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ABSTRACT
Actinomyces organisms reside on mucosal surfaces of the oropharynx and the genitourinary 
tract. Polymicrobial infections with Actinomyces organisms are increasingly being reported in 
the literature. Since these infections differ from classical actinomycosis, lacking of specific 
clinical and imaging findings, slow-growing Actinomyces organisms can be regarded as 
contaminants or insignificant findings. In addition, only limited knowledge is available 
about novel Actinomyces species and their clinical relevance. The recent reclassifications 
have resulted in the transfer of several Actinomyces species to novel genera Bowdeniella, 
Gleimia, Pauljensenia, Schaalia, or Winkia. The spectrum of diseases associated with specific 
members of Actinomyces and these related genera varies. In human infections, the most 
common species are Actinomyces israelii, Schaalia meyeri, and Schaalia odontolytica, which 
are typical inhabitants of the mouth, and Gleimia europaea, Schaalia turicensis, and Winkia 
neuii. In this narrative review, the purpose was to gather information on the emerging role of 
specific organisms within the Actinomyces and related genera in polymicrobial infections. 
These include Actinomyces graevenitzii in pulmonary infections, S. meyeri in brain abscesses 
and infections in the lower respiratory tract, S. turicensis in skin-related infections, G. europaea 
in necrotizing fasciitis and skin abscesses, and W. neuii in infected tissues around prostheses 
and devices. Increased understanding of the role of Actinomyces and related species in 
polymicrobial infections could provide improved outcomes for patient care.

Key messages

● Due to the reclassification of the genus, many former Actinomyces species belong to novel 
genera Bowdeniella, Gleimia, Pauljensenia, Schaalia, or Winkia.

● Some of the species play emerging roles in specific infection types in humans.
● Increasing awareness of their clinical relevance as an established or a putative pathogen in 

polymicrobial infections brings about improved outcomes for patient care.
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Introduction

Many Actinomyces taxa are considered human patho
gens despite of being part of the commensal micro
biome at various sites of the human body. The 
causative role of Actinomyces israelii (Streptothrix 
israeli) in classical actinomycosis is known since the 
late nineteenth century [1]. In this endogenous infec
tion, the etiological gram-positive organism gains 
access to deeper tissues via trauma, surgical proce
dures, or foreign bodies, thus disrupting the mucosal 
barrier, and when inside the tissue, typical branching, 
filamentous Actinomyces cells form bacterial aggre
gates [2,3]. The presence of hard ‘sulfur granules 
(grains)’ are considered confirmatory characteristics 
for actinomycotic lesions. Actinomycosis is a chronic 
disease, proceeding slowly and forming local 
abscesses with sinus tracts and pus secretion. A recent 
PubMed search with the key word ’actinomycosis’ 
revealed over 8.300 articles, but around half of them 
are case reports where, notably, diagnosis is often 

based only on clinical findings with rather unspecific 
general symptoms like cough and fever and on his
topathological samples (but where hard ‘sulfur gran
ules’ can be absent). It is noteworthy that when 
microbiological diagnostics is missing, the causative 
agent remains unknown.

Only a minority of infections caused by 
Actinomyces organisms in humans seems to possess 
classical characteristics of actinomycosis with specific 
clinical, imaging, and histological findings. It is likely 
that considerable part of infectious cases where 
Actinomyces organisms are involved lack typical acti
nomycotic lesions, and instead, are other types of 
infections [2]. When the indicated species is present 
as a member of polymicrobial infectious consortia, 
like in abscesses at various locations, its clinical rele
vance may be underestimated due to challenges in 
recognizing its involvement in polymicrobial infec
tions. Since advanced methods are now available for 
bacterial detection and identification in clinical 
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microbiology laboratories, this improves the species- 
level information and gradually accumulates knowl
edge about their clinical significance. In a compre
hensive review on Actinomyces and related organisms 
[2], the gathered literature indicated that there are 
‘preferred’ body sites and infection types where indi
vidual Actinomyces species seem to play an important 
role.

