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Abstract

It is often assumed in biophysical studies that when multiple identical molecular motors interact 

with two parallel microtubules, the microtubules will be crosslinked and locked together. The aim 

of this study is to examine this assumption mathematically. We model the forces and movements 

generated by motors with a time-continuous Markov process and find that, counter-intuitively, a 

tug-of-war results from opposing actions of identical motors bound to different microtubules. The 

model shows that many motors bound to the same microtubule generate a great force applied 

to a smaller number of motors bound to another microtubule, which increases detachment rate 

for the motors in minority, stabilizing the directional sliding. However, stochastic effects cause 

occasional changes of the sliding direction, which has a profound effect on the character of the 

long-term microtubule motility, making it effectively diffusion-like. Here, we estimate the time 

between the rare events of switching direction and use them to estimate the effective diffusion 

coefficient for the microtubule pair. Our main result is that parallel microtubules interacting with 

multiple identical motors are not locked together, but rather slide bidirectionally. We find explicit 

formulae for the time between directional switching for various motor numbers.
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1 Introduction

Many fundamentally important examples of intracellular transport are driven by molecular 

motor proteins that drag cargo (vesicles and organelles) on polar tracks within cells by 

transducing chemical energy into mechanical forces and movements (Rogers and Gelfand 

2000). More often than not, the cargo is driven by multiple, not single, motors (Gross 

et al. 2007). If all the motors bound to the cargo are of the same kind, then the motors 

normally synergize and hold on to the cargo for a longer time, driving it farther and faster 

(Gross et al. 2007; McKinley et al. 2012). In some cases, however, two opposing kinds of 

motors are bound to the cargo. The most frequent example is when a vesicle or a pigment 

particle has multiple kinesin and dynein motors on its surface, which interact with a long 

microtubule (MT) fiber (Nascimento et al. 2003). A single kinesin motor tends to move 

toward the MT plus end, while a single dynein motor moves to the MT minus end. Each 

of these opposite-polarity motors is characterized by two important mathematical relations: 

a force-velocity and a force-detachment relation. Namely, if unopposed, a motor moves 

to respective microtubule end with a certain 'free' speed, but if a load force opposes this 

movement, the speed decreases as a certain measured function of the force (Svoboda and 

Block 1994). The motor also dissociates from the MT with a rate which is a function of the 

force, often an increasing function (Kunwar et al. 2011).

When a few kinesins and a few dyneins are bound to the cargo, a pioneering model (Klumpp 

and Lipowsky 2005; Müller et al. 2008) explained the tug-of-war phenomenon previously 

observed experimentally (Gross et al. 2002; Kural et al. 2005). Specifically, once in a while, 

kinesins 'win' when a majority of them associate with the MT and move to the plus end. 

The collective kinesin action then applies a great force to few dyneins associated with the 

MT, and this great force leads to rapid detachment of all dyneins. However, as the motors' 

attachment and detachment are stochastic, many kinesins detach infrequently, allowing a 

few dyneins to attach, and then kinesins lose the majority and dyneins temporarily win, 

now applying a great load force to kinesins, until the next great fluctuation restores the 

kinesin majority. Repeated many times, this process results in a bidirectional movement 

of the cargo. An elegant mathematical model (Klumpp and Lipowsky 2005; Müller et al. 

2008) predicted that the frequency of these reversals depends on the motor numbers. Many 

subsequent modeling studies, mentioned in the Discussion, refined and developed this model 

further.

There are also ubiquitous cases in cell biology when the cargo is, effectively, one MT, to 

which motors bind with their cargo domain and drive it on a second MT (Fig. 1). For 

example, this is how short MTs are thought to be transported on long MTs in long axons 

of nerve cells (Craig et al. 2017). Another important situation is when two MTs of similar 

lengths are sliding relative to one another due to the action of motors crosslinking them; this 

was observed in mitotic spindles (Wollman et al. 2008) and in nascent dendrites, axons and 

so-called cellular processes (del Castillo et al. 2015; Oelz et al. 2018). This situation would 

be straightforward if a single motor was driving one MT on another. However, much more 

likely, multiple motors of the same kind crosslink the MTs (Fig. 1).
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Let us consider possible MT-motor configurations. First, let two MTs be anti-parallel (Fig. 

1a). Then, whether two identical motors are bound with their cargo domains on the same 

MT or not, the motors' actions are coherent, leading to the anti-parallel sliding of the MT 

pair. This phenomenon is at the core of key cell biological processes such as spindle and 

axon elongation (Sharp et al. 2000; Lu et al. 2013). Second, let two MTs be parallel (Fig. 

1b). In that case, if all identical motors are bound with their cargo domains on the same MT, 

then the MT pair slides. However, as the motor attachments are random, it is more likely that 

only a fraction of motors attach with their cargo domains to the first MT and pull the second 

MT to the left (Fig. 1b). Meanwhile, the rest of the motors attach with their cargo domains to 

the second MT and pull the first MT also to the left (Fig. 1b) (or, if MT1 is considered as the 

base, MT2 is pulled to the left/right by these two fractions of the motors). If two opposing 

motor fractions consist of equal motor numbers, all motors will be stalled, and the MT pair 

will be effectively locked together. This is exactly what many experimental studies assumed 

either explicitly (Lu and Gelfand 2017) or implicitly (Wollman et al. 2008).

It is easy to imagine though that stochastic effects will break symmetry between the 

opposing kinesins, and then some motors with cargo domains bound to the same MT 

will be in majority. Then, these motors apply a great force to a small number of motors 

with cargo domains on another MT, the motors in minority detach, and the tug-of-war 

cycle ensues. Intuitively, the parallel MT pair then will not be locked together, but rather 

slide bidirectionally. In this study, we aim to quantify the resulting tug-of-war, namely, to 

calculate how often the MT sliding will change direction and what will be the resulting 

run-length and effective diffusion coefficient.

Our main result is that the expected time between MTs' switching directions can be 

estimated as the expected hitting time for a reversible birth and death process. We find 

several asymptotic formulae for a large total number of motors and strong load dependence 

of the detachment rates, which allow us to estimate the effective diffusion coefficient.

