antecedent polymorphic 

variants or alleles and generational epigenetics, provides a clear rationale for embracing the 

Brain Research Commission’s suggestion to mimic fitness programs with an adaptable brain 

health check (BHC). Implementing the BHC within the educational systems in the US and 

other countries could serve as an effective initiative for proactive therapies aimed at reducing 

juvenile mental health problems and eventually criminal activities, addiction, and other behaviors 

associated with reward deficiency syndrome.

Keywords

Brain health check; Cognition; Dopaminergic dysregulation; Executive function; Reward 
deficiency syndrome; Genetics; Epigenetics

1. Introduction

The purpose of the brain health check (BHC) is to integrate objective assessments 

across cognition, neurological imaging, psychiatry, and genomics to identify youths who 

are at risk for juvenile mental health problems, criminal activities, addiction, and other 

behaviors associated with reward deficiency syndrome (RDS). Identifying vulnerable youths 

through these assessments can provide insights into proper interventions, such as genome-

matched amino acid therapies that can treat reward/dopamine dysregulation and prevent 

the inheritance of epigenetic insults associated with addiction to future generations. Amidst 

the increasing drug abuse crisis in the United States (US) and the potential for long-term 

enormous societal costs, a brain research consortium developed this approach. The group is 

comprised experienced teachers, educators, drug abuse counselors, psychiatrists, clinicians, 

scientists, neuroscientists, geneticists, and addiction medicine physicians, who encourage the 

adoption of the standardized BHC in K1–K12 education. In addition, they endorse basic and 

clinical scientific research into brain health prophylaxis for developing brains.

2. Understanding reward dysregulation and potential therapeutic 

approaches

As defined in the Sage Encyclopedia of Psychiatric Disorders (2017), there is emerging 

evidence of an over-representation of the antecedent to RDS, encompassing both substance- 

and non-substance-related addictive behaviors, within the general US population.

It is well established that dopamine resistance in individuals with food and drug addiction 

is caused by dysfunctional genetic neurotransmitter polymorphisms, such as the A1 allele 

of the DRD2 gene, and epigenetic insults. A burgeoning line of evidence shows that a 

natural, non-addictive, and safe putative D2 agonist may aid in the treatment of and recovery 

from these RDS behaviors in patients addicted to substances. The impact of the patented 

KB220 nutrigenomic technology, known as “Synaptamine Complex,” acts as an activator of 

the mesolimbic system, as observed through quantitative electroencephalography (qEEG) 

imaging. A published pilot study demonstrated that the intravenous administration of 

KB220 was observed to normalize the aberrant electrophysiological parameters of the 
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reward circuitry site.1 The study also revealed that the qEEG graphs of an alcoholic and a 

heroin abuser with existing abnormalities (widespread theta and alpha activity, respectively) 

during protracted abstinence were significantly normalized after the administration of a 

single intravenous dose of KB220® Synaptamine Complex Formulation.1 Both patients 

were genotyped for several neurotransmitter reward genes to determine if they carried 

any putative dopaminergic risk alleles that may predispose them to alcohol or heroin 

dependence, respectively. The genes examined included the dopamine transporter (DAT1, 

locus symbol SLC6A3), dopamine D4 receptor exon 3 VNTR (DRD4), DRD2 TaqIA 

(rs1800497), COMT val158 met SNP (rs4680), monoamine oxidase A upstream VNTR 
(MAOA-uVNTR), and serotonin transporter-linked polymorphic region (5HTTLPR, locus 

symbol SLC6A4). It should be emphasized that these findings stem from case studies, and it 

is improbable for individuals to carry all putative risk alleles. Based on the previous research 

and our qEEG studies, we cautiously suggest that long-term activation of dopaminergic 

receptors may increase their proliferation, leading to enhanced “dopamine sensitivity” and a 

heightened sense of happiness, particularly in carriers of the DRD2 A1 allele.2

The intravenous administration of the Synaptamine Complex Variant KB220 in >600 

alcoholic patients resulted in a significant reduction in RDS behaviors; this effect was 

further supported by an expanded study involving oral KB220Z3 and functional magnetic 

resonance imaging conducted on abstinent heroin addicts.4 For a deeper understanding, 

future studies, including functional positron emission tomography scanning, are required to 

determine the acute and chronic effects of oral KB220Z on the number of D2 receptors 

and its interaction with the nucleus accumbens (NAc). In addition, further confirmation 

of these findings through large, population-based, and case-controlled experiments could 

ultimately lead to significant improvements in the treatment and recovery of patients with 

RDS and dopamine deficiency resulting from disruptions in the transduction of multiple 

neurotransmitter signals within the Brain Reward Cascade (BRC).5

Moreover, recent neuroimaging studies have highlighted the potent effects of KB220Z, 

underscoring the importance of Pro-dopamine regulation along the BRC (Figure 1).