Recently, Bartlett et al. [4] published an extensive 
search for human bacterial pathogens described 
before 2021. A bacterial species was dedicated as 
pathogenic, if isolated either at the site of sympto
matic infection or when with a toxin-mediated illness 
acting at another site. Pathogens were defined either 
as ‘established’ (at least three references relating to 
three or more infected individuals) or ‘putative’ (less 
than three known cases). In other words, the species 
in the latter category need for further reports until 
the confirmation of their established pathogenicity. 
Notably, among the top-10 bacterial genera housing 
most pathogen species was Actinomyces, with 16 
established and 10 putative pathogen species [4].

The aims of the present narrative review are to 
give an overview on Actinomyces organisms in poly
microbial infections, considering their changing tax
onomy, and to focus on a few species playing 
emerging roles in specific infection types in humans.

Current taxonomy and challenges in 
detecting clinical relevance of the taxa

In the twenty-first century, the Actinomyces genus 
expanded considerably, doubling the number of 
validly published Actinomyces species colonizing 
humans [2]. A recent genome-scale taxonomic ana
lysis performed by Nouioui et al. [5] determined the 
phylogenetic position of the phylum Actinobacteria 
(currently Actinomycetota [6]), and this resulted in 
five novel genera, Bowdeniella, Gleimia, Pauljensenia, 
Schaalia, and Winkia, hosting part of former 
Actinomyces species isolated from human clinical 
specimens. Table 1 presents the validly published 
species with changes in their taxonomy; the human 
species within the five novel genera currently include 
Bowdeniella nasicola, Gleimia europaea and G. homi
nis, Pauljensenia hongkongensis, Schaalia cardiffensis, 
S. funkei, S. georgiae, S. meyeri, S. odontolytica, S. 
radingae, and S. turicensis, and Winkia neuii with 
its two subspecies anitrata and neuii [5,7]. In addi
tion to this expansion and reclassifications, a plethora 
of species-level taxa is waiting to be characterized 
and/or approved (https://lpsn.dsmz.de/search?word= 
actinomyces).

It is worth mentioning that most of the 
Actinomyces species described in the twenty-first cen
tury are based on a single strain or a few strains from 
clinical specimens. Therefore, it is unclear what is 

their habitat/source, and since some species grow 
slowly, forming tiny, undistinguished colonies, they 
may easily remain unnoticed in clinical samples. 
Furthermore, many species within Actinomyces and 
related genera differ from a typical branching-rod cell 
morphology of A. israelii; for example, A. radicidentis 
has coccoid cells [8], while some species like G. euro
paea and S. meyeri are short rods [9,10], and W. neuii 
with its two subspecies appear as diphteroidal, non- 
branching rods [11]. These atypical morphologies 
may result in failure to identify them as being 
Actinomyces organisms in direct Gram stain of the 
specimen, leading to a misinterpretation as ‘normal 
flora contaminants’. Thus, their potential involve
ment in different pathologies may be unrecognized 
and, in such way, the data in the literature accumu
late slowly.

Detection and impact of commensals as 
infecting agents

Members of Actinomyces and related genera are con
sidered commensals at different body sites, their 
major habitats being the oral cavity, pharynx, distal 
esophagus, and the genitourinary tract [2]. However, 
they are also capable of acting as indigenous causative 
agents in various types of human infections more or 
less from head to toe.

Species within the genera Actinomyces and 
Schaalia, in particular, are among the common colo
nizers of the human mouth where A. naeslundii and 
A. oris are known as basic components of dental 
biofilms [12]. In our previous studies on the devel
opment of oral and nasopharyngeal anaerobic micro
biotas in young children, a strict longitudinal follow- 
up was designed for collecting saliva and nasophar
yngeal samples from 50 infants aged 2 months at 
baseline, and again in scheduled visits four times 
continuing up to 2 years of age [13,14]. For 
Actinomyces, comprehensive culture techniques were 
used and an advanced identification flowchart, 
including a variety of phenotypic, enzymatic, and 
fermentation reactions, was developed [15]. We 

Table 1. Updated taxonomy of validly published Actinomyces 
species in humans [5,7].