In the first section, we present the mathematical model and investigate its asymptotic 

behavior analytically. In the second section, we introduce the expected hitting times for 

the underlying Markov process, and discuss their relation to the switching times in the third 

section. We then investigate approximate model solutions for a large total number of motors 

in section four, and further approximations using Laplace's method in the fifth and last 

section.

2 Mathematical model

We consider identical molecular motors acting in one of two opposite directions. N is the 

number of molecular motors pushing in positive direction, M is the number of motors 

pushing in negative direction. The maximal number of motors is given by K ≥ N + M. 

Specifically, the model assumes that each motor bound to a MT occupies a segment of a 

certain length. Thus, M and N are the total numbers of motors crosslinking two parallel 

MTs of unit length. K is the maximal motor number that fits the overlap.

Allard et al. Page 3

J Math Biol. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We model the molecular motors by force-velocity relations in which the force exerted by a 

single motor pushing in positive, respectively negative direction is given by

f+ = Fs 1 − Δv
V m

, f− = Fs −1 − Δv
V m

,

where Δv is the velocity of the cargo (the relative velocity of parallel MTs, respectively) and 

Fs and V m are stall force and free moving velocity of a single motor. Note that f+represents 

the force exerted by a motor sliding in positive direction, whereas f− = − Fs 1 − −Δv
V m

corresponds to the force exerted by a motor acting in negative direction. Here −Δv plays the 

role of the sliding velocity in negative direction.

We choose the simplest possible model to determine Δv, namely instantaneous force balance 

of all the motors involved: Nf+ + Mf− = 0, i.e.

FsN 1 − Δv
V m

+ FsM −1 − Δv
V m

= 0 .

This implies:

Δv
V m

= N − M
N + M ,

(2.1)

and therefore

f+ M, N = Fs
2M

N + M , f− M, N = Fs
2N

N + M ,

implying f+ M, N = f− N, M .

Provided that free binding sites on the MTs' overlap are available, i.e. N + M < K, we 

assume that molecular motors attach to the two MTs at the given rate β. They are equally 

likely to attach with their motor domain to one or to the other MT. The motors also detach 

from the pairs of MTs at certain rates, namely those sliding in positive direction detach 

with rate ξ+and those sliding in negative direction with rate ξ−. We assume that off-rates 

increase whenever motor proteins experience mechanical resistance according to Bell's law 

(Bell 1978),

ξ+ M, N = Nκ‾0exp f+ M, N
f0

= Nκ‾0exp γ M
N + M

ξ− M, N = Mκ‾0exp f− M, N
f0

= Mκ‾0exp γ N
N + M

(2.2)
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where f0 is the detachment force of kinesin and κ‾0 is its forceless detachment rate. We 

use the short notation γ = 2Fs/f0 (see Table 1). For symmetry reasons it again holds that 

ξ− M, N = ξ+ N, M .

Note that we neglect the environmental drag on the MTs sliding in a direction parallel to 

their axis. Indeed, the environmental drag acting on a microtubule of 5 μm length sliding 

at the free moving velocity of kinesin (see Table 1) can be estimated (Oelz et al. 2018) 

as ~ 2pN. This drag is smaller than the stall force of even a single kinesin motor and can 

therefore be neglected in a system where a few motors act simultaneously.

To reduce the size of the phase space (Fig. 2) we assume that the attachment rate β is large 

and therefore reattachment of a new motor is immediate. As a consequence the total number 

of motors always takes its maximal value: N + M = K. This reduces the original triangular 

phasespace (Fig. 2a) to a linear chain of possible states (Fig. 2b). As a consequence, the 

turnover of motors is governed by motor detachment: as fast as one motor detaches, another 

one, of an arbitrary polarity, takes its place (see Fig. 3).

In this simplified scenario we write i = N for the number of motors pulling in the positive 

direction, while the number of motors pulling in the negative direction is given by K − i. 
The corresponding time-continuous Markov Process with state variable i ∈ 0,1, …, K
corresponds to a classical birth–death reversible process (Anderson 1991). We denote by 

κi
+ = 1

2ξ− K − i, i  for 0 ≤ i < K the rate at which one of the K − i motors pulling in the 

negative direction switches to the positive direction, i.e. the state transitions from i to i + 1. 

Note that the factor 1
2  reflects the 50% chance that a detached motor is replaced by a motor 

in the opposite direction. Likewise, κi
− = 1

2ξ+ K − i, i  is the rate at which one of the i motors 

pulling in the positive direction is replaced by a motor in the negative direction, i.e. the state 

transitions from i to i − 1. The rates are given by the detachment rates of the general model 

(2.2) which, using the new notation, read:

κi
− = iκ0exp γ K − i

K , κi
+ = K − i  κ0exp γ i

K ,

(2.3)

where κ0 = 1/2κ‾0. Note that these rates are proportional to the number of motors which are 

potentially replaced while the force depends on the number of motors pulling in the opposite 

direction. Again, by symmetry it holds that κi
− = κK − i

+ for 1 ≤ i ≤ K.

The infinitesimal generator of the process is given by Q = qij 1 ≤ i, j ≤ K with

qij = κi
+δj = i + 1 + κi

−δj = i − 1 − κi
+ + κi

− δi = j, 0 ≤ i, j ≤ K,

with the convention κK
+ = κ0

− = 0. This is a tridiagonal matrix given by (here for K = 4)
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Q =

−κ0
+ κ0

+ 0 0 0
κ1

− − κ1
− + κ1

+ κ1
+ 0 0

0 κ2
− − κ2

− + κ2
+ κ2

+ 0
0 0 κ3

− − κ3
− + κ3

+ κ3
+

0 0 0 κ4
− −κ4

−

.

(2.4)

We denote by p t = pi t 0 ≤ i ≤ K with ∑i = 0
K pi t = 1 the time-dependent probabilities that the 

system is in state i, i.e. that there are i motors pulling in the positive direction and therefore 

K − i motors pulling in negative direction. As a consequence, they satisfy the system of 

forward Chapman–Kolmogorov equations dp/dt = Qtp t . In detail,

dpi
dt = − κi

+ + κi
− pi + κi − 1

+ pi − 1 + κi + 1
− pi + 1, pi 0 = pi

0, 0 ≤ i ≤ K,

(2.5)

with the convention, as previously for the transition rates, p−1 = pK + 1 = 0. We have the 

following classical result (Grimmett et al. 2001):

Proposition 1 Let K ≥ 2,κi − 1
+ > 0 and κi

− > 0 for 1 ≤ i ≤ K, with the convention κ0
− = κK

+ = 0. 