It is also possible that ACH neurons at the NAc ACH can stimulate both muscarinic (red 

hash) and nicotinic (green hash) receptors. Finally, glutamate neurons in the VTA will 

project to dopamine neurons through NMDA receptors (green equal sign) to preferentially 

release dopamine at the NAc (shown as a bullseye), indicating euphoria or a “wanting” 

response. The result is that when dopamine release is low, there can be a state of 

unhappiness characterized by endorphin deficiency. At the same time, general (usual) 

happiness depends on the dopamine homeostatic tonic set point.6 In addition to the 

coronavirus disease 2019 pandemic, there is a global addiction crisis. While being highest 

in the US, the devastation and deaths from drug overdose are global issues requiring “out 

of the box” thinking.7 Even in the face of harm reduction, relying on opioids to treat issues 

caused by other potent opioids seems counterintuitive and perpetuates unwanted addictions.8 

Several investigative groups have been cognizant that addressing the root cause is one 

of the approaches to reducing harm.9,10 Another approach is using a narcotic antagonist 

(like naltrexone) to induce “psychological extinction” through blocking D2 receptors.11 

The latter approach appears more acceptable; however, compliance remains a deterring 
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issue.12 The approved drug acamprosate, an NMDA receptor antagonist and a positive 

allosteric modulator of GABAA receptors, also disrupts dopaminergic signaling.13 The 

growing acceptance of the RDS concept, introduced by Blum in 1995, facilitates the 

common mechanism hypothesis for substance and non-substance addiction. Understanding 

the in-common neuromodulating features of neurotransmission and its disruption through 

chronic exposure to substance and non-substance addictions requires the utilization of an 

approach that involves “dopamine homeostasis.”14

3. Review of evidence

The “out of the box” approach involves coupling genetic risk polymorphic testing with 

a safe and well-researched complex, KB220Z. The KB220Z is customized to match the 

presence of resultant alleles and provide a precision nutraceutical with known prodopamine 

regulatory pharmacological properties.2,15 High-tier publications strongly support a shared 

neuromechanism underlying both substance and non-substance addiction, such as alcohol, 

opioids, gambling, and food.

In the 1970s, Blum’s laboratory developed an amino-acid-based enkephalinase inhibitory 

pro-dopamine regulator with the KB220 nutraceutical complex as its cornerstone ingredient, 

now validated by over 45 clinical studies published in peer-reviewed journals.16,17 The 

basis of this complex is its ability to mimic the BRC,17 an established model of reward 

processing. The most striking feature is the activation of BOLD by the KB220Z across the 

BRC,18 including the NAc, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, 

prelimbic, and infralimbic parts of the prefrontal cortex (PFC). Evidence of genetic 

vulnerability as an antecedent to unwanted RDS behaviors may be a determining factor, 

which could be identified early in life. Based on previously published literature, the role 

of reward gene polymorphisms puts individuals at an increased risk for various forms 

of RDS behaviors, including anhedonia.19,20 This insight spurred the development of the 

patented genetic addiction risk severity (GARS) test, aimed at identifying genetic risk for 

these behaviors. Specifically, published studies have illustrated the coupling of GARS with 

KB220Z formulations of semi-customized precision pro-dopamine regulators tailored to 

one’s GARS profiles.21 The biological approach of this system enhances the effectiveness of 

RDS treatment.22

Balancing the BRC or achieving “dopamine homeostasis” is generally preferred and 

considered a commendable objective, as opposed to interventions that involve blocking 

natural dopamine or administering potent opioids to overcome opioid addiction.21 In the 

face of the current addiction pandemic, we urge addiction neuroscientists and clinicians 

to embrace this innovative technology and establish a “standard of care” for treating 

and preventing addiction and all related RDS neuro-sequala.23 While further research is 

required, it is crucial to establish a set of acceptable guidelines that include an understanding 

of the RDS concept. Understanding neurogenetics by utilizing a “systems biology” approach 

such as precision behavioral management, as outlined herein, seems prudent and represents 

a step forward in restoring well-being to the billions afflicted globally.24–27 In terms of a 

system biology approach, Rosen et al. outlined the theory behind complex trait analysis 

and systems genetics. They describe web-accessible resources, including GeneNetwork, 
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that facilitate rapid exploratory analysis and hypothesis testing. Moreover, GeneNetwork 

is a tightly bioinformatic integrated tool and data set, allowing investigation into complex 

networks of gene variants, molecules, and cellular processes that modulate complex traits 

such as behavior and disease susceptibility. This technique will enable scientists to analyze 

gene expression across various specific brain regions and tissues, explore genetic covariance 

among traits, and map loci that modulate these traits. Rosen et al. further suggested 

that these tools enable investigators to assess the complex interactions of gene networks, 

employing a systems approach.28

4. Neurogenetic and epigenetic correlates of adolescent predisposition to 

and risk for addictive behaviors as a function of PFC dysregulation

Within the medical community, especially among addiction professionals, there is growing 

concern about how preteens, adolescents, and young adults turn to substance abuse to cope 

with stress and anger. The turbulence of the underdeveloped central nervous system (CNS), 

especially the PFC, underscores the need for continued neuroimaging studies in both human 

and animal models, as well as encourages preventive measures and regulatory actions taken 

by governmental bodies.

