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I M M U N O L O G Y

Hypoxia coordinates the spatial landscape of myeloid 
cells within glioblastoma to affect survival
Michael J. Haley1,2*, Leoma Bere1,2, James Minshull1,3, Sokratia Georgaka4, Natalia Garcia-Martin5, 
Gareth Howell6, David J. Coope1,3,7, Federico Roncaroli1,3,7, Andrew King1,7,8, David C. Wedge9, 
Stuart M. Allan1,3, Omar N. Pathmanaban1,3,7, David Brough1,2,3, Kevin N. Couper1,2*

Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation 
states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the 
localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal 
imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various 
myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid 
populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tis-
sue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subse-
quently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, 
that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell sub-
populations in GBM, and how this is predictive of clinical outcome.

INTRODUCTION
Glioblastoma (GBM), the most common and aggressive type of 
brain tumor, is almost universally fatal, with a median average sur-
vival time of 12 to 18 months. Despite the tremendous advances 
in treatment of other cancers, the standard-of-care treatment for 
GBM—surgical resection followed by chemoradiotherapy—has re-
mained unchanged for decades (1). To date, GBM has proven large-
ly refractive to immunotherapies highly effective in other cancers 
(2). Consequently, there is a critical need to better understand the 
unique immunobiology of GBMs to develop new effective treat-
ments for this devastating disease.

Myeloid cells (which include monocytes, macrophages, and tissue 
resident microglial cells) are major components of GBM, constituting 
30 to 40% of all cells found within the GBM tumor microenviron-
ment (TME) (3, 4). Myeloid cells are believed to play major roles in 
promoting GBM progression and treatment resistance, including im-
pairing response to radiotherapy and immunotherapy. As such, they 
are viewed as attractive targets for novel treatments for GBM, with 
preclinical data supporting the benefit of macrophage modulation 
(3). However, the myeloid cell compartment is extremely heteroge-
neous in GBM, being able to adopt a spectrum of proinflammatory 
and suppressive states (4, 5) with immunosuppressive phenotypes be-
ing associated with worse outcome (6–11).

At present, we have limited knowledge of where the different my-
eloid cell populations compartmentalize in the complex TME of 
GBMs, and what tissue factors may shape their positioning and 

differentiation. This is partly due to the limitations of bulk-based or 
cell suspension–based methods for studying the GBM TME, which 
cannot simultaneously capture the spatial and phenotypic heteroge-
neities seen in myeloid cells in GBM (4). Spatial heterogeneity arises 
in GBM due to variation in the degree of tumor cell infiltration into 
healthy tissue and due to emergence of hallmark features of GBM 
such as hypoxia-induced necrosis and microvascular proliferation 
that differentiate it from lower-grade tumors (12). Further spatial 
heterogeneity emerges from the proliferation of specific tumor sub-
clones within different parts of the same tumor (12, 13) and macro-
scopically in terms of blood flow and tissue perfusion (14). Therefore, 
there are established spatial features within GBM that may imprint 
myeloid cell heterogeneity and cell compartmentalization.

Here, we have combined high-dimensional imaging mass cytom-
etry (IMC) and deconvolution of spatial transcriptomic (ST) datasets 
to map the myeloid cell compartment in the TME of GBM. Orthogonal 
validation identified distinct populations of myeloid cells in GBM, 
with subsets of macrophages and microglia that differed in abundance 
between areas from the edge and core of the tumor. We found clear 
compartmentalization of myeloid populations, with cells of a similar 
phenotype clustering together (with macrophages showing particu-
larly strong clustering behavior) and segregating cells of dissimilar 
phenotypes. The spatial landscape of myeloid cells appeared to be 
modulated by several putative factors, including cellular interactions 
(with myeloid, tumor, and vascular cells), regional chemokine signal-
ing, and, predominantly, tissue hypoxia. Hypoxic niches were prefer-
entially occupied by immunosuppressive macrophages and infiltrating 
monocytes. Crucially, we identified an association between the tran-
scriptomic signature of specific myeloid cell environments and GBM 
survival, indicating that the spatial arrangement of specific myeloid 
cell populations is an important determinant of GBM outcome.

RESULTS
IMC captures the diverse myeloid states present in GBM
Primary IDH (Isocitrate dehydrogenase 1)–wild-type (WT) GBMs 
were selected from the Department of Cellular Pathology at Salford 
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Royal Hospital (Table 1), and edge and core regions of the tumors 
were annotated by a neuropathologist via histological assessment of 
hematoxylin and eosin (H&E)–stained sections. Tissue microarrays 
(TMAs) were subsequently generated (24  mm by 2.25  mm), and 
sections were stained with a panel of 37 metal-conjugated antibod-
ies, followed by data acquisition on a Hyperion IMC. Nuclear-based 
cell segmentation was used to extract the single-cell expression of 
each marker in the staining panel for downstream analysis (Fig. 1A), 
with accuracy of segmentation confirmed against manual annota-
tion via Jaccard analysis (fig. S1A) (15).

IMC allowed us to simultaneously identify and contrast the com-
ponents and spatial organization of the TME within the edge and 
core regions in situ. Given the role of myeloid cells in GBM (5), we 
designed our antibody panel and subsequent analyses to capture the 
diversity of myeloid cell populations found within GBM. IMC al-
lowed us to putatively identify microglia (iba1+, TMEM119+, and 
P2RY12+) and tumor-associated macrophages (iba1+ and CD163+) 
based on their morphology and marker expression, as well as cells 
positive for markers of central nervous system (CNS) progenitor 
cells and cellular proliferation often associated with neoplastic cells 
(CD44, SOX2, Olig2, and Ki67) (Fig.  1B). Representative images 
suggested the abundance of microglia, and TAMs varied between 
the edge and core of the tumor, as previously reported (9, 16–18).