Let pi
0 ≥ 0, with ∑i = 0

K pi
0 = 1. The unique solution p t  to the system (2.5) converges 

exponentially fast towards the invariant measure p−: = p‾i 0 ≤ i ≤ K defined by

p‾i ≔ πi

k = 0
K πi

, wℎere π0 ≔ 1, πi ≔
k = 1

i κk − 1
+

κk
− .

(2.6)

For the specific form of κi
+, κi

−given by (2.3) it holds that

πi =
k = 1

i exp γ k − 1
K

exp γ K − k
K

K − k + 1
k = K!

i! K − i !exp Kγ i
K

i
K − 1 .

Proof Proposition 1 is an immediate consequence of the Perron–Frobenius theorem (Saloff-

Coste 1997). To find the unique positive steady state distribution p− = p‾i 0 ≤ i ≤ K, we write 

Qtp− = 0 as a recursion relation for a given p‾0:

p‾1 = κ0
+

κ1
− p‾0, p‾i = κi − 1

+ + κi − 1
− p‾i − 1 − κi − 2

+ p‾i − 2

κi
− = κi − 1

+

κi
− p‾i − 1 for 1 < i < K, and p‾K = κK − 1

+

κK
− p‾K − 1 .
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This implies that p‾i = ∏k = 1
i κk − 1

+

κk
− p‾0 for i ≥ 1, and using relation ∑i = 0

K p‾i = 1 to determine p‾0, 

we obtain the invariant measure defined by (2.6). For κi
+, κi

−defined by (2.3), we simply 

compute:

k = 1

i exp γ k − 1
K

exp γ K − k
K

= exp γ
k = 1

i k − 1
K − K − k

K = exp Kγ i
K

i
K − 1 .

☐

This typically corresponds to a bimodal distribution, symmetric with respect to K
2 , as shown 

in Fig. 4b for our standard set of parameters in Table 1.

Let us go back now to our original question of how frequently the MTs change direction, 

which is linked to the effective rate of diffusion of the random walk of one MT relative to 

the other (Fig. 5a).

The tug-of-war stabilizes the dominance of one of the two opposing groups of motors. 

Switching between dominance of one group to dominance of the other group, which 

corresponds to switching direction, is a rare event as illustrated by the simulation shown 

in Fig. 4a. In this simulation, the mean time for directional switching is τ = 162s. In 

a tug-of-war situation, most of the time one group of motors will dominate and the 

relative velocity will be given by almost the free moving velocity V m, either in positive 

or negative direction. The resulting estimate for the diffusion coefficient will be given by 
1
2 × run-length × velocity, i.e. 1

2V m
2τ = 26.3μm2/s. In the stochastic simulation (Fig. 5b), 

however, we find a diffusion coefficient of 17.4μm2/s. Most of the discrepancy is caused by 

the fact that the mean relative velocity is indeed slower than V m. A better estimate for the 

mean relative velocity uses the fact that the stationary distribution in Fig. 4b has maxima 

at Jmax = 33 and K − Jmax = 2. The relative velocity at these states, according to (2.1), will 

be Δv = V m × 31/35 = 0.5μm/s, and the corresponding estimate for the diffusion coefficient 
1
2 × 0.52 × τ = 20.6μm2/s agrees well with the numerical result. Further estimates for various 

values of γ are listed in Table 2.

Note that directional switches for γ = 4 are very rare, and we therefore compute the expected 

time for switching directly from (3.3) for Jmax = K, since the stationary distribution has its 

maxima at 0 and K.

Note also that while we overestimate the diffusion rate for the larger values of γ, we 

underestimate the rate for the borderline case γ = 2, due to the fact that the stationary 

distribution is wide-spread.

Finally, in the case without actual tug-of-war where γ = 0 and where the stationary 

distribution has a single peak at K/2 (K even) or K ± 1 /2 (K odd), respectively, we only 
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get a very rough estimate of the diffusion coefficient depending on which state we take as 

equivalent of Jmax. Picking either Jmax = 14 or Jmax = 16, we get the interval of diffusion rates 

shown in Table 2. Note that Fig. 8a below provides a comparison of stationary distributions 

(continuous approximation) for different values of γ.

Because of these considerations, our strategy to quantify the switching time between 

directions is as follows: First, we focus on the expected first hitting time τIJ which is the 

expected time for the process to proceed from state I to state J. In a typical situation, where 

state I characterizes a majority of motors pulling in one direction, while state J refers to a 

state in which most motors pull in the opposite direction (e.g. take J = Jmax and I = K − Jmax , 

the expected hitting time will be a good estimate for the time necessary to switch directions.

3 Expected hitting times

To compute the expected time after which the cargo switches directions, we analyze the first 
hitting time in the context of this random process.

A linear system of equations, which describes the expected time τIJ to go from state I to 

state J, can be derived as follows [see, e.g. Norris (1997)]: we modify the generator Q
assuming that the state J is absorbing. To this end, we delete both the column and the row of 

the generator, which correspond to state J, in order to obtain the generator QJ. For K = 4, the 

generator matrix Q3 has the form:

Q3 =

−κ0
+ κ0

+ 0 0
κ1

− − κ1
− + κ1

+ κ1
+ 0

0 κ2
− − κ2

− + κ2
+ 0

0 0 0 −κ4
−

.

Note that the state space of this K − 1 -dimensional process are the states 

1, …, J − 1, J + 1, …, K . The solution of this process can be written as PJ t = exp tQJ

where PJ t  is the transition matrix function for the process absorbed in state J (its row I
corresponds to a process which has started in the state I (out of K − 1 states in total), namely 

to the probabilities of finding this process in each one of the non-absorbing states).