Former Actinomyces sp. Current taxonomy

A. nasicola Bowdeniella nasicola
A. europaeus Gleimia europaea
A. hominis Gleimia hominis
A. hongkongensis Pauljensenia hongkongensis
A. cardiffensis Schaalia cardiffensis
A. funkei Schaalia funkei
A. georgiae Schaalia georgiae
A. meyeri Schaalia meyeri
A. odontolyticus Schaalia odontolytica
A. radingae Schaalia radingae
A. turicensis Schaalia turicensis
A. neuii Winkia neuii
subsp. neuii subsp. neuii
subsp. anitratus subsp. anitrata
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found S. odontolytica in saliva of 30% of the preden
tate infants at baseline. Unlike S. odontolytica, most 
Actinomyces species did not appear until tooth erup
tion; however, a classical pathogen A. israelii was 
mainly absent during the follow-up. We made a spe
cial effort to detect the newly described Actinomyces 
species, but it seems that many of them are rare 
colonizers in the oral cavity or establish later in life, 
if ever. Interestingly, this study was the first to 
demonstrate A. graevenitzii as an oral species [13]. 
Nasopharyngeal swab samples were collected from 
the same infant cohort during scheduled visits, and 
nasopharyngeal aspirate samples, whenever acute oti
tis occurred; Actinomyces was a rare finding during 
health, but frequently isolated from aspirate samples 
collected during otitis episodes [14]. Unfortunately, 
in that study Actinomyces recoveries from the naso
pharynx were not identified to the species level.

A. gerencseriae, A. graevenitzii, A. israelii, A. naeslun
dii, A. oris, and S. georgiae, S. meyeri, and S. odontolytica 
are common oral residents within the genera 
Actinomyces and Schaalia, respectively, and also A. 
massiliensis and A. timonensis from the oral cavity and 
A. massiliensis, A. radicidentis, and S. cardiffensis from 
the pharynx have been reported [2,16,17]. In the distal 
esophagus, the microbiota has shown to be similar to 
that of the oral cavity, among the species recovered are 
S. odontolytica, S. meyeri, and A. graevenitzii [18]. It was 
speculated whether oral bacteria selectively passage 
from the oropharynx or whether this is due to a selec
tive retention of particular species by the esophagus. 
Actinomyces and Schaalia are abundant in the oral 
cavity/oropharynx, and are a source not only for oral 
but also for non-oral infections when translocating via 
tissue invasion or via bloodstream to other body sites.

The female genitourinary tract is another common 
location for the colonization of Actinomyces organ
isms, A. urogenitalis, S. meyeri, S. radingae, S. turi
censis, and W. neuii being present without connection 
to infectious processes [2]. However, S. turicensis and 
W. neuii, in particular, are increasingly detected in 
polymicrobial infections at lower body sites.

Indeed, commensals are often isolated from clinical 
specimens together with other bacteria [2]. Utilizing 
laboratory-based criteria and clinical parameters, Leal 
et al. [19] analyzed retrospectively data on coryneform 
gram-positive bacilli in various types of specimens col
lected at an academic medical center in North Carolina 
from years 2012 to 2015, for evaluating whether the 
findings represented true infection or contamination. 
Among the 18% findings deemed to be clinically sig
nificant, several Actinomyces taxa were found and came 
typically from polymicrobial abscesses, cysts, or sero
mas [19]. The authors underlined the potential impact 
of commensal bacteria in specific types of infections 
and recommended a species-level identification of 
Actinomyces isolates. In a study from London, UK, 