The PFC is known to undergo significant developmental changes before individuals reach 

their 20s, impacting decision-making ability within this population. Furthermore, early 

genetic testing for addiction risk alleles will provide valuable information that could 

potentially be utilized by parents and caregivers before any psychoactive drug use begins. 

Beyond genomic testing, a more straightforward approach could be the widespread adoption 

of a standard BHC, such as school fitness programs.

Family history, parenting styles, and relationship attachments, modified by various reward 

genes, including the well-known bonding substances oxytocin/vasopressin, may affect 

dopaminergic function. In addition, well-characterized neuroimaging studies indicate region-

specific differential responses to drugs, food, and non-substance-addictive behaviors via 

either “surfeit” or “deficit.”29,30 Therefore, a “reward deficiency solution system” that 

combines early genetic risk assessment, medical monitoring, including a BHC, and 

nutrigenomic dopamine agonist modalities to combat reward deficiency risk may help 

address the global crisis that is hindering youth from leading normal, productive, and 

happier lives.31

Unlike fully developed adults, preteens transitioning into adolescence may lack adequate 

decision-making capacity due to incomplete brain development and myelination. The PFC 

area, known as the “braking/inhibitory system,” supports executive function and decision-

making but can be hijacked by subcortical structures in the midbrain. Impairments in the 

midbrain region, which regulates social and emotional responses, may lead to deficits in 

neurotransmitter function.

We must be cognizant of the impact of stress on the brain’s developmental process 

and how substance abuse, such as alcohol, cocaine, and opioids, alters the integrity of 

white and gray matter volume.32 Furthermore, it is well known that myelination in the 
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PFC begins when people are in their early 20s.33–40 Myelination regulates brain speed 

and can be compromised by stress and drug exposure, especially during prenatal and 

other developmental phases.37–39 During the turbulent years before adulthood, youth may 

encounter stressful situations, resulting in frustration that could trigger epigenetic changes 

that exacerbate genetic antecedent risk for drug abuse.40,41 The D2 dopamine receptor 

(DRD2) is the most extensively investigated gene in diverse neuropsychiatric disorders. 

Numerous international studies have been performed since the first association of the TaqI 

A DRD2 minor (A1) allele with severe alcoholism in 1990. As of October 10, 2022, there 

are 5351 articles listed in PUBMED, with 120 meta-analyses yielding mixed results. In our 

opinion, negative reports on the association of various DRD2 gene polymorphisms are due 

to poorly screened controls, resulting in the non-elimination of many hidden RDS behaviors. 

Moreover, pleiotropic effects of DRD2 variants have been observed in neurophysiologic, 

neuropsychologic, stress response, social stress defeat, maternal deprivation, and gambling 

disorders, whereby epigenetic DNA methylation and histone post-translational negative 

methylation have been identified in many citations.14,42–56 Methylation of DRD2 has been 

observed in many facets of addiction, including increased striatal response to reward cues 

in alcoholics,54 decreased functional connectivity of the executive control network,43 and 

withdrawal.44,46 Blum and Noble characterized the DRD2 Taq A1 allele as a generalized 

reward gene rather than one specific to alcoholism. This underscores the need for the field 

to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly 

harness the idea of potentially removing negative mRNA-reduced expression by inducing 

“dopamine homeostasis.”

It is important to consider oxytocin as a crucial element in inducing dopamine balance 

within the brain. Evidence suggests an important interaction between oxytocin/vasopressin 

and dopamine function, as demonstrated by Modestino et al.57 This important interaction 

should not be ignored, especially in instances of antisocial behavior in youth, including 

those with conditions such as autism spectrum disorder.58

5. Opting for immediate satisfaction relative to delayed higher reward 

value in you

According to Volkow and Baler,41 it is imperative and critical for survival to learn how to 

balance behaviors that provide a reward NOW versus behaviors that provide an advantage 

LATER. Specifically, Volkow’s group proposed a model in which dopamine can favor NOW 

processes through phasic signaling in reward circuits or LATER processes through tonic 

signaling in control circuits. At the same time, through modulation of the orbitofrontal 

cortex, which processes salience attribution, dopamine enables shifting from NOW to 

LATER. In addition, modulation of the insula, which processes interoceptive information, 

influences the probability of selecting actions NOW versus LATER based on an individuals 

physiological state. Disruptions along these circuits contribute to diverse pathologies, 

including obesity, excessive reward-seeking behaviors, and various types of addiction.59