To understand the expression patterns of the analyzed molecules 
within the single cells segmented within our dataset, we first visual-
ized their distribution using Uniform Manifold Approximation and 
Projection (UMAP). This showed clear segregation between cells 
expressing myeloid, neoplastic, and vascular makers (Fig. 1C and 
fig. S1B). Within the region corresponding to myeloid cells, there 
was separation between cells with highest expression for markers of 
microglia (TMEM119+ and P2RY12+) and tumor-associated mac-
rophages (iba1+ and CD163+). However, the lack of a discrete 
boundary between microglia and TAM cell clusters, and the distri-
bution pattern of other myeloid markers (CD74, CD16, VISTA, and 
CD206), suggested the presence of multiple closely and distantly 
related myeloid subpopulations in the GBM tumor. Similarly, neo-
plastic markers were heterogeneously expressed throughout the 
neoplastic compartment of the UMAP, likely corresponding to dis-
tinct neoplastic populations.

To identify the cell populations present in our IMC data, Leiden 
clustering was performed (19), resulting in profiling of 21 distinct 
myeloid and nonmyeloid populations (Fig. 1, D and E, and fig. S1C). 
Within these, seven were identified as myeloid populations (fig. S1C), 
nine populations were identified as tumor cells, two corresponded 
to neuroglia (astrocytes and other CNS cells), three to nonmyeloid 
immune populations (lymphocytes and a HIF1a+ immune popula-
tion), and one to vascular cells (Fig. 1E). All populations were con-
firmed by visualizing them in the tissue (fig.  S1D). The myeloid 
populations were detectable across cases, although varied in their 
proportions (fig. S1E). Two populations were identifiable as microg-
lia. The first showed higher expression of the homeostatic microglial 
marker P2RY12 (Mg-Ho; homeostatic microglia) and the second 
having a more proinflammatory phenotype (TAM-Mg; tumor-
associated microglia), with lower P2RY12 and increased expression 
of markers of proinflammatory activation (iba1high, VISTA+, CD16+, 
and CD74high). Myeloid cells high for CD74 have previously been 
associated with a proinflammatory (M1) phenotype in GBM (20), 
and high expression of VISTA has been reported in activated mac-
rophages (21). Two populations were identified as tumor-associated 
macrophages (CD163+), with one having a more proinflammatory 
phenotype (TAM-Mac; tumor-associated macrophages) and mod-
erate expression of TMEM119. The other TAM population had 
comparatively lower expression of CD14 and CD16 but high expres-
sion of CD206 (TAM-Supp; immunosuppressive myeloid), a pheno-
type which has suggested to reflect immunosuppressive myeloid 
cells in GBM (11, 18, 22, 23). Besides populations with defined phe-
notypes, we also found a sizeable population of intermediate TAM/
microglial population without a canonical microglia or macrophage 
signature, as has previously been reported (24, 25). This population 
was confirmed as not being a consequence of poor segmentation 
(fig. S1, A and D). We also found a population of myeloid cells with 
low expression of myeloid markers relative to other myeloid cells, 
which may represent cells with low activation (Mg-like; microglia-
like), and a population which were only positive for CD68 (TAM-
Cd68). Notably, we could not differentiate monocytes or dendritic 
cells as distinct populations utilizing this panel, although recent 
reports suggest that dendritic cells make up <1% of total myeloid 
cells in the GBM TME (22, 26). Although clustering did identify 

Table 1. Clinical characteristics of samples for IMC. 

Case Site
Age at  

surgery Sex IDH status ATRX status
MGMT meth-
ylation status Edge regions Core regions

1 Left temporal 63 F WT WT Not performed 2 1

2 Left temporal 73 F WT WT Hypermethyl-
ated

1 2

3 Right parietal 63 F WT WT Unmethylated 2 1

4 Left temporal 53 M WT WT Unmethylated 2 1

5 Left parietal 54 F WT WT Hypermethyl-
ated

2 1

6 Left frontal 62 F WT WT Hypermethyl-
ated

2 1

7 Left temporal 73 M WT WT Unmethylated 1 2

8 Left cingulate 62 M WT WT Not performed 3 0
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Fig. 1. Characterization of cell populations present in the GBM TME using IMC. (A) Overview of the GBM patient samples obtained from Salford Royal Foundation 
Trust (STFT) and IMC workflow. (B) Representative IMC and H&E images from GBM cases taken from either the edge or core of the tumors, visualizing key microglial, mac-
rophage, and neoplastic markers. (C) UMAPs visualizing the single-cell data acquired from the IMC workflow, demonstrating the distribution of the myeloid, neoplastic, 
and vascular markers over all cells. Each marker is normalized to the 99th percentile of its expression. (D) Heatmaps showing the mean marker expression for the popula-
tions identified in the single-cell IMC data using Leiden clustering. (E) UMAP showing the labeled cell populations resulting from Leiden clustering. (F) Comparison of the 
abundances of the different myeloid and nonmyeloid populations between the edge and core regions of the tumors. *P < 0.05, groups compared by multiple linear re-
gression. Data shown as mean ± SEM. (G) Diffusion pseudotime and PAGA analysis demonstrating a pathway of myeloid differentiation starting at homeostatic microglia 
(Mg-Ho), through to proinflammatory activation microglia (TAM-Mg), proinflammatory macrophages (TAM-Mac), and ultimately to immunosuppressive myeloid cells 
(TAM-Supp).
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putatively different tumor cell populations, our panel did not ro-
bustly distinguish the neoplastic subtypes known to be present in 
GBM (27). As such, to facilitate downstream analyses, we merged 
tumor populations into a single population. Cells classified as neu-
roglia did not express markers that would otherwise identify them 
as myeloid, tumor, or vascular cells and thus likely represent a mixed 
population of glia and other CNS-resident cells. On the basis of their 
high expression of granzyme B and CD11b, we hypothesize that 
HIF1a+ immune population could be neutrophils.