clinical significance of Actinomyces found in blood spe
cimens was evaluated retrospectively from NHS Trust 
records between October 2009 and December 2014 
[20]. Most blood isolates from 60 patients were S. 
odontolytica. Ten of the patients who had received 
treatment (prolonged antibiotic therapy and/or sur
gery) due to pulmonary, abdominal, dental, or dissemi
nated actinomycosis, soft tissue disease, or disease not 
categorized were compared to 50 patients positive for 
Actinomyces in blood culture but without need for 
treatment. No apparent negative impact on clinical out
comes was observed between the treated and untreated 
groups. The authors speculated whether Actinomyces 
could be blood culture contaminants or represent tran
sient bacteremia by commensals translocated from their 
habitats to blood [20]. Moreover, Lynch et al. [21] 
examined 115 invasive infections with involvement of 
Actinomyces, diagnosed in a Canadian health care 
region between 2011 and 2014. In a variety of severe 
infections, such as pulmonary, bone, central nervous 
system, and bloodstream infections, and skin and soft 
tissue abscesses, Actinomyces was considered the prin
cipal pathogen. Among the abundant isolates, 16S 
rRNA sequencing revealed many still un-named oral 
taxons available in public databases [21]. The recogni
tion of commensal bacteria as being clinically relevant 
findings, instead of interpreting them as contaminants, 
can be challenging without specific efforts by clinical 
microbiology laboratories.

Advanced methods like matrix-assisted laser deso
rption ionization – time of flight mass spectrometry 
(MALDI-TOF MS) and/or sequencing of the 16S 
rRNA gene have widely replaced laborious culture tech
niques and often complex biochemical methods [15] for 
identifying and separating different Actinomyces organ
isms. In testing of MALDI-TOF MS for identifying of 
oral Actinomyces species, Stingu et al. [22] underlined 
the importance of including a sufficient number of 
strains in the reference database when assigning less 
common Actinomyces species (here: A. graevenitzii, A. 
radicidentis, A. urogenitalis, G. europaea, S. georgiae, 
and W. neuii) and recommended to confirm their 
identification by 16S rRNA sequencing. Although 
these advanced methods are now routinely utilized in 
well-equipped clinical microbiology laboratories for 
recognizing the potential pathogen(s), a direct Gram 
stain should be examined at the time of plate reading 
when an infectious role of commensals is suspected (e.g. 
predominant growth from wound samples), since poly
microbial infections complicate the interpretation of 
the results [19]. As shown by Leal et al. [19], a consider
able proportion of diphteroid-like isolates proves to be 
clinically significant; thus, they suggested all diphteroid- 
like isolates, including Actinomyces, to be identified to 
the species level, or in the case of W. neuii, even to the 
subspecies level via MALDI-TOF MS or 16S rRNA 
sequencing. The species-level identification could 
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support clinicians’ decision-making, for example, in the 
estimation whether the finding represents true infection 
or contamination and whether its antimicrobial sus
ceptibility pattern needs attention. A study by Fong et 
al. [23] evaluated the performance of MALDI-TOF MS 
for the identification of Actinomyces, using 16S rRNA 
gene sequencing as the reference method. Moreover, 
they examined the impact of MALDI-TOF MS in clin
ical microbiology laboratories on elucidating the diver
sity of Actinomyces species in infections at different 
body sites. Compared to pre-MALDI-TOF era, the 
method increased the detection rates of Actinomyces 
organisms, identifying nearly 60% of the 77 isolates to 
the species level and nearly 90% to the genus level. The 
top-three most important species in clinical samples 
were, in descending order, S. turicensis, S. odontolytica, 
and W. neuii, followed by A. oris, A. naeslundii, and G. 
europaea [23]. On the other hand, in a Canadian labora
tory, where 115 Actinomyces isolates from invasive 
infectious cases were identified using partial 16S 
rRNA sequencing and MALDI-TOF MS, the ability of 
the latter method to identify the diverse array of 
Actinomyces species was poor, as only less than half 
(41%) of the isolates was correctly identified [21]. 
There seem to be differences in the performance of 
commercial MALDI-TOF systems to identify 
Actinomyces and related genera to the species but also 
to the genus level [24]. To expand the spectral databases 
to be complete enough is warranted to guarantee a 
reliable detection of less known Actinomyces taxa 
[21,24].