It is noteworthy that adolescents with a family history of substance use disorder (SUD) 

are at a greater risk for SUD. Rodriguez-Moreno et al.60 suggested that this may be partly 
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attributed to the inheritance of behavioral impulsivity. They employed a delay discounting 

task to compare impulsivity in decision-making and its associated brain functioning among 

adolescents with and without a family history of substance abuse. During the task, subjects 

had to choose between “smaller, sooner” or “larger, later” rewards. The group with a family 

history of substance abuse displayed greater impatience by responding to “smaller, sooner” 

rewards more frequently compared to those without a family history of abuse. Behavioral 

impulsivity is ascribed to the differential developmental trajectories of two brain systems 

in young individuals. To provide clarity for those unfamiliar, it is known that children can 

be described with regard to how closely they are functioning to age-expected development 

in the three early childhood outcomes measured for federal reporting purposes. This is 

evaluated by collecting a variety of formative assessment data and using it to rate the child’s 

functioning on a 1 – 7 Likert scale, with 6 and 7 being the age-expected functioning level. 

In fact, the aim is to link performance with age expectation by comparing the functioning 

of children with disabilities to those developing according to age expectation. Specifically, 

Steinberg61 reported on the dominating role of the socioemotional brain systems in driving 

reward-seeking behavior in the face of an underdeveloped self-regulatory system. Casey’s 

group62,63 suggested that adolescent developmental changes are hierarchical in subcortical 

and cortical regions and their interconnections. For clarity, a hierarchy (from Greek: 

ἱεραρχία, hierarkhia, “rule of a high priest,” from hierarkhes, “president of sacred rites”) 

is an arrangement of items (objects, names, values, categories, etc.) represented as being 

“above,” “below,” or “at the same level as” one another.

Most importantly, it is plausible that in adolescence, over-activation of the brain’s reward 

system and under-activation of the cognitive control brain mechanisms can lead to unwanted 

substance-seeking behavior driven by impulsivity and sensation-seeking tendencies.64 

Others suggested that choosing Now versus Later involves developmental changes that load 

onto poor decisions due in part to an undeveloped reward and cognitive control system, 

unlike their adult counterpart.65–69

6. Cognitive impairment in youth

In terms of cognitive impairment, especially concerning deficient executive cognitive 

functioning (ECF) in children, Aytaclar et al.70 reported that early adolescents at high 

risk for addictive behavior due to fathers with SUD demonstrated significantly poorer 

performance on ECF compared to lower risk adolescences. High-risk individuals in early 

adolescence displayed an earlier initiation of cannabis use and a greater prevalence of 

lifetime cannabis and tobacco use. Importantly, the level of ECF activity was predictive of 

the severity of drug involvement, including conduct problems and the number of drugs ever 

tried.

Several contributing factors are associated with cognitive impairment in youth, including but 

not limited to excessive opioid/alcohol intake in mothers during pregnancy,71,72 substance 

abuse, food addiction, and neuropsychiatric illnesses such as attention deficit hyperactivity 

disorder (ADHD) and attention deficit disorder.73 Bihlar Muld et al.74 highlighted that the 

clinical characteristics of patients with both ADHD and SUD differed from those with 

only SUD or ADHD and other psychiatric conditions, indicating the disabling nature of 
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ADHD when combined with SUD. Specifically, the combination of severe substance abuse 

and ADHD resulted in poor general cognitive ability, including antisocial behavior. In 

addition, disruptions in the nascent synaptic networks and glia induced by opioids can 

impact brain connectivity and cognition after the opioid supply is abruptly stopped after 

birth.75 Neuroimaging has revealed abnormalities in brain structure, including cortical 

development, white matter microstructure, and functional connectivity, in newborns with 

fetal alcohol syndrome. These impairments in brain development modify developmental 

trajectories, leading to deficits in cognition, executive function, memory, behavior, and 

social adaptation.72 These catastrophic deficits in brain development pose risks for 

impending RDS behaviors, including SUD.

Undoubtedly, the prevalence of sugar in food and beverages has led to excessive 

consumption across all age groups, especially children and adolescents. It is staggering 

to note that over 60 countries consume sugar more than 4 times (>100 g/person/day), 

exceeding the World Health Organization’s (WHO) recommendations (25 g/person/day). 

Utilizing a validated mouse model, Beecher et al.73 reported that prolonged sugar 

overconsumption induces an abnormal response to novelty and changes both episodic and 

spatial memory. Their findings revealed that hippocampal-dependent learning and memory 

deficits accompany altered hippocampal neurogenesis. Specifically, there was an overall 

reduction in the proliferation and differentiation of neurons, especially within the dentate 

gyrus of newborns.

While the global obesity epidemic has been widely publicized in the media, understanding 

the evolution of sugar addiction could shed light on this dilemma. Avena’s group76 

highlighted that the dopaminergic system in the mesolimbic region of the human brain 

is involved in hedonic rewards as a function of eating highly addictive, palatable foods like 

sugar. Particularly interesting is the role of acetylcholine in counteracting the dopaminergic 

surge as a plausible mechanistic action to help curb uncontrollable sugar cravings.