The abundance of myeloid populations varies in the 
different GBM regions
Previous studies have reported that microglia and macrophages are 
preferentially found at the periphery of the tumor or the core of the 
tumor, respectively (9, 16–18). We therefore calculated the abun-
dance of the seven myeloid subpopulations and nonmyeloid cells, 
within the histologically validated edge and core regions of the tu-
mor (Fig.  1F). We found a significant increase in the numbers of 
homeostatic microglia and microglial-like cells in the edge and an 
increase in intermediate and proinflammatory populations (TAM-
Int and TAM-Mac) in the core. Hierarchical clustering of regions, 
based on relative myeloid abundances, further indicated that edge 
and core regions contained distinct myeloid cell compartments 
(fig. S2A). We also saw an increase in neuroglial cells in the tumor 
edge and, as expected, an increase in tumor cells in the core. Corre-
lating the abundances of the various populations within each region 
of interest showed distinct clusters of positively and negatively cor-
related populations (fig. S2B). For example, microglia (Mg-Ho and 
Mg-like) and neuroglial cell abundances correlated positively with 
each other but negatively correlated with TAM populations (TAM-
Mac and Tam-Supp) and tumor cell numbers. Notably, although 
there were differences in abundances of myeloid subpopulations be-
tween core and edge regions, most populations were found in all 
regions analyzed (Fig. 1F and fig. S2C). Together, these analyses sug-
gest that although there may be broader features of the TME that 
promote the accumulation of microglia versus tumor-associated 
macrophages, there may be more specific local features present in 
regions which drive the accumulation of specific myeloid sub-
populations.

Myeloid populations exist on a spectrum of differentiation 
and activation states in GBM
Our IMC data, along with published single-cell sequencing studies, 
demonstrate that myeloid cells exist in a spectrum of activation 
states in GBM (7, 18) with the polarization of myeloid cells toward 
either microglia or TAMs being the most prominent (22, 28, 29). 
However, the exact ontogeny of the identified myeloid populations 
in GBM remains unclear (4). We therefore used partition-based 
graph abstraction (PAGA) analysis to understand the relationships 
between the seven myeloid populations identified by IMC (Fig. 1G). 
This showed strong connectivity and therefore a pathway of differ-
entiation between four myeloid populations: homeostatic microglia 
(Mg-Ho), proinflammatory microglia (TAM-Mg), proinflammato-
ry macrophages (TAM-Mac), and immunosuppressive myeloid cells 
(TAM-Supp). As microglia (Mg-Ho) are the brain resident immune 
cells, we then assessed the differentiation from this native state using 
diffusion pseudotime analysis. Plotting pseudotime against the 
route of differentiation defined by PAGA demonstrated that microg-
lial markers are lost in favor of activation markers (VISTA, CD74, 

CD16, and iba1 up-regulation) and eventually transitioning into an 
immunosuppressive phenotype characterized by up-regulation of 
CD163 and CD206 (18, 23). Together, these analyses suggest that 
endogenous microglia may differentiate into tumor-associated mac-
rophages and that the primary pathway through which this occurs is 
via a state of proinflammatory activation. An alternate pathway by 
which cells first transition through intermediary state (TAM-Int) 
before differentiating into immunosuppressive TAMs is less well 
supported by the PAGA and pseudotime analyses (fig. S2D). How-
ever, as we could not identify monocytes as a defined population, 
these pathways only address how endogenous microglia differenti-
ate into tumor-associated macrophages. There is an established 
route through which infiltrating monocytes differentiate into im-
munosuppressive (CD163+ CD206+) tumor-associated macro-
phages (17, 18, 22) that likely operates in parallel that we cannot 
address in our IMC data.

Microglia and macrophages show conserved patterns of 
compartmentalization in GBM
Although we observed different abundances of myeloid populations 
between core and edge regions, our data clearly identified that mul-
tiple different myeloid cell populations were present within the same 
areas of the tumor. This raised the question whether myeloid cell 
compartmentalization in GBM is stochastic, or whether there are 
deterministic cellular and environmental drivers of myeloid posi-
tioning and function. To investigate this, the previously identified 
myeloid populations (Fig. 1D) were mapped back to their locations 
in the tumor (Fig. 2A). This revealed that different myeloid popula-
tions had different distributions in the TME, with some populations 
appearing to cluster in specific areas (e.g., TAM-Supp), others ag-
gregated more loosely (e.g., TAM-Int), whereas others appeared 
more evenly distributed in the TME (e.g., Mg-Ho). Qualitatively, 
these patterns seemed conserved between the core and edge of the 
tumor. Notably, myeloid cells appeared to spatially associate with 
other myeloid cells in a similar position on the microglial-TAM dif-
ferentiation axis defined by diffusion pseudotime (Fig. 2B, pseudo-
time defined in Fig. 1G).