Typical infectious pattern for specific 
Actinomyces and related taxa

During the 1990s, many novel Actinomyces species of 
clinical interest were described, gradually changing 
the role of these species from contaminants to infec
tious agents. Some dedicated microbiology research
ers became interested in elucidating the association of 
individual Actinomyces species with disease at specific 
sites [25–27]. Since only a limited number of strains 
had been examined, there was an obvious lack of 
knowledge about their habitats and pathogenic 
potential as well as connection to specific infections. 
Moreover, routine diagnostic methods used in 

clinical microbiology laboratories at that time were 
not sufficient to reach an accurate identification and 
species separation within the Actinomyces genus. Due 
to the availability of molecular diagnostic methods in 
pioneer microbiology laboratories, the understanding 
of the pathogenic role of Actinomyces started to 
increase.

Among a large collection of clinical Actinomyces- 
like isolates from Belgium, Sabbe et al. [25] identi
fied a vast majority of them as S. turicensis, and 
some isolates were identified as S. radingae and G. 
europaea, which all represented newly described 
Actinomyces species at that time [9,11,28]. The gen
itourinary tract was the major site infected with S. 
turicensis, while another typical location for infec
tions was connected to the skin and soft tissues, 
mostly below the waistline, where these three species 
were clinically relevant findings [25]. Two years 
later, Hall et al. [26] reported the results of their 
analyses of the incidence and clinical associations of 
over 400 Actinomyces isolates collected in English 
and Welsh hospital laboratories from 1983 to 1999. 
S. turicensis and A. israelii proved to be the most 
common species in clinical samples, followed by A. 
naeslundii, S. odontolytica, and A. gerencseriae. The 
majority of A. israelii as well as A. gerencseriae, A. 
naeslundii, and S. odontolytica originated from 
intrauterine device and neck-face infections, while 
the origin of S. turicensis was the urogenital tract, 
and it was detected in soft tissue lesions, mainly at 
the lower part of the body [26], confirming similar 
findings on S. turicensis from Belgium [25]. 
Microbiological data from Texas [27] included 100 
putative Actinomyces isolates from human infections 
to be sequenced, and again, S. turicensis was the 
most frequent species with a similar disease pattern 
observed in the two previous studies [25,26]. In 
some cases, S. turicencis grew in pure culture, indi
cating its pathogenicity [25,27].

Increasing data on members of Actinomyces and 
related genera from clinical microbiology laboratories 
reported in the literature strengthens the concept of 
preferred infectious sites for different species [2]. A 
similar observation was made by Lynch et al. [21] 
confirming that some Actinomyces organisms have a 
tendency to associate with specific types of infection; 

Table 2. Actinomyces and related taxa not-yet characterized as established pathogens in humans according to Bartlett et al. [4].
Species Year of description [reference] Isolation site(s) (no. of strainsa) Pathogen status

A. radicidentis 2000 [8] Infected root canals (2) Putative
Pauljensenia hongkongensis 2003 [82] Pus/pelvic actinomycosis (1) Putative
Bowdeniella nasicola 2003 [88] Pus from nose (1) Not determined
A. oricola 2003 [85] Dental abscess (1) Putative
A. dentalis 2005 [84] Dental abscess (1) Putative
A. johnsonii 2009 [83] Subgingival plaque (2) Putative
A. massiliensis 2009 [86] Blood (1) Putative
A. timonensis 2010 [87] Osteoarticular sample (1) Putative
Gleimia hominis 2010 [81] Wound swab (1) Putative

athe number of strains included in the description. 
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for instance, S. radingae and W. neuii occurred in 
skin and soft tissue abscesses, and S. odontolytica in 
bloodstream infections, while A. graevenitzii was con
nected to pulmonary infections only. In addition, 
among the sequencing findings were several un- 
named oral taxa in pulmonary fluids, infectious 
bone specimens, and blood [21].