Therefore, PJ t 1,1…, 1 T = exp tQJ 1,1…, 1 T = ℙi TIJ > t I is the vector of survival 

probabilities, i.e TIJ is the first hitting time of a process which started in state I targeting 

state J. This approach leads us to the following result, which is also classical (Grimmett et 

al. 2001).

Proposition 2 Let K ≥ 2 be an integer, and κi
+ > 0, κi + 1

− > 0 are positive real parameters for 

0 ≤ i ≤ K − 1, with the convention κ0
− = κK

+ = 0. Let Q be the infinitesimal generator of a 

stochastic process defined by (2.4). Denoting by τIJ the expected hitting time to go from the 

state I to the state J ≠ I, the hitting times are the unique solution to the following linear 
system:
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τIJ = 1
κI

+ + κI
− + κI

+

κI
+ + κI

− τI + 1, J + κI
−

κI
+ + κI

− τI − 1, J, 0 ≤ I ≤ K, I ≠ J .

(3.1)

By recursion, we obtain

τIJ =
j = I

J − 1

i = 0

j 1
κi

+
k = i + 1

j κk
−

κk
+ =

j = I

J − 1 1
κj

+ p‾j

i = 0
j p‾i

.

(3.2)

In particular, τ0J is given by

τ0J =
j = 0

J − 1

i = 0

j 1
κi

+
k = i + 1

j κk
−

κk
+ =

j = 0

J − 1 1
κj

+ p‾j

i = 0
j p‾i

.

(3.3)

Remark 1 In formulae (3.3) and (3.2), we notice that the denominator is a weighted 

transition rate to go from j to j + 1, i.e. rate weighted with the conditional probability (in 

equilibrium) to be in state j, under the condition to be in one of the states ≤ j.

Proof This result is well-known; we recall here briefly the proof for the sake of 

completeness. The distribution of hitting times for the absorbing state J is given by 

fJ t = − d/dtexp tQJ 1,1…, 1 T  where fJ = fIJ I ≠ J. We compute the expected hitting times 

τJ = τ1, J, …, τJ − 1, J, τJ + 1, J, …τK, J
T  as

τJ = E TIJ I ≠ J =
0

∞
tfJdt =

0

∞
exp tQJ dt 1,1…, 1 T

= − QJ
−1 1,1…, 1 T .

Therefore, the expected hitting times satisfy the equation QJτJ = − 1,1…, 1 T . This implies 

equation (3.1), which states that the expected time to go from state I to state J is the 

expected time to leave state I plus the times to reach the final state from either the possible 

next states I − 1 or I + 1 weighted by the respective probabilities to enter those states. Let us 

first focus on the case I < J. We find that

τ0J = τ1J + 1
κ0

+ , τ1J = 1
κ1

+ + κ1
− 1 + κ1

+τ2J + κ1
−τ0J

= 1
κ1

+ + κ1
− 1 + κ1

+τ2J + κ1
− τ1J + 1

κ0
+

τ1J = τ2J + 1
κ1

+ + 1
κ0

+
κ1

−

κ1
+ ,

etc .
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and, bootstraping these identities, we obtain a recursive formula expressing τIJ in terms of 

τI + 1, J,

τIJ = τI + 1, J +
i = 0

I k = i + 1
I κk

−

k = i
I κk

+
= τI + 1, J +

i = 0

I 1
κi

+
k = i + 1

I κk
−

κk
+ , 0 ≤ I ≤ J − 2,

where we define ∏∅ = 1, where ∅ denotes the empty set. Since τJJ = 0, we have

τJ − 1, J = 1
κJ − 1

+ + κJ − 1
− + κJ − 1

−

κJ − 1
+ + κJ − 1

− τJ − 2, J ,

and by the recursion formula we find

τJ − 2, J = τJ − 1, J +
i = 0

J − 2 1
κi

+
k = i + 1

J − 2 κk
−

κk
+ ,

so that

τJ − 1, J = 1
κj − 1

+ + κj − 1
− + κj − 1

−

κj − 1
+ + κj − 1

− τj − 1, J +
i = 0

J − 2 1
κi

+
k = i + 1

J − 2 κk
−

κk
+ ,

and finally we obtain

τJ − 1, J = 1
κJ − 1

+ 1 + κJ − 1
−

i = 0

J − 2 1
κi

+
k = i + 1

J − 2 κk
−

κk
+ =

i = 0

J − 1 1
κi

+
k = i + 1

J − 1 κk
−

κk
+ .

By an immediate recursion, we deduce that

τIJ =
j = I

J − 1

i = 0

j 1
κi

+
k = i + 1

j κk
−

κk
+ , 0 ≤ I ≤ J − 1 .

The last formula comes directly by interpreting the products and using the definition of p‾i

and p‾j.

For I > J, we can do exactly the same computations, replacing indices k by indices K − k
and rates κk

+by rates κk
−(we can also do this simply by considering a process inverting the 

numbering of the states and applying the previous formula to this equivalent process). We 

obtain:

τIJ =
n = J + 1

I

k = n

K 1
κk

−
l = n

k − 1 κl
−

κl
+ , J + 1 ≤ I ≤ K .
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☐

4 Hitting time interpretation of tug-of-war

We are interested in the average time it takes a system to switch direction, i.e. the time it 

takes the smaller group of antagonistic molecular motors to become dominant. There is no 

obvious definition for what that means and one could arbitrarily define a specific amount of 

motors to be the threshold which defines when the transition is accomplished.

To illustrate this point, let us take as a first definition of the switching time the mean time 

for the majority of motors to change from left to right or vice versa. In our model, where 

the states in the center of the state space have to be passed through to change direction, we 

might look at τK/2 − 1, K/2 + 1 = τK/2 + 1, K/2 − 1 in the case of an even number of motors, or τ K − 1 /2, K + 1 /2

in the case of an odd number of motors. By doing so, we count a very high number of very 

short-range switches, as shown in Fig. 6. This is due to the fact that these mid-points in 

the state space are unstable for γ > 2, leading to possibly several changes of direction in a 

very short time, before leaving this unstable zone and reaching more stable states, where the 

direction will remain unchanged for a while. In the histogram for the log scale of hitting 

times shown in Fig. 6 we identify a two-peak distribution, one for very short times—when 

the system lingers around K
2  (opposing motors are balanced), and the other for longer times

—when the system lingers in the relatively stable states at the left end of the state space 

(most of the motors are pulling in the same direction), before transitioning to the right end of 

the state space. During the very short switching times, the MTs barely move relative to one 

another. Respective switches in direction are therefore hardly observable.