To prove whether there was a preference for myeloid populations 
to localize close to or away from other populations in the TME, we 
quantified whether the observed distance between myeloid popula-
tions was significantly different from the distance predicted by a 
random distribution of cells (Fig. 2C). Hierarchical clustering of the 
resulting data demonstrated that microglial (Mg-like, Mg-Ho, and 
TAM-Mg) and macrophage subpopulations (TAM-Mac and TAM-
Supp) have distinct patterns of spatial distribution. Specifically, mi-
croglial and macrophage populations appeared to show a preference 
for spatial segregation, with macrophage populations associating 
with one another and localizing away from microglia and microglia 
enriching with other microglia and localizing away from macro-
phages. All populations had the greatest spatial enrichment with 
themselves. In some populations (TAM-Cd68, TAM-Int, and Mg-
like), the difference between the expected and observed distances to 
other populations was closer to zero, although often still significant. 
This suggests that these populations are closer to a stochastic distri-
bution, being more randomly and evenly distributed throughout 
the TME. As the overall pattern of interactions was broadly similar 
between edge and core regions, it suggests a conservation of the pro-
pensity of myeloid cells with a similar phenotype to spatially associ-
ate together even in the context of different cell abundances and 
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environments throughout the tumor. To assess whether the spatially 
associated myeloid populations were interacting in the GBM TME, 
myeloid cells in each region were subsequently expressed as net-
works, where each cell was connected to its six nearest neighbors 
(Fig. 2D and fig. S3A). This analysis supported our previous ob-
servations (Fig. 2C), showing that myeloid populations most sig-
nificantly interact with themselves, interact to some degree with 
phenotypically similar populations, and tend not to interact with 
dissimilar populations (Fig. 2E). As with previous analyses, this pat-
tern of behavior was similar between edge and core regions, suggest-
ing that this behavior is conserved throughout the tumor.

The tendency of myeloid cells to spatially associate with cells of 
the same type was investigated by measuring each populations’ clus-
tering coefficient (Fig. 2F). Clustering coefficient is a descriptive sta-
tistic of network properties in which a high value designates that a 
population forms densely interconnected clusters (30), and a low 

value suggests cells of that population are weakly connected and 
more loosely clustered in the TME. In this initial analysis, all my-
eloid populations showed a similar propensity for clustering, with 
significantly higher clustering in TAM-Cd68 and TAM-Int popula-
tions in the core. These clustering values suggest that most myeloid 
populations form small, weakly connected clusters in the TME. As 
more abundant populations could be clustering purely by chance, 
we then corrected clustering coefficients for differences in popula-
tion abundance between regions. This showed that almost all popu-
lations showed more clustering than would be expected by chance 
(Fig.  2G). Notably, TAM-Supp cells showed significantly denser 
clustering in the edge. The pattern of clustering was otherwise con-
served between edge and core regions. Measuring the assortativity 
[a descriptive statistic of the tendency of populations in a network 
to connect to populations of the same type over different popula-
tions (31)] similarly suggested that cells showed a weak but positive 

Fig. 2. Myeloid cells exhibit high homotypic and low heterotypic clustering behavior in GBM. (A) Mapping of the myeloid populations identified from single-cell 
analyses to their locations in the TME in edge and core regions. (B) Diffusion pseudotime showing how differentiation away from a homeostatic microglial phenotype 
relates to myeloid cell positioning. (C) Spatial distribution analysis which shows whether populations are closer or further away from each other in the TME than would be 
expect by chance. (D) IMC image showing separation of microglia (P2RY12+) and macrophages (CD163+ and CD206+), alongside the position of the cells on the microglia-
macrophage diffusion pseudotime axis, and how the cells are connected in the six–nearest neighbors (kNN) analyses. (E) Proportion of cellular interactions made by my-
eloid populations when each myeloid cell is connected to its six nearest neighbors. Hierarchical clustering of the interactions shows that cells with a similar phenotype 
also have similar proportions of interactions with other populations. (F) Clustering coefficient of the different populations in the edge and core of the tumor. (G) Correc-
tion of clustering coefficients for differences in cell abundance, in which a positive value suggests that cells are clustering at a greater rate than expected by chance. 
(H) Comparison of assortativity of myeloid populations in edge and core regions. Comparison made by Wilcoxon test with Benjamini-Hochberg correction (C and E), 
multiple linear regressions, corrected for multiple comparisons by Holm-Šídák (F and G), or Mann-Whitney U test (H). Box plots show range, interquartile range, and me-
dian of data (F to H).
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preference to connect to cells of the same population and that this 
was similar between edge and core regions (Fig. 2H). Overall, these 
data demonstrate that different myeloid populations segregate and 
form loose homotypic clusters in the TME and that the biological 
drivers of this segregation are mostly independent of broader loca-
tion in the edge or core of the tumor.

The positioning of myeloid cell populations is affected by 
tumor, neuroglial, and vascular interactions in the GBM TME
Our data suggest that myeloid cells are not randomly distributed in 
the GBM TME. We hypothesized that this myeloid compartmental-
ization could be driven by myeloid cells interacting with other high-
ly abundant nonmyeloid cells in the TME, such as tumor (SOX2), 
vascular [CD31 and smooth muscle actin (SMA)], and neuroglial 
cells (defined in Fig. 1). Mapping the relative densities of these dif-
ferent populations demonstrated macroscopic regionalization of 
tumor and neuroglial cells within the core and edge tumor regions 
and of myeloid populations when broadly divided into microglial 
and macrophage populations (Fig. 3A). Mapping the populations at 
the cellular level qualitatively suggested potential associations be-
tween specific myeloid subpopulations and neuroglial, vascular, and 
tumor cells (Fig. 3B).