Actinomyces graevenitzii

Indeed, A. graevenitzii is an oral species and its 
infectious recoveries come almost exclusively from 
respiratory sites [29]. In this context, a proper protec
tion of bronchial specimens from contamination by 
commensals is important to avoid distorted interpre
tations, as was shown for A. graevenitzii in an unu
sual pseudo-outbreak at a university-affiliated 
teaching hospital [30]. An interesting difference was 
noticed in a metagenomic analysis of the tongue 
microbiome where A. graevenitzii was one of the 
five species having distinct single-nucleotide variant 
profiles between current and never smokers [31]. In 
the lung microbiome of lung cancer patients, who are 
often smoking males, A. graevenitzii was reported to 
relate to squamous cell carcinoma but not to adeno
carcinoma [32]. Furthermore, in stroke-associated 
pneumonia, certain oral members of the phylum 
Actinomycetota may have a significant influence on 
the outcome [33]; their enrichment was shown as an 
independent risk factor, being related to functional 
poor outcomes within 30 days, while Streptococcus 
proved to have a protective effect. A meta-analysis 
including five studies compared the composition of 
the lower respiratory microbiota between tuberculosis 
patients and their healthy controls; a distinct abun
dance signature co-occurring with Mycobacterium 
tuberculosis, among those A. graevenitzii and Rothia 
mucilaginosa as driving forces towards tuberculosis 
was identified [34].

Schaalia meyeri

The disease pattern of S. meyeri has drawn increasing 
attention as being connected to infectious processes 
at intracranial and pulmonary sites. Already in the 
original description of S. meyeri including 16 strains 
[10], four of the strains originated from intracranial 
abscesses and three strains from lung specimens. 
Among polymicrobial consortia of brain abscesses, 
S. meyeri is the most frequently reported 
Actinomyces organism [21,35–38], in many cases 
with Aggregatibacter aphrophilus, Fusobacterium 
nucleatum, Parvimonas micra, and/or anginosus 
group streptococci [35,36,38–41]. Since they all are 
common oral findings, it is not surprising that a 
dental background is often highlighted. Recently, 
the nationwide Danish Study Group of Infections of 

the Brain (DASGIB) published a population-based 
study, covering all adult-aged patients with brain 
abscess positive for typical oral bacteria from 2007 
to 2020, aiming to the incidence, clinical presenta
tion, and prognostic factors [42]. Of the 287 cases 
identified, 41% were polymicrobial, with similar bac
terial findings previously reported, though presented 
only at the genus level. One-third had immunocom
promised status, while one-fourth had dental infec
tion and one-tenth upper respiratory infection, which 
were seen as risk factors for brain abscess. Of those, 
dental infection was associated with a decreased risk 
of unfavorable outcome [42]. After the observation of 
microbiological similarities between brain abscesses 
and pleural empyemas, Dyrhovden et al. [37] ana
lyzed bacterial findings in 27 empyemas of poorly 
described etiology and compared them to those in 
25 brain abscesses of assumed oral/sinus origin. 
According to their hypothesis, certain oral bacteria 
could expose to purulent infections elsewhere in 
highly oxygenated organs, including the brain and 
lung. Among the most common infectious findings 
in these organs were F. nucleatum, P. micra, angino
sus group streptococci, but also S. meyeri [37]. In 
addition, a few case reports exist on S. meyeri recov
eries from pleural infections [43,44]. To be infected 
with S. meyeri, various dental procedures, tooth 
extractions, and poor oral hygiene are seen as predis
posing factors [35,39,43–47]. Knowledge of virulence 
factors of Actinomyces and related taxa is scarce, and 
why S. meyeri has a tendency for being involved in 
severe conditions at these distant sites is not clear 
so far.