We will thus accept the definition of the switching time being the expected time to go from 

the state near one of the two maxima of the stationary distribution to the state near the other 

maximum. It turns out that the expected hitting times are fairly insensitive to variations of 

the state of the origin, I, (as long as we stay away from the state at the center of the state 

space, K/2) and to variations of the destination state, J, (as long as we keep enough distance 

from the transition region around the center of the state space, K/2, and from the extreme 

end of the state space at K).

Note that even if a trajectory starts at an extreme state (either 0 or K), it will move into 

the region around the nearest maximum of the stationary distribution almost immediately. 

Computing the expected time to go from any of those states to a state far on the other side 

of the transition region around K/2 will always give approximately the same time, unless the 

destination is at the extreme other end of the state space. Especially for smaller values of γ, 

reaching that extreme end is a rare event and therefore computing the expected time to reach 

the extreme end would overestimate the time necessary to settle in around a state where the 

antagonistic group of motors is dominant. This is illustrated by Fig. 7a, which shows the 

steep increase of the transition time at J = K − 1 = 34 and J = K = 35, while the values of τ0J

for J = 30 appear to be a good estimate for the switching time.
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Another alternative is to consider the expected time to go from the extreme state 0 to the 

transition states in the center of the state space. This implies that the time to settle in once 

the transition state K/2 (K even) or K ± 1 /2 is reached can be neglected. In addition, we 

have to take into account that at this point the process may fall back to a state where the 

originally dominant group of motors is again dominant or the previously antagonistic group 

of motors may become dominant. Both scenarios might happen with equal probability, 

therefore an approximation for the switching time is given by (here for K even)

1
2 × τ0K

2
+ 1

4 × 2τ0K
2

+ 1
8 × 3τ0K

2
+ .... = 2τ0K

2
,

which states that the system switches direction either immediately after reaching the 

transition state with probability 1/2, or after falling back and reaching the transition state 

for the second time (now with probability 1/4), etc.

A numerical comparison of the two approaches for K = 35 shows that the predictions indeed 

coincide for γ large enough. Even for smaller γ, when the time to settle-in is not negligible, 

the deviations in log-scale are small (Fig. 7b).

5 Continuous approximation

We are now interested in finding a continuous approximation of these formulae when 

the total number of motors K becomes large. To this end, we use the definitions 

κk
− = kκ0exp γ 1 − k

K  and κk
+ = K − k κ0exp γ k

K , and we approximate sums by integrals.

Let us first approximate the steady state.

Proposition 3 Under the assumptions of Proposition 2 and using the definitions of κk
− and 

κk
+given in (2.3), we obtain the following approximation of the steady state as K tends to 

infinity,

p‾i ≔ πi

k = 0
K πi

, π0 ≔ 1, πi = exp −Kf i
K − ℎ i

K − 1
2log K + O 1 ,

(5.1)

with f and ℎ the functions defined on 0,1  by

f x ≔ log xx 1 − x 1 − x + γx 1 − x , ℎ x = 1
2log x 1 − x .

(5.2)

Proof In Proposition 1, we have seen that

πi = K!
i! K − i !exp Kγ i

K
i
K − 1 .
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The term exp Kγ i
K

i
K − 1  corresponds to the second term − γx 1 − x  in the definition 

of exp −f i
K . For the term K!

i! K − i !  we use Stirling's formula in its logarithmic form, 

log n! = nlog n − n + 1
2 log n + O 1 , to write

log K! = Klog K − K + 1
2log K + O 1 ,

− log i! = − i log i + i − 1
2log i + O 1 ,

− log K − i ! = − K − i log K − i + K − i − 1
2log K − i + O 1 .

We obtain

log K!
i! K − i ! = − K 1 − i

K log 1 − i
K + i

K log i
K

− 1
2log i

K 1 − i
K − 1

2log K + O 1 ,

which ends the proof.☐

Remark 2 In the approximation for p‾i, we need to keep ℎ x  for the cases where i is close to 

0 or close to K: in these cases we have −ℎ x = 1
2 log K + O 1 , which compensates the term 

+ 1
2 log K . For other values of i, it remains of order 1.

Let us study the first order continuous approximation

pK x = e−Kf x

∫
0

1
e−Kf y dy

with respect to γ. The function f is symmetric with respect to x = 1
2 , and f 0 = f 1 = 0. 

When K tends to infinity, the function pK x  will tend to be infinite at places where f x  is 

minimal and 0 elsewhere, thus tending to be a sum of Dirac masses at the minimal values of 

f. Since f′ is antisymmetric with respect to 1
2  and

f′ x = − 2γ x − 1
2 + log x

1 − x , f′ 1
2 = 0, lim

x 0
f′ x

= − ∞ , lim
x 1

f′ x = + ∞ ,

we may have either a local minimum or maximum at 1
2 . The second derivative is symmetric 

with respect to 1
2  and f″ 1

2 = − 2γ + 4 is the minimal value for f″. We thus have two 

different cases.
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• γ ≤ 2:x = 1
2  is the unique minimum of f, with f 1

2 = − log 2 + γ
4 . There is thus a 

unique peak of pK x ≔ e−Kf x  at 1
2 .

• 2 < γ:f has two local minima, at xm and 1 − xm, and one local maximum at 1
2 . 

There are only two equal peaks for the function e−Kf x , at the points xm ∈ 0, 1
2

and 1 − xm ∈ 1
2 , 1 .

We also notice that when γ increases, the point xm decreases to 0, see Fig. 8b Left. The 

evolution of the approximate density distribution with γ is shown in Fig. 8a: we see the 

peaks both increasing and tending to 0 and 1. In fact it holds that xm e−γ for large γ. We 

also notice that an O e−γ  approximation of xm for large γ is 1/ eγ − 5  which happens to 

approximate xm fairly well for all γ > 2 (Fig. 8c).