To quantify the different environments in which the different 
myeloid cell populations were found, we used a local measure of 
Rao’s quadratic entropy (Fig. 3C). This measures the phenotypic di-
versity between each myeloid cell and the cells (nonmyeloid and my-
eloid) with which it interacts, with highly scoring cells interacting with 
several cells with heterogeneous phenotypes. This demonstrated that 
macrophage populations (TAM-Mac and TAM-Supp) had signifi-
cantly greater quadratic entropy than microglia. While we have previ-
ously established that myeloid populations cluster in the tissue (Fig. 2), 
these analyses further suggest that macrophages form clusters in more 
cellularly heterogeneous areas of the tumor, interacting with multiple 
nonmyeloid cells with diverse phenotypes. In comparison, microglia 
have less diversity in their interactions with other nonmyeloid cells. 
The only difference between edge and core was in Mg-like cells, where 
cells in the core had significantly greater quadratic entropy. This sug-
gests that the local cellular organization of nonmyeloid cells influences 
myeloid cell localization in a way that is conserved throughout the 
tumor, so that macrophages preferentially cluster in cellularly dense 
and phenotypically diverse areas of the tumor.

Quantification of interactions between myeloid cells and tumor, 
neuroglial, and vascular cells demonstrated that almost all myeloid 
populations had significantly greater proportion of their cellular in-
teractions with tumor cells in the core and significantly greater in-
teractions with neuroglial cells in the edge (Fig. 3D and fig. S3C). 
While this suggested that there were distinct neoplastic and neuro-
glial influence on myeloid cell positioning in edge and core, these 
effects could be affected by established differences in myeloid, tu-
mor, and neuroglial cell abundances in different regions and cases 
(Fig. 1F). For example, highly abundant populations may be colo-
calizing and so appear to be interacting, purely by chance. Once we 
corrected rates of cellular interactions between myeloid cell popula-
tions with nonmyeloid cells for differences in cellular abundances in 
the edge and core regions, myeloid populations in both the edge and 
core showed significantly less interactions with tumor and neuro-
glial cells than would be expected by chance (Fig. 3E). This could 
suggest that myeloid cells are actively avoiding interacting with 
tumor cells or are preferentially responding to other cues, which 

makes myeloid-tumor interactions less common than would be ex-
pected by chance.

TAM-Mac and TAM-Supp cells showed the greatest avoidance 
(i.e., a propensity to have less interactions than would be expected) 
with tumor cells, particularly in the core. Furthermore, abundance-
corrected interactions suggested that myeloid populations also avoided 
interacting with neuroglial cells, particularly in the edge, although 
also to a lesser extent in the core. The greatest avoidance of neuro-
glial cells was by TAM-Supp cells in the edge. In corrected values, 
TAM-Supp cells continued to be the only population with a signifi-
cant interaction with vascular cells in both edge and core cases, but 
differences in the strength of association were identified in the two 
different tumor regions (Fig. 3E). These findings were corroborated 
using cross–pair correlation function (PCF) analysis, a statistical ap-
proach to assess cell-to-cell interactions that considers differences in 
population abundances (32, 33). This similarly found an association 
of TAM-Supp cells with the vasculature and less interactions than 
predicted by chance between myeloid and tumor cells, which was 
consistent between the edge and core of the tumor (fig. S3D). Similar 
analyses were performed on CD8+ T lymphocytes and the immune 
HIF1a+ populations, finding that HIF1+ cells (that we hypothesize 
could be neutrophils) were vascular associated (fig. S3E). CD8+ T 
cells did not show enriched interactions with any myeloid popula-
tion, although appear to localize away from with microglial cells.

As we also previously observed differences in the clustering be-
havior of TAM-Supp cells between edge and core regions (Fig. 2F), 
we subsequently calculated the proportion of TAM-Supp cells that 
had infiltrated into the tissue in the edge and core regions of the tu-
mor. This showed that significantly more TAM-Supp cells had infil-
trated into the tissue in the core, suggesting that the vasculature may 
be a point of entry for TAM-Supp cells, which remain primarily as-
sociated with the vasculature in edge regions but infiltrate into the 
tumor in the core (Fig. 3F).

Overall, myeloid cells showed a propensity to have less interac-
tions than would be expected by chance with tumor and neuroglial 
cells to an extent that was broadly similar between different myeloid 
populations. Observations were also similar between edge and core 
other than neuroglial cells having reduced impact on myeloid posi-
tioning in core regions. This suggests that differences in localization 
of specific myeloid populations are not strongly driven by the avoid-
ance of (or preference for) direct heterotypic cell-to-cell interactions 
with neuroglial or tumor cells. The observed colocalization of mac-
rophages with tumor cells may therefore be driven by common fac-
tors or tissue signals that do not rely on cell-cell interactions. By 
comparison, there was a clear population-specific association of 
TAM-Supp cells with the vasculature.