7. Proposing BHC as a novel program in the US’s educational system

In 2021, over 100,000 individuals died prematurely from an opioid overdose. 

Neuropsychiatric and cognitive impairments are underreported comorbidities of reward 

dysregulation due to genetic antecedents and epigenetic insults. Recent genome-wide 

association studies involving millions of subjects revealed frequent comorbidity with SUD 

in a sizeable meta-analysis of depression.77 Significant associations were identified between 

the expression of NEGR1 in the hypothalamus and DRD2 in the NAc, among other genetic 

factors. However, despite the rise in SUD and neuropsychiatric illness, especially in youth, 

routine standard objective assessments of brain function remain absent.

The importance of exercise programs in the global educational system was emphasized in 

2020 by the release of updated global guidelines by the WHO on physical activity and 

sedentary behavior for children, adolescents, adults, older adults, sub-populations such as 

pregnant and postpartum women, and those living with chronic conditions or disabilities. 

According to Chaput et al.,78 increased and higher intensities of physical activity, as well as 

a diversity of physical activity (i.e., aerobic, muscle, and bone strengthening activities), are 
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associated with improved health outcomes (primarily intermediate outcomes), as supported 

by various systematic reviews. Similarly, Thanos’s group79 reported that exercised rats 

had 18% and 21% lower dopamine D1R-like binding levels than sedentary rats within the 

olfactory tubercle and NAc shell, respectively. In addition, there was greater dopamine 

D2R-like binding in the NAc core (24%) and shell (25%) of exercised rats compared with 

sedentary rats. These observations support the hypothesis that aerobic exercise results in 

changes in the mesolimbic pathway that could mediate exercise-induced attenuation of 

drug-seeking behavior. The role of exercise, especially in the educational system, may have 

potential benefits for assisting school-age children with a positive family history of SUD, for 

example, through formal fitness programs.80

We propose that integrating existing education-based fitness programs with a standard 

BHC could synergistically not only improve the health of individuals but could also 

facilitate early identification of cognitive impairments. For early identification of cognitive 

abilities, DNA analysis through genetic testing, such as the GARS test, could provide 

important information, reflecting students’ brain neurotransmitter function at a genetic 

level.19,21,78,80,81

The rationale for encouraging a standard objective BHC is to acquire an extensive dataset 

to treat clinical syndromes in psychiatric patients and high-risk populations. While we 

advocate for implementing a generalized BHC across all K1–K12 students, its importance 

is especially pronounced for high-risk children attending “recovery high school (RHS).” 

Spearheaded by one of us (AJF) and others is the needed development of RHSs that provide 

a supportive educational and therapeutic environment for students following SUD treatment. 

According to Weimer et al.,82 most students served by RHSs have concurrent mental health 

disorders and are at risk for school failure, dropout, and substance use relapse. Fairly 

recently, RHS student high school graduation rates were 21 – 25 percentage points higher 

compared to students not attending RHS.82 This finding was statistically significant, albeit 

with limitations related to non-randomized design, selection bias in the study conditions, and 

uncertainty in calculating school costs. In another study by Tanner-Smith et al.,83 students 

attending RHS exhibited less frequent delinquent behavior while intoxicated and fewer days 

of substance use after discharge from SUD treatment than students attending non-RHS. 

Therefore, we propose RHS students as suitable candidates to test out the utilization of the 

BHC.

The proposed BHC comprises a set of reliable, accurate, and cost-effective objective 

assessments involving the following domains: (i) episodic and general memory; (ii) 

processing speed; (iii) attention; (iv) neuropsychiatry; and (iv) neurological imaging. After a 

review of over 36 years of computerized and written assessments primarily from PUBMED 

of memory, attention, psychiatric, and neurological imaging, the following recommendations 

have been selected for inclusion in the BHC: (i) MemTrax (episodic memory and 

processing speed); (ii) CNS vital signs (general and remote memory); (iii) test of variables 

of attention (attention); (iv) millon clinical multiaxial inventory III (neuropsychiatric); 

and (v) quantitative electroencephalogram/P300/evoked potential (neurological imaging). 

Continued research aims to simplify the BHC by including qEEG/P300/evoked potentials 

and genetically guided precision induction of “dopamine homeostasis.”84 This approach 
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allows the assessment and treatment of reward deficiency and helps prevent dopamine 

dysregulation from being epigenetically transmitted to future generations.

During adolescence, developmental changes in the neural circuitry of reward processing, 

motivation, cognitive control, and stress may contribute to vulnerability to increased 

engagement in substance use and nonsubstance addictive behaviors.85 It has been suggested 

that the adolescent’s liability for addictions involves changes in the function and structure 

of the midbrain dopaminergic system, genetic antecedents, and epigenetic insults such as 

stress-induced neuroplasticity, contributing to imbalances between cognitive control and 

reward response.