Let us now turn to a continuous approximation for the expected transition times τIJ.

Proposition 4 Under the assumptions of Proposition 2 and using the definitions of κk
− and 

κk
+given in (2.3), we obtain the following approximation of the expected transition time as K

tends to infinity:

τIJ ≈ T I
K

J /K ≔ K
κ0
∫

I /K

J /K ∫
0

y
exp −K f x − f y dxdy,

(5.3)

where f x  is the function defined in (5.2). More precisely, denoting X = I
K  and Y = J − 1

K , 

we have the following expansion:

τIJ = K
κ0
∫

X

Y ∫
0

y
exp − K f x − f y − ℎ x − ℎ y + O 1 dxdy

1 − y 1 + O 1
K ,

where ℎ x  is the function defined in (5.2).

Proof We depart from the formula (3.2) of Proposition 2 defining τIJ in terms of p‾i, and then 

apply the approximate formula (5.1) for p‾i (we neglect also exp γ j
k  since it is of order 1):
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τIJ =
j = I

J − 1

i = 0

j p‾i

κj
+p‾j

=
j = I

J − 1

i = 0

j exp −Kf i
K − ℎ i

K − 1
2log K + O 1

κ0 K − j exp γ j
K − Kf j

K − ℎ j
K − 1

2log K + O 1

=
j = I

J − 1

i = 0

j 1
κ0K 1 − j

K
exp −K f i

K − f j
K − ℎ i

K − ℎ j
K + O 1

=
I
K

J − 1
K

0

y

Kdxdy
κ0 1 − y exp −K f x − f y − ℎ x − ℎ y + O 1 1 + O 1

K .

☐

The approximation of the expected hitting time (3.3) through (5.3) is very accurate as 

illustrated in Fig. 9 for a specific choice of parameters. Note that K appears in (5.3) as a 

multiplying factor, which could be interpreted as a need for changing the time-scale, see e.g. 

Eugene et al. (2016). Less easy to interpret is the fact that K appears as a power. In our 

attempt to derive an approximate expression for the expected transition time we can thus go 

a step further, as shown by the following proposition.

6 Approximation using Laplace's method

Proposition 5 Under the assumptions of Proposition 4, as both K and γ tend to infinity, the 
expected transition time is approximately given by:

τ0, Jmax ≈ π
κ0

eK γ
4 − log 2 + e−γ

γ/2 − 1 eγ .

(6.1)

This implies that asymptotically the expected transition time grows exponentially in both K
and γ.

Proof We use Laplace's method to approximate (5.3) for large K and large γ. Laplace's 

method suggests to extend the domain of integration in (5.3) to ℝ2 and to simplify the 

integrand of (5.3) in a way which allows to compute the integral explicitly. The idea 

is to replace the argument of the exponential function by the parabola corresponding 

to the second order Taylor approximation near its peak. Since the exponential function 

over-weights large, positive argument, this approximates the original expression for large K
although the behaviour of the integrand away from its maximum is not taken into account.

In the specific case of (5.3) the integrand can be written as ef y − f x  with the function 

f defined in (5.2). A sketch of the domain of integration for arbitrary I /K < 1/2 < J /K is 

shown in Fig. 10b. It indicates that the expression f y − f x  (Fig. 10a), has a well-defined 
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maximum at y = xM = 1/2 and x = xm which correspond to the maximum and left minimum 

of the function f.

Writing the integrand as ef y /ef x  we also realize that the entire integral factorizes into 

the product of two integrals on the real line. After replacing f by its second order Taylor 

approximations at its maximum and minimum respectively, both integrals can be taken. This 

gives rise to the following computation, which reflects the Eyring-Kramers formula and 

which yields an approximation of (5.3) for I /K < 1/2 < J /K,

τ0, Jmax ≈ K
κ0
∫

−∞

∞∫
−∞

∞ eγ y 1 − y × yy(1 − y)1 − y

eγ x 1 − x × xx(1 − x)1 − x

K
dydx

≈ K
κ0
∫

−∞

∞∫
−∞

∞ exp f xM + y − xM
2f″ xM /2

exp f xm + x − xm
2f″ xm /2

K
dydx

= 2π
κ0

eK f xM − f xm

−f″ xM f″ xm
.

Here xM = 1/2 is the (local) maximum of f and xm denotes the local minimum of f such that 

xm ∈ 0,1/2  (see Fig. 8b).

The shape of the parabola which approximates the (local) maximum of f at 1/2 can be 

computed and is characterized by f 1/2 = γ/4 − log 2  and f″ 1/2 = 4 − 2γ. The location 

of the minimum of f at xm ∈ 0,1/2  can only be computed numerically. For large γ, it is 

asymptotically given by e−γ. This implies that f″ xm ≈ eγ and f xm ≈ e−γ. The resulting 

approximate switching time is given by Formula (6.1).☐

Remark 3 As already noted, another O e−γ  approximation of xm for large γ is 1/ eγ − 5
which happens to approximate xm fairly well for all γ > 2 (Fig. 8c). Using this approximate 

value and the exact formulas for f and f″, we find:

τ0, Jmax ≈ π
κ0

eK γ
4 − log 2 − f xm

γ/2 − 1 f″ xm
, wherexm = 1

eγ − 5
.

(6.2)

For large enough values of γ, this is a reasonably good approximation of the switching time 

defined as τ0, Jmax, as shown in Fig. 11. Finally, in absolute numbers, the predicted switching 

times for our standard set of parameters given in Table 1 are τ0, Jmax ≈ 160s [resulting from 

(3.2)], ≈ 190 s [continuous approximation (5.3)], ≈ 157 s [close approximation (6.2)] and 

103 s [rough approximation (6.1)].

7 Discussion

In this paper, we considered the tug-of-war between multiple identical molecular motors 

crosslinking two parallel MTs. Stochastic simulations suggest that in the limit of a great 

number of motors and of the detachment rate being sufficiently sensitive to the load force 
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(K ≫ 1, γ > 2), most of the motors at any instant are attached to just one MT with their cargo 

domains. Few oppositely oriented motors are attached to the same MT with their motor 

domains because they experience an overwhelming load force. Occasionally, a fluctuation 

generates a switch to the majority of the attached motors of the opposite orientation. The key 

to understanding the tug-of-war dynamics then is to calculate the respective switching rate. 