Macrophages preferentially localize to hypoxic areas of the 
TME in GBM
Previous analyses suggested that cell-intrinsic behaviors associated 
with specific myeloid cell populations, or common to all GBM-
associated myeloid populations, are at least partly responsible for 
myeloid positioning in the TME. However, environmental factors 
and biological niches likely also affect myeloid cell activities and po-
sitioning. Tissue hypoxia, often leading to necrosis, is a defining 
feature of GBM. We therefore hypothesized that compartmental-
ization of different myeloid cell populations may be driven by the 
degree of hypoxia in the surrounding tissue, assessed here through 
the up-regulation of GLUT1 and pERK (phospho-Erk1/2, Thr202/
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Tyr204), markers which have been previously shown to increase in 
response to tissue hypoxia in GBM (34–37). Within the regions ana-
lyzed, surrogate markers of hypoxia (GLUT1 and pERK) were not 
uniformly distributed, suggestive of discrete hypoxic niches within 
the tumor (Fig. 4A). Specifically, GLUT1 was constrained to the vascu-
lature in edge cases but was found more diffusely in the parenchyma 
in the core in a pattern which has previously been observed in GBM 

and is thought to represent metabolic adaptation to tissue hypoxia 
(35). We therefore measured the GLUT1 and pERK staining in the 
local environment surrounding each myeloid cell (Fig. 4, B and C). 
This demonstrated that macrophage populations (TAM-Mac and 
TAM-Supp) were in environments with significantly higher expres-
sion of GLUT1 and pERK than microglia, with expression being 
highest in the TAM-Supp population. This suggests that macrophages 

Fig. 3. Myeloid cell interactions with tumor, neuroglial, and vascular cells in GBM. (A) Spatial density of different cell populations (calculated by Gaussian kernel 
density estimation) in the TME. (B) Myeloid cells mapped alongside tumor, neuroglial, and vascular cells in representative edge and core regions. (C) Quadratic entropy for 
the myeloid populations in the edge and core of the tumor. This quantifies how heterogeneous a cell is with respect to its interacting cell, with high values indicating that 
a cell interacts with several cells with different phenotypes. (D) Representative examples of myeloid populations mapped alongside nonmyeloid populations. (E) Differ-
ence between the observed rate of cell-to-cell interaction data (see fig. S3C) and the rate of interactions predicted by chance. This analysis corrects for the established 
differences in abundances of the myeloid and nonmyeloid cells between different regions. (F) Comparison between edge and core regions in the rate of infiltration of 
TAM-Supp cells into the parenchyma, defined here as being 10 μm away from nearest vascular cell. Comparisons made by linear mixed models (B, C, and E) or Wilcoxon 
tests (E) with Holm-Šídák corrections or Mann-Whitney U test (F). Box plots show range, interquartile range, and median of data (C, E, and F).
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Fig. 4. Association of hypoxia and fibrinogen with myeloid cell positioning in GBM. Myeloid populations mapped alongside markers of (A) environmental hypoxia in 
GLUT1 and pERK1/2 staining, or (D) fibrinogen. Quantification of environmental GLUT1 (B), pERK1/2 (C), and fibrinogen (E) staining around each myeloid population in 
edge and core regions. A cell’s environment was defined as a 40-μm square centered on the cell. (F) Comparison of environmental stains in TAM-Supp cells that were either 
vascular associated, perivascular, or fully infiltrated into the tumor, in both edge and core regions. (G) Representative examples of TAM-Supp cells with different vascular 
associations in a normoxic edge region and a hypoxic core region. Comparisons made by linear mixed models with Holm-Šídák corrections (B, C, E, and F). Violin plots 
show range, interquartile range, and median of data (B, C, E, and F).
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preferentially localize to areas of hypoxia, while microglia are typi-
cally found in comparatively normoxic areas. However, vascular-
associated GLUT1 may also be contributing to the association of 
TAM-Supp cells with GLUT1, as we have previously established that 
they cluster in vascular locations (Fig. 3). Similar analyses were also 
performed for CD8+ T cells and HIF1a+ immune cells (fig. S4), show-
ing that the HIF1a+ cell population also preferentially localized to areas 
of hypoxia. CD8+ T cells positioned in areas with enriched environ-
mental staining of pERK and within areas that trend higher for 
GLUT1, which is suggestive that they also localize to hypoxic areas.

A further environmental factor and feature of GBM pathology is 
the breakdown of the blood-brain barrier (BBB), which is associated 
with inflammation and aberrant angiogenesis (14). We therefore 
identified areas of BBB damage in both the edge and core of the tu-
mor by measuring the presence of fibrinogen in the tumor, which was 
restricted to the lumen in vessels with an intact BBB but which leaked 
into the brain when the BBB was compromised (Fig. 4D). When we 
quantified the environmental localization of fibrinogen around each 
cell, we found that TAM-Supp cells localized to areas with signifi-
cantly higher fibrinogen than microglia (Fig. 4E). This suggests that 
TAM-Supp cells localize to areas of BBB breakdown. However, as we 
previously established that TAM-Supp cells are vascular associ-
ated, fibrinogen trapped in intact vessels could contribute to this 
environmental enrichment. We therefore repeated previous analyses 
but separated TAM-Supp cells into vascular, perivascular, or fully 
infiltrated. This demonstrated that TAM-Supp cells in vascular and 
perivascular locations had similar environmental localization of 
markers but that cells that had fully infiltrated had significantly lower 
fibrinogen but higher GLUT1 association (Fig. 4, F and G). Although 
most TAM-Supp cells were vascular associated (Fig. 3), these results 
suggest that infiltrative TAM-Supp cells localize in areas of hypoxia 
and thus that hypoxia may be a signal that draws them away from 
their usual vascular and perivascular locations.