Potenzas’ group85 suggests that leveraging genetics, epigenetics, and intermediate 

phenotypes/endophenotypes may help identify children and adolescents at risk. Once 

identified, it is crucial for these individuals to participate in a guidance program, essentially 

brain health coaching (BHCo). The advent of molecular neurobiological tools to uncover 

neurotransmitter cascade surfeits or deficits and possibilities for restoring dopamine balance 

across these brain regions, including the PFC, can improve screening of cognitive abilities, 

which would enhance prevention and intervention approaches. However, implementing 

changes in educational programs requires top-down public policy strategies. A detailed 

description of our proposed BHC can be found in Braverman et al.86

8. Epigenetics of reward processing in adolescence

It is widely acknowledged that the adolescent brain matures through a prolonged 

reorganization of gray matter, white matter, and associated neurochemical systems. 

Interestingly, this period of enhanced cognitive ability in adolescents coincides with a 

reduction in cortical gray matter thickness, resulting from epigenetic experience-dependent 

loss of synapses and a concomitant strengthening of the remaining connections.87–89 

In addition, during adolescence, gray matter volume and density decrease in the brain, 

specifically in the parietal cortex, PFC, and basal ganglia, all of which are critical for 

executive function, motivated behaviors, and sensory processing.34,90,91 Furthermore, Paus89 

demonstrated that there were corresponding increases in white matter, potentially reflecting 

augmented myelination and axonal diameter, leading to enhanced efficiency of impulse 

transduction. Notably, Gogtay et al.92 observed that phylogenetically older brain regions 

mature earlier than the newer ones. This delayed, uneven maturation of subcortical, 

emotional, and reward-focused systems, including cortical executive and impulse control 

systems, could underlie many RDS behaviors, including SUD.93–95

The prevalence of mental health disorders, including addictive behaviors, in children and 

adolescents has increased at least two- to three-fold from the 1990s to the present day.87 

According to Monaco,95 one plausible mechanistic reason for this increase may be the 

transmission of altered brain circuits epigenetically across generations through non-DNA-

based mechanisms (intergenerational and transgenerational effects). These epigenetic insults 

to the developing brain may be due to a family history of SUD, obesity, or a poor diet (e.g., 

processed, palatable foods). These insults may cause intergenerational and transgenerational 
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effects for at least up to 2 years, influencing set points in neuropathways integrating sensory-

motor, reward, and feeding behaviors.

In line with this, Hurd’s group linked parental THC exposure in rats to reduced 

proenkephalin mRNA expression in the NAc during early development, along with elevated 

expression during adulthood. Perinatal THC exposure also resulted in shorter latency to 

the first active lever press, greater responses to low heroin doses, and more heroin-seeking 

during mild stress and after extinction.96 Studies by Yuan et al.,97 and others98 reveal that 

persistent alterations in neuronal signaling and cognitive ability result from chronic nicotine 

exposure, likely due to altered dopamine function in the brain. Dopamine D2 receptor 

activation of fast-spiking interneurons in the PFC does not occur until late adolescence, 

along with the recruitment and maturation of local GABAergic activity.99,100 In addition, 

Tseng and O’Donnell99 point out that D1-NMDA receptor interactions in cortical pyramidal 

neurons that are necessary for mature cognitive and attentional processing continue to 

develop during this period. Flores-Barrera et al.101 discovered that ventral hippocampal 

input to the medial PFC is strengthened during late adolescence due to the D1 receptor-

mediated emergence of NMDA receptor GluN2B subunit function. Unfortunately, in the 

mesolimbic system, particularly in the NAc, D1 and D2 receptor responses are immature, 

leading to reduced synaptic interaction between NAc and the PFC.102 Furthermore, 

the stimulation of the D2 receptor has an age-specific influence on AMPA-evoked cell 

excitability, and interactions between D2 and AMPA receptors elicit the activation of GABA 

interneurons, primarily in adults but not adolescents.103 In summary, these observations 

suggest a functional switch in reward processing during adolescent development mediated 

by dopamine regulation of GABA interneurons. It is well known that enhanced GABA 

transmission following chronic alcohol intake significantly reduces dopamine release at 

the NAc.104 In addition, stimulation of GABAB receptors inhibits dopaminergic VTA 

neurons.105 However, Pandey’s group demonstrated that the inhibition of VTA neuronal 

firing by bath‐applied GABA is primarily mediated by GABAA receptors.106

The risk of all addictive drug and non-drug behaviors, especially in the unmyelinated 

PFC of adolescents, is both critical and complex. Many animal and human studies 

have highlighted the epigenetic impact on the developing brain in adolescents compared 

to adults. Some studies reveal an underlying hyperdopaminergia, which predisposes 

young individuals to risky behaviors by inducing high quanta presynaptic dopamine 

release at reward site neurons. In addition, altered reward gene expression in adolescents 

caused by epigenetically transferred social defeat, such as bullying, can persist into 

adulthood. However, there is also evidence that overstimulating epigenetic events can elicit 

adolescent hypodopaminergia. This complexity (Figure 2) suggests that neuroscience cannot 

definitively claim that all adolescents carry a hyperdopaminergic trait. To help dissect these 

seemingly opposing views, Blum’s laboratory reported a high risk for any addictive behavior 

(hypodopaminergia), especially drug-seeking (95%) and alcohol-seeking (64%) based on 

GARS testing of 24 Caucasians, ages 12–19 (derived from families with RDS). These 

results, although from a small cohort, should encourage further extensive studies in this area.