In fact, even defining what this effective switching rate between two directions means is a 

challenge.

We used the Master Equation describing a random walk in the space of the numbers of the 

opposing motors to demonstrate that the asymptotically stable motor number distribution 

is characterized by two sharp peaks near the ends of the motor number interval (for γ > 2
but less than a threshold value) or exactly at the ends of the interval (for γ greater than 

this threshold value). Furthermore, the expected time of the transition between the two 

directional states can be defined as the expected hitting time of the underlying Markov 

process of transition between two states corresponding to the peaks' maxima. We find that 

a valid approximation comes from calculating the expected time of the transition between 

the two directional states as the hitting time of a transition between a state with all motors 

pulling in the same direction to the equilibrium state of most (but not all) motors pulling in 

the other direction. Respective two states correspond to one end of the interval (all motors 

pulling in the same direction) and to the maximum of the opposing peak in the stationary 

distribution. On the other hand, the hitting time of a transition between the state with all 

motors pulling in the same direction to the state with all motors pulling in the opposite 

direction provides an inaccurate estimate for the average direction switching time.

We used explicit formula for the expected hitting times of birth and death processes and 

found a series of explicit formulae for the time between switching directions.We then used 

Laplace's method to derive the asymptotic formula for the switching frequency and found 

that the frequency is an exponentially decreasing function of the total motor number and of 

parameter γ describing the sensitivity of the motor detachment rate to the load force. This 

allowed us to estimate the effective diffusion coefficient for movements of the MT pair.

The question about switching frequency is linked to several characteristic timescales 

associated with this process. One is the relaxation time corresponding to the spectral gap 

of the generator, i.e. the modulus of the second largest eigenvalue of the matrix Q, the largest 

eigenvalue of which is zero. Results which elaborate on the relation include the eigenvalue 

identity (Aldous and Fill 2002; Miclo 2015). This question is also linked to the notion of 

metastability (Huisinga et al. 2004). This timescale is related to the mixing time of the 

process (Levin et al. 2009). Since this time is given by an eigenvalue, it is a solution of the 

characteristic equation which is an algebraic equation of order K + 1 and therefore typically 

does not admit a closed-form solution. Such approaches shall be studied in future work. 

Further study should also take into account non-instantaneous reattachment, which could 

explain longer pauses than our simpler model predicts.

Our analysis provides the following biological insights. First, assuming that the total motor 

number is proportional to the length of the MT overlap, we predict that the pair would be 

sliding unidirectionally for a long time if the overlap length is great, while the MTs will 
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switch direction of sliding often if the overlap length is short. So, effectively, the parallel MT 

pair is locked together, as was assumed before, but importantly, this lock is not static, but 

dynamic.

So far, predictions of our model were not tested directly, as it is very difficult to control 

the number of the crosslinking motors, as well as mechanical properties of the motor cargo 

domains, between the MT pairs in in vitro, and especially in in vivo experiments. However, 

the experiments with MT pairs being slid in vitro by collective action of multiple kinesin-14 

motors were reported in (Fink et al. 2009; Ludecke et al. 2018). In these experiments, 

it was observed that when all motors were attached to the same MT with their cargo 

domain, the second MT was sliding rapidly and unidirectionally. When the motors were 

binding dynamically and stochastically on the other hand, low and widely distributed sliding 

velocities for the first 100 sec of the observation were reported. A wide distribution of 

low sliding velocities is similar to the diffusion behavior. The authors of these studies also 

hypothesized that a small number of motors were acting collectively. These observations are 

in qualitative agreement with the predictions of our model. Another relevant measurement, 

in vivo, reported a wide, mildly peaked, distribution of sliding MT velocities driven by 

collective dynein action in proplatelets of megakaryocyte cells (Patel et al. 2005). This result 

can be interpreted as follows: the velocity peak corresponds to the sliding apart of long MT 

pairs, while the other, widely distributed, velocities, could be generated by sliding of parallel 

MT pairs of variable lengths.

Although we do not explore external forces in this work, our model suggests that a shear 

force applied to the MT pair would not lead to an elastic response. Rather, as motors attach 

and reattach and the MTs slide relative to each other, our model suggests a viscous response. 

Such viscous-like shear is in fact consistent with observations of behavior of parallel MTs 

crosslinked by multiple motors (Shimamoto et al. 2015). This viscosity is likely nonlinear, 

as the shear would feed back mechanically to the motor directional distribution. Further 

modeling will be needed to estimate this effective viscosity. These conclusions will have 

important implications for the MT dynamics in the mitotic spindle and axon MT bundle.

Note that the original tug-of-war models assumed that both dynein and kinesin were 

characterized by slip-bonds (increasing detachment rate with increasing load), whereas 

dynein appears not to behave as a slip-bond (Kunwar et al. 2011). This calls into question 

the mechanism of switching for cargos driven by both dynein and kinesin. The present 

work applies the same notion of competing motors with slip-bonds to cases where the 

same species—kinesin—is in competition with itself, and where slip-bond behavior is well-

established.

In the future, our analysis can be expanded to the cases when more detailed stochastic 

models of individual motors are used (Atzberger and Peskin 2006; Newby and Bressloff 

2010; Kunwar et al. 2011; Bouzat 2016), and/or explicit thermal noise of the cargo (MTs in 

our case) is considered (Miles and Keener 2017). A number of recent modeling papers, in 

fact, addressed aspects of the tug-of-war phenomenon that are beyond the scope of our study 

(Zhang and Fisher 2010; Newby and Bressloff 2010; Ikuta et al. 2014; Lee and Mitchell 

2015; Bhat and Gopalakrishnan 2016; Saito and Kaneko 2017). Another generalization will 
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be to remove the assumption that the motors reattach immediately upon detachment in 

a random configuration and to quantify the limitations of this simplification. Preliminary 

stochastic simulations where we omit this assumption show that the total number of attached 

motors is distributed within a narrow range around an average value. The constant K in our 

simplified model should therefore be identified with this average number of attached motors 

rather than with its maximal number.