Myeloid populations identified by IMC in GBM align with 
those defined through single-cell RNA sequencing
We next took an orthogonal approach to validate the environmental 
drivers of myeloid cell positioning in the GBM TME. We charac-
terized the myeloid cell populations present in GBM tumors by 
reanalyzing a published single-cell RNA sequencing (scRNA-seq) 
dataset (26). This identified six populations, including two popula-
tions of microglia (Mg-Ho; homeostatic microglia, and TAM-Mg; 
proinflammatory microglia), two of macrophage-derived TAMs 
(TAM-Mac and TAM-Mac-Supp), a population of TAM-microglial 
intermediate cells (having features of both microglia and macro-
phages), and monocytes (Fig. 5, A and B, and fig. S5A). Clear differ-
ences were found in inflammatory, metabolic, and proliferative 
signaling between these populations (fig. S5, B and C). There was a 
similar gene expression distribution of the markers utilized in IMC 
across the myeloid populations identified in the scRNA-seq dataset, 
as was observed at a protein level for the populations identified by 
IMC, indicating consistency in identified myeloid populations be-
tween modalities (Fig.  5C and fig.  S5D). In some cases, popula-
tions found as two populations in one modality were represented 
as one in the other modality. For example, monocytes were not 
separable from macrophage-derived TAM populations in IMC but 
were distinguishable by scRNA-seq. Overall, these analyses allowed 
us to validate populations identified by IMC and align them with 
their transcriptomic identities (Fig. 5C).

We then used the transcriptomic identities of the myeloid popu-
lations to deconvolve an ST dataset of 19 GBM cases taken from 
the tumor core (Fig. 5A), allowing us to predict the abundances for 
each population in each case (Fig. 5, D and E). Spatially mapping 
the deconvolved populations to individual spots demonstrated com-
partmentalization of populations, with clear segregation of where 
populations were found at their highest densities (Fig. 5F). Where 
different populations were found in the same spot, positive correla-
tions were found between populations with similar phenotypes 
(e.g., Mono and TAM-Mac-Supp) and negative correlations be-
tween dissimilar populations (e.g., Mg-Ho with TAM-Mac-Supp) 
(Fig. 5G), supporting earlier observations made in IMC of pheno-
typically similar populations spatially associating (Fig.  2). Spot-
level correlations between myeloid and nonmyeloid populations 
(including those identified within earlier IMC analyses) used in 
deconvolution were also found (fig. S6A). For example, TAM-Mac-
Supp and Mono populations correlated positively with tumor cells 
but negatively with neuroglial populations. This is in agreement 
with earlier observations showing more interactions between tu-
mor cells and myeloid populations, largely based on their high 
abundances in the tumor core (Fig. 1F and fig. S3C). Notably, these 
results do not correct for abundances of populations and operate at 
a larger scale (spots are 50 μm in diameter) than the cell-cell inter-
action analyses performed in the IMC analyses (Fig. 3E).

To understand the potential drivers of myeloid positioning, we 
correlated the abundance of the myeloid cell populations with gene 
signatures of biological processes within each spot (Fig. 5, H and I). 
This confirmed findings made by IMC, with TAM-Mac-Supp and 
Mono populations preferentially accumulating in areas of increased 
hypoxic signaling and altered metabolism, which were associated with 
GLUT1 gene (SLC2A1) expression (fig. S5B). HIF1A expression was 
increased in surrounding areas of the tumor, although not where the 
hypoxic signature was highest. This is in agreement with recent studies 
that found HIF1A localized at the edges of areas with the highest hy-
poxia in a mouse model of GBM (38), and a second used a gene sig-
nature to spatially map reactive hypoxic niches in GBM that did not 
include HIF1A (37). This is suggestive of differential degrees of hy-
poxia throughout the TME, as has previously been reported (39). By 
contrast, the remaining myeloid populations were positively asso-
ciated with signatures of interferon-α, androgen, and coagulation 
responses. Proinflammatory signaling pathways (interferon-γ, tu-
mor necrosis factor–α, and reactive oxygen species) also influenced 
the positioning of specific myeloid subpopulations (Fig. 5I). Gene 
signatures of specific cytokine signaling pathways also correlated 
with myeloid abundances within spots (fig. S6C). As has recently 
been reported (38), the strength of interleukin-1B (IL-1B) signaling 
correlated positively with abundances of TAM-Mac-Supp and Mono 
populations. Repeating this analysis for chemokine genes suggested 
that the positioning of specific subsets of myeloid cells was also con-
trolled by distinct groups of chemokines (Fig. 5J and fig. S6D). The 
same myeloid populations responsive to hypoxia (TAM-Mac-Supp 
and Mono) associated with CXCL8, CXCL2, CCL20, and CXCL3, 
whereas TAM-Mg and TAM-Mac populations were associated with 
CCL4, CCL4, CCL3L1, and CCL4L2. By contrast, the positioning of 
Mg-Ho and TAM-Int were only weakly associated with chemokine 
expression. Other chemokines were less robust differentiators of 
myeloid cell positioning, and in contrast to recent observations 
(40), we did not find close association of CCL8 with hypoxic regions 
(Fig. 5J and fig. S6D). Together, these analyses reinforce and expand 
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on findings made by IMC, showing that specific myeloid popula-
tions accumulate in hypoxic niches in the TME, and suggest a role 
of spatially variable chemokine and inflammatory signaling in my-
eloid compartmentalization.