Mental disorders are widespread globally, influencing every community and age group, 

and contribute substantially to the overall disease burden, with major economic and social 
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consequences as well as effects on human health and rights. Alarmingly, the largest 

inequities exist across nations, with 80% of people affected by mental disorders living in 

low- and middle-income countries, which benefit from scarcely 10% of global mental health 

resources. Unfortunately, poor rural areas in the US experience a significantly higher rate of 

mental disorders, including RDS behaviors such as SUD. Furthermore, due to low income 

and high juvenile delinquency in rural communities, possibly linked to cognitive inabilities 

such as poor decision-making, the recommendation of a standard BHC seems prudent. 

While globally accepted diagnostic categories and classifications, such as the Research 

Domain Criteria project, WHO International Statistical Classification of Diseases-11, or 

DSM-5, can help overcome global mental health challenges, our concern is that anomalous 

brain activity is not being adequately considered within the context of “systems biology,” 

neglecting educational, economic, and behavioral consequences that require appropriate 

and effective interventions. The best approach to achieving positive clinical outcomes is 

to initiate novel strategic alternative modalities targeting the etiology rather than just the 

symptoms.107,108

9. Positive thinking in adolescence

Positive emotions and cognition have been widely recognized for their beneficial effects on 

overall mental health and well-being, particularly when people focus on positive thought 

processes. In positive psychology, the goal is typically to engender character traits such 

as optimism and hope, which reduce anxiety and depression while fostering strong social 

interactions.109 There are many interventions aimed at developing and adjusting emotional 

and social skills in school, such as social and emotional learning programs110 or positive 

youth development interventions.111 However, research concerning positive thinking in 

adolescents has been relatively limited.112 Data indicate that negative emotions, such 

as anxiety or depression, are associated with the dysregulation of the amygdala – PFC 

circuitry.113 Positive emotional words are associated with increased activation in the ventral 

medial PFC.114 Other studies have uncovered important connections between positive 

emotions and brain processes relevant to prosocial behaviors. For example, a study of 

the positive emotion of professional pride revealed a relationship to empathy, reward, and 

emotion regulation, as well as the theory-of-mind network.115

From a neurotransmitter perspective, positive emotions are associated with increases in 

dopamine function within the reward network.116–119 Altered activity in serotonin modulates 

negative emotional responses.120 Oxytocin, which supports affiliative behaviors, may 

also play a role in responses to positive versus negative emotional processes.121 Thus, 

fostering positive emotions and implementing interventions that support them lead to 

substantial changes in the brain, involving various areas associated with reward, positive 

self-image, prosocial behaviors, and empathy. Working toward instilling positive emotions 

in adolescents is likely to yield short- and long-term benefits regarding their overall mental 

health and well-being.
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10. Conclusion

Importantly, initial engagement in rehabilitation and detoxification bears similarities to 

experiencing a first stroke or heart attack in that the brain has already been impacted 

by pathological events that led to the manifestations of SUD and the need for treatment. 

The tools to prevent the progression of SUD are available and must be implemented 

urgently because deaths attributed to SUD have continued to increase unabated. Therefore, 

a reexamination of approaches to brain health and addiction and novel perspectives needs to 

be implemented by the medical community.

The clinical evidence accumulated during the past three decades underscores the necessity 

for establishing a BHC focused on precision neuropsychiatric testing, including episodic 

memory and processing speed (MemTrax),122–124 general memory (CNSVS),125–130 

attention (T.O.V.A),131–137 neuropsychiatric (MCMI-III),138–140 and neurological imaging 

(qEEG/P300/EP),131,137,141–154 for patients at risk of or presenting with problematic drug 

misuse. Since addiction is related to learning mechanisms, refocusing on learning and 

memory may change the perspective on the beneficial use of these brain mechanisms. For 

example, the online program MemTrax (www.memtrax.com) can help individuals monitor 

their memory as frequently as needed and observe how it is being impacted by substance 

abuse. Such feedback can lead to behavioral improvements and serve as a valuable tool for 

those providing therapeutic interventions, such as BHCo.