Schaalia turicensis

Evidence on S. turicensis as an important human 
pathogen in infectious processes present in soft tis
sues at lower body sites is consistently emerging 
[19,23]. Further support for its pathogenic role 
comes from a recent case series of 15 pilonidal and 
perianal infections [48]. A devastating infectious pro
cess from where S. turicensis has been recovered as 
one of the etiological organisms is Fournier’s gang
rene, a destructive necrotizing fasciitis, in the perineal 
and genital regions [49,50]. In addition, S. turicensis, 
together with Bacteroides thetaiotaomicron and 
Staphylococcus epidermidis, was found in necrotizing 
fasciitis at cervicofacial sites with an odontogenic 
focus [51]. These reports indicate that atypical micro
organisms like S. turicensis deserve to be taken into 
account as a potential player in the pathogenesis of 
Fournier’s gangrene. It seems that S. turicensis is 
increasingly recognized at sites located at the upper 
part of the body, such as brain abscess [52], breast 
abscesses [53,54], supraglottitis with deep neck space 
abscesses [55], pleural empyema fluid [56], and a 
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deep shoulder infection after surgery where S. turi
censis was the only microbial finding [57]. Also, a 
fatal case of meningitis has been reported as a com
plication of purulent mastoiditis, where S. turicensis 
was identified in both pus and cerebral fluid speci
mens [58]. In all these cases, S. turicensis was identi
fied using MALDI-TOF MS or sequencing methods.

Gleimia europaea

G. europaea is known to be involved in superficial 
soft tissue infections at both upper and lower body 
sites, and infections at the urogenital area [2,9,53]. As 
an example is a recent case on subcutaneous abscess 
at chest with a mixed infection of G. europaea with a 
gram-positive anaerobic coccus, Peptoniphilus olsenii, 
in a male patient suffering from COVID-19 and 
receiving immunosuppressant therapy [59]. 
Moreover, suppuration from infected keloid scars 
contains a variety of bacteria, including G. europaea 
[60]. According to recent case reports, G. europaea 
has now appeared as a potentially significant patho
gen in necrotizing fasciitis, a severely progressive 
infection, destructing skin, subcutaneous tissue, mus
cle, and fascia. Its recognition might be due to an 
increased awareness of the role of previously unrec
ognized, atypical organisms. In the first report, link
ing this organism to necrotizing fasciitis, G. europaea 
was together with Actinotignum schaalii in an elderly 
diabetic patient with a history of urinary tract infec
tions [61]. The second patient case found G. europaea 
as the primary causative agent of necrotizing fasciitis 
[62]. The authors of the third case described G. euro
paea as an emerging causative agent of this devastat
ing infection [63]. Notably, the reduced antimicrobial 
susceptibility pattern of G. europaea needs attention. 
Further, a fulminant case diagnosed as Fournier’s 
gangrene was connected to G. europaea as the only 
causative agent [64]. An interesting observation is 
that, in all the four cases, the patients were diabetics 
with other comorbidities. As underlined in these 
reports, early detection of the causative agent(s) is 
of utmost importance for a proper treatment to 
reduce mortality.

Winkia neuii

Similar to S. meyeri, S. turicensis, and G. europaea, the 
detection of W. neuii in clinical samples has become 
more frequent due to improved detection methods. 
In particular, its role in abscesses of the skin and soft 
tissues has been observed in several studies 
[19,21,53,65]. Among nearly 400 clinical 
Actinomyces isolates collected from deep abscesses 
in an Austrian tertiary care center within a seven- 
year period, S. meyeri and S. turicensis were predo
minant, accounting for 34% and 23% of the abscess 

recoveries, respectively [66]. Although W. neuii was 
less prevalent, it accounted for 8% of the isolates. In a 
study focusing on the role of diphteroids in clinical 
infections [19], W. neuii, in particular, and S. turicen
sis were reported as the most important Actinomyces 
organisms in wounds. W. neuii has been among 
infectious findings associated with breast implant, 
shoulder implant, or a peritoneal dialysis catheter 
[67–69]. In addition, W. neuii has been isolated 
from clinical specimens of the genitourinary tract 
[19,23,53,70].