Last, but not least, there is an important physical difference between unipolar motors, like 

kinesin-1 and dynein (with the cargo domain at one end and motor domain at another 

end), which we analyzed here, and bipolar motors, like kinesin-5 and myosin (which have 

effectively motor domains at both ends). For the latter, our theory will have to be modified. 

We emphasize though that the mathematical apparatus that we introduced here will be 

applicable to all these cases.
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Fig. 1. 
Tug-of-war. Molecular motor proteins are represented by green forks. The symbol is indeed 

the letter Y if the motor domain is attached to the upper fiber (in blue) with the cargo 

domain attached to the lower fiber. The symbol is an upside-down Y in case the motor 

domain is attached to the lower fiber with the cargo domain attached to the upper one. The 

motor domains move to the plus end of the respective fiber symbolized by an arrowhead. 

This slides the fibers in a way which depends on their relative polarity. a MTs are anti-

parallel: fibers move in the direction of their minus end irrespective of the direction of motor 

proteins. b MTs are parallel (here with the plus ends to the right): the fiber to which the 

higher number of motor domains is attached moves to the left (dotted gray arrows), while 

the other one slides to the right. Only with an equal number of motors in both directions the 

pair of fibers is locked and therefore does not move
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Fig. 2. 
a Sketch of the general mathematical model, here shown for K = 6. b In the limit when 

reattachment is fast, the state space is restricted to N + M = K. In this case the mathematical 

model is a classical birth–death process with transition rates κi
±
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Fig. 3. 
Sketch of the mathematical model a K = 11, i = 4, which implies K − i = 7. b Detailed 

visualization of turnover
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Fig. 4. 
Stochastic simulations by a Gillespie's algorithm for K = 35, γ = 3 and κ0 = 1/2. a One out 

of the 100 Gillespie simulations. Average number of transitions (from state 0 to state 

K or the reverse) for each simulation run: 45.3 ± 7.5. Average time-span of simulation 

runs: 7145 ± 32.6. Average duration of transitions between states 0 and K:162 ± 29.9. b 

Visualization of the stationary distribution p− (black line and dots), compared with the first 

order approximate formula pK = e−Kf (dotted red line) and the second order approximate 

formula e−Kf − ℎ − 1
2log K  (full blue). The grey area shows the zone where 95% out of 100 

repeated stochastic simulations of 3.106 reaction steps lie

Allard et al. Page 25

J Math Biol. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Stochastic simulations for K = 35, γ = 3 and κ0 = 1/2: a relative displacement of the two MYs 

simulated as shown in Fig. 4a. The relative displacement is updated in every timestep by 

Δt × Δv with the relative velocity given by (2.1). b Mean squared displacement x t 2  vs 

time (red) for 200 simulation runs with the same parameter set. The linear regression line is 

shown in blue
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Fig. 6. 
Stochastic simulation for parameter values K = 35, γ = 3 and 3 × 106. Histogram of 

simulated hitting times (logarithmic scale) to go from state K − 1 /2 to state K + 1 /2. 

The bimodal distribution corresponds to one group of very fast transitions and another 

group of slow transitions (the latter are of characteristic duration of e5 corresponding to 

approximately 148 sec real time
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Fig. 7. 
a τ0J as a function of the state 0 ≤ J ≤ K for γ = 2.5. b Log of approximated switching times 

for K = 35 as function of γ. We compare the approximated switching time τ0, Jmax where the 

state Jmax is the maximum of the stationary distribution (blue) and 2τ0, K/2 where τ0, K/2 is the 

expected time to go from the left extreme state to the central transition state (orange)
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Fig. 8. 
K = 35, and κ0 = 1/2: a the limit density pK x , here with K = 35, for various values of γ. 

b Graph of f for γ = 2.5 (blue), γ = 3 (red) and γ = 4 (green). c Location of the left local 

minimum. blue: exact value xm γ ∈ 0,1/2 , red: 1/ eγ − 5 , green: e−γ
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Fig. 9. 
Log-plots of τ0, Jmax (blue dots) and its approximation (5.3) (red graph). a Comparison for 

γ = 3 as a function of K. b Comparison for K = 35 as a function of γ
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Fig. 10. 
a Plot of f y − f x  where ef y − f x  is the integrand in (5.3) for K = 35, κ0 = 1/2 and γ = 3
on the maximal domain of integration where I /K = 0 and J /K = 1. b Domain of integration 

in (5.3). Note that the peak shown in a is located at y = 1/2, x = xm and included in the 

domain of integration of any I /K < 1/2 < J /K
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Fig. 11. 
Log-plots of approximate hitting time τ0,Jmax (blue dots) and the approximation due to 

the Laplace method with the exact minimum of f (6.2) (red) and with the approximate 

minimum of f (6.1) (green). a Comparison for K = 35 and κ0 = 1/2 as a function of γ. b 

Comparison for γ = 3 and κ0 = 1/2 as a function of K
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Table 1

List of parameters and their orders of magnitude

Description Symbol Value References

Stall force (kinesin) Fs 6 pN Visscher et al. (1999)

Detachment force (kinesin) f0 4 pN Kunwar et al. (2011)

Free moving velocity (kinesin) V m 0.57 μms−1 Kunwar et al. (2011)

Number of competing motor proteins K 35 Value used for testing

Force-less detachment rate κ‾0 1 s−1 Kunwar et al. (2011)

Force-less transition rate κ0 0.5s−1 Equal probability of another motor to attach in either direction

Scaled, dimensionless stall force γ 3 γ = 2Fs/f0
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Table 2

Comparison of the diffusion coefficients observed in stochastic simulations (slope according to linear 

regression line as illustrated in Fig. 5b) and estimated as 1
2 × mean rel. velocity × run length where run length 

= τK − Jmax, Jmax × mean rel. velocity for several values of the scaled load-sensitivity γ

γ D (μm2/s) Destimate (μm2/s)

0 7.6 × 10−3 1.6 × 10−3 – 24 × 10−3

2 0.14 0.09

2.5 1.33 2.4

3 17.4 20.6

4 12.1 × 103 14.4 × 103
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