One of the basic neurochemical mechanisms in the brain, the midbrain dopamine system, 

participates in pacing critical cognition functions, including reward and the facilitation 

of addictive behaviors.155–158 A study conducted by Rouhani and Niv,155 through fitting 

reinforcement learning models to behavior, demonstrated that both signed (cue predicting 

the reward) and unsigned (unexpected, surprising reward) prediction errors (RPEs) 

contribute to learning by modulating the learning rate. They further characterized the 

effects of these RPE signals on memory, demonstrating that both signed and unsigned 

RPEs augment memory, aligning with midbrain dopamine and locus-coeruleus modulation 

of hippocampal plasticity. Further research by this group supports the complex nature of 

reward and learning involving dopaminergic mechanisms.156 Finally, Katzman and Hartley’s 

work indicates that both children and adults tend to remember past events more when 

the value of choice is beneficial compared to non-beneficial.157 These proposed BHC/

BHCo can be used as a standardized approach for school-aged children, akin to fitness 

programs. Our suggestion introduces a set of objective brain assessments parallel to those 

used in cardiology for diagnosing and following the clinical course of cardiac diseases. 

The coaching approach, including close evaluation and management guidance (including 

GARS testing and subsequent KB220z variant matching), could easily be adapted for 

implementation throughout the US and global educational systems. We understand that 

this initiative would require a substantial and bold approach to the care of the general US 

population. This commission believes that the BHC/BHCo would synergize with current 

fitness programs, particularly in addressing co-occurring RDS behaviors. Thanos et al.158 

underscore the role of exercise in preventing the initiation of cocaine use in adolescence, 

suggesting that the implementation of exercise programs might be an important preventive 

measure and significantly improve students’ mental health. Based on the reviewed research, 
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this appeal promises to stop/prevent the increased prevalence of SUD through early 

detection utilizing robust brain screening159–209 as recently proposed by the Society of 

Brain Mapping and Therapeutics,84 as well as psychological and pharmacological treatment 

approaches espoused herein.210–257

Notably, each year, over a million adolescents globally succumb to preventable or treatable 

causes. Psychosocial factors are the strongest factors associated with drug abuse, bullying, 

attempted suicide, and sleep deprivation resulting from bullying.258–316 The Carter Center 

has estimated that the addiction crisis, if continues to worsen at the same rate, may cost 

the US approximately 16 trillion dollars by 2030. Furthermore, the neurodevelopment 

of children could be compromised by maternal usage of opioids and other drugs during 

pregnancy. A high rate of DNA polymorphic antecedents compounds the epigenetic insults 

involving the methylation of specific essential genes related to normal brain function. 

Myelination in the frontal cortex, a process known to extend until the late 20s, delays 

proficient executive function and decision-making abilities. Understanding this delay in 

brain development, along with the presence of potential high-risk antecedent polymorphic 

variants or alleles and generational epigenetics, provides a clear rationale to mimic fitness 

programs with an adaptable BHC. Implementing the BHC within the educational systems in 

the US and other countries might be a good starting point for proactive therapies aimed at 

reducing juvenile mental health problems and, eventually, criminal activities, addiction, and 

other behaviors associated with RDS.
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Figure 1. 
Interaction of at least eight major neurotransmitter-pathways involved in the brain 

reward cascade. In the hypothalamus, environmental stimulation triggers the release of 

serotonin, which, through receptors such as 5HT-2a, activates (green equal sign) the 

subsequent release of opioid peptides from opioid peptide neurons, also located in the 

hypothalamus. These opioid peptides, in turn, exert two distinct effects, possibly through 

two different opioid receptors. One effect inhibits (red hash sign) the mu-opioid receptor 

(possibly through enkephalin) and projects to GABAA neurons in the substantia nigra. 

The other effect stimulates (green equal sign) cannabinoid neurons (e.g., anandamide 

and 2-arachidonoylglycerol) through beta-endorphin-linked delta receptors, which further 

inhibit GABAA neurons in the substantia nigra. In addition, cannabinoids, primarily 2-

arachidonoylglycerol, when activated, can indirectly disinhibit (red hash sign) GABAA 

neurons through the activation of G1/0 coupled to CB1 receptors in the substantia nigra. Not 

depicted in the figure, the dorsal raphe nuclei feature glutamate neurons that can indirectly 

disinhibit GABAA neurons in the substantia nigra through activation of GLU M3 receptors 

(red hash sign). When stimulated, GABAA neurons powerfully (red hash signs) inhibit 

VTA glutaminergic drive through GABAA neurons. It is also possible that stimulation of 

ACH neurons at the NAc can stimulate both muscarinic (red hash) and nicotinic (green 

hash) receptors. Glutamate neurons in the VTA project dopamine neurons through NMDA 

receptors (green equal sign) to preferentially release dopamine at the NAc, resulting in a 

sense of euphoria, or “wanting” response. Figure 1 also depicts that GLP1 from the nucleus 

tractus solitarius stimulates GABAA in the Substantia Nigra. As a result, dopamine release 

is low (endorphin deficiency), followed by feelings of unhappiness. On the other hand, 

overall (healthy) happiness depends on the optimal balance of dopamine, regulated by the 

dopamine homeostatic tonic set point.6
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Figure 2. 
A conceptual schematic that summarizes reward dysregulation in youth and how the reward 

deficiency solution and brain health check can be used to diagnose and treat reward 

dysregulation.
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