Remarks on pathogen status of Actinomyces 
and related taxa

To date, 16 species within the genera Actinomyces, 
Gleimia, Schaalia, or Winkia are characterized as 
established pathogens in humans [4]. While all 
human Actinomyces species described before 2000 
are recognized as established pathogens, only four 
species described thereafter, including A. oris, A. uro
genitalis, S. funkei, and S. cardiffensis, belong to the 
category of established pathogens. However, data on 
the clinical relevance of A. urogenitalis, S. cardiffensis, 
and S. funkei are still relatively scarce. A. urogenitalis 
is seen as an uropathogen [71], but only a few reports 
are available. Two bacteremic episodes caused by A. 
urogenitalis have been reported [72,73]. In addition 
to bacteremia, 11 A. urogenitalis strains isolated from 
clinically relevant samples in a university hospital 
came from bone/soft tissues, genital abscesses, or 
urine [53]. Eight strains of S. cardiffensis from a 
variety of sources (pus from ear, sinus washout, pus 
from jaw abscess, pleural fluid, intrauterine devices, 
and pericolic abscess) were available for its descrip
tion by Hall et al. [74]. Since then, cases of bacteremia 
with liver and lung abscesses [75], severe organizing 
pneumonia with lung abscess [76], and brain 
abscesses [38,77] positive for S. cardiffensis have 
been reported. In addition to three S. funkei strains 
in the description paper [78], there are only some 
occasional findings in the literature; among those are 
an isolate from intraabdominal pelvic abscess [21], six 
isolates from abscesses, biopsy, or superficial wounds 
at lower body sites [79], and isolate from Fournier’s 
gangrene [80], found as part of polymicrobial 
infections.

As presented in Table 2, six oropharyngeal 
Actinomyces species, namely A. dentalis [84], A. johnso
nii [83], A. oricola [85], and A. radicidentis [8] are 
considered putative pathogens in the bacterial pathogen 
list of Bartlett et al. [4], as do A. massiliensis [86], 
originally isolated from human blood, and A. timonen
sis [87], originally isolated from sacroiliitis specimen. In 
addition, two former Actinomyces species within the 
genera Gleimia and Pauljensenia, G. hominis [81] and 
P. hongkongensis [82], respectively, are putative 
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pathogens. Instead, the former A. nasicola [88], which 
currently belongs as the only species to the novel genus 
Bowdeniella as B. nasicola, was characterized based on a 
single isolate from nasal antrum aspirate without a 
known habitat and is not listed as being a pathogen so 
far. It is obvious that the species in the category of 
putative pathogens need for further reports until the 
confirmation of their established pathogenicity.

Summary

As is the case especially in polymicrobial infection, 
both clinicians’ awareness and the microbiology 
team’s input are advantageous to detect the causative 
organism(s) responsible for the condition. 
Availability of advanced methods, such as MALDI- 
TOF MS and partial 16S rRNA sequencing, in clinical 
microbiology laboratories enables an accurate identi
fication of Actinomyces-like isolates from patients’ 
samples, thus gradually elucidating their emerging 
role in clinically relevant infections. Further increas
ing of the number of strains in the database of 
MALDI-TOF MS, however, is necessary to improve 
the species-level identification rates of published but 
clinically less-known members of Actinomyces and 
newly reclassified related genera. Actinomyces and 
Schaalia species, in particular, can be found among 
polymicrobial consortia in infections at a variety of 
body sites. Also, the species G. europaea and W. neuii 
within the novel genera Gleimia and Winkia, respec
tively, possess an increased clinical significance in 
various types of human infections. The common pre
sence of Actinomyces and related taxa in polymicro
bial infections may be due to their contribution to 
pathogenic processes infecting humans. Increasing 
knowledge of these established and putative patho
gens would bring about improved outcomes for 
patient care.
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