Myeloid cell environments were defined by distinct patterns 
of myeloid populations within ST spots
Both IMC and ST analyses suggested that specific myeloid niches 
exist in the GBM TME, characterized by common biological 

processes (e.g., hypoxia), and occupied by myeloid populations with 
similar phenotypes. To identify these myeloid niches (hereafter 
termed myeloid environments), we clustered ST spots based on 
their abundances of the six myeloid populations (Fig. 6A). This 
identified five distinct myeloid environments, including three in 
which myeloid cells were highly abundant (0, 2, and 4) but in differ-
ent combinations of phenotypically similar populations and two 
with low abundance (1 and 3) of myeloid cells (Fig. 6, B and C). This 
supports observations made in IMC whereby if cells were clustered, 

Fig. 5. ST reveals hypoxia and chemokines as determinants of myeloid cell positioning in GBM. (A) UMAP of the myeloid populations identified by Leiden clustering 
in the Ruiz-Moreno et al. scRNA-seq dataset. (B) Comparison between the transcriptomes of the myeloid populations and published gene lists for biological processes 
(MSigDB) (79), cell identities (PanglaoDB) (80), myeloid cell phenotype in GBM, and other conditions disease (7, 70–78). Enrichment of the gene lists was calculated by 
overrepresentation analysis. (C) Alignment of the populations identified by IMC and scRNA-seq. (D) Schematic showing the strategy for deconvolving the Ravi et al. (37) 
ST datasets using the cell2location (82) and the transcriptomic signatures of the myeloid populations we identified in the Ruiz-Moreno et al. dataset (26). (E) Predicted 
abundances of the myeloid populations calculated using cell2location. Data shown as mean ± SEM. (F) Distribution of myeloid populations in ST spots within a represen-
tative deconvolved ST case. (G) Pearson’s R correlation between the different myeloid populations present in each spot. (H) Strategy for identifying explanatory factors 
that may control the positioning of myeloid cell populations. Using this strategy, myeloid cell abundances were correlated with the transcriptomic signatures of biological 
processes from the MSigDB database (I) or expression of chemokines (J). *P < 0.05, with correction for multiple Pearson’s R tests using the Benjamini-Hochberg procedure 
(G, I, and J). UV, ultraviolet; NF-κB, nuclear factor κB; TNFα, tumor necrosis factor–α; ROS, reactive oxygen species.
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then it was with cells of the same or similar phenotype. Assessing 
the distribution of these environments within the TME found that 
they organize into larger regions spanning several interconnected 
spots, with the proportion of connections between spots being 
therefore dominated by those between spots of the same environ-
ment (Fig. 6D).

Contribution of the nonmyeloid components to the 
myeloid environments
We then analyzed how the nonmyeloid components (i.e., contribu-
tion of genes from nonmyeloid cells) varied between the different 
myeloid environments, specifically focusing on genes not differen-
tially expressed between myeloid populations (Fig.  6E). In these 

Fig. 6. Spatial clustering of myeloid cells is associated with poor outcome in GBM. (A) Strategy to identify environments in the deconvolved ST cases that have dis-
tinct patterns of myeloid cell distribution. (B) Identification of distinct patterns of myeloid cell distribution using k-means clustering, corresponding to five distinct myeloid 
cell environments. (C) Mapping of the five myeloid environments in example ST cases. (D) Proportion of interactions between spots from each myeloid environment, as-
suming that each spot is connected to its neighboring six spots. (E) Strategy to identify the transcriptomic changes arising from the nonmyeloid cells in each spot (see 
Materials and Methods). (F) Overrepresentation analysis of the signatures of biological process from the MSigDB database (79) in the remaining nonmyeloid genes in the 
different myeloid environments. (G) The top five enriched terms from the Gene Ontology (GO) database in the nonmyeloid genes in the different myeloid environments. 
(H) Strategy to deconvolve bulk RNA-seq GBM cases from the TCGA (The Cancer Genome Atlas) and CCGA (Chinese Glioma Genome Atlas) using the TAPE algorithm 
(41–43), therefore allowing us to predict the proportions of myeloid environments in each case. (I) Proportion of myeloid environments predicted by the TAPE algorithm 
in the TCGA and CCGA cases. (J) Modeling the relationship between the abundance of each myeloid environment and GBM survival using Cox proportional hazards, with 
correction for multiple tests using Holm-Šídák. Hazard ratios are increase in risk of death per percentage point of myeloid environment abundance. Kaplan-Meier curves 
compare patients having the high (top 50%) or low estimates for the presence of that environment, and shaded areas are 95% confidence intervals.
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nonmyeloid components, there was a clear signature of hypoxia and 
metabolism in environment 4 (Fig. 6F), an environment enriched 
for myeloid populations which individually correlated with the sig-
nature of hypoxia (Fig. 5I). This supports the existence of hypoxic 
niches in the tissue, also observed by IMC (Fig. 4), which affects the 
behavior and positioning of both myeloid and tumor cells. In all five 
environments, there were processes likely arising from the tumor 
cells (e.g., epithelial-mesenchymal transition, p53 pathway). This 
support observations made by IMC (Fig. 3 and fig. S3) and deconvo-
lution of ST populations (fig. S6A) that nonmyeloid cells influence 
the positioning of the myeloid cell populations. To obtain further 
insight into the nonmyeloid factors which differentiate the myeloid 
environments, we performed Gene Ontology on the nonmyeloid 
differentially expressed genes (DEGs) between myeloid environ-
ments (fig.  S7A and Fig.  6G). This demonstrated that environ-
ments 2 and 4 each had unique differences in extracellular matrix 
composition. Given these two environments were enriched for 
phenotypically different myeloid cells, it suggests that myeloid cell 
compartmentalization may be influenced by the local deposition of 
extracellular matrix components by nonmyeloid cells. The two envi-
ronments with lowest abundance for myeloid cells (1 and 3) were 
enriched for genes associated with neuronal functioning, suggesting 
that neural progenitor–like tumor cells may influence myeloid posi-
tioning by inhibiting local myeloid recruitment.

The transcriptomic signature of specific myeloid 
environments was associated with reduced disease survival
The complete transcriptomic signatures of the myeloid environ-
ments were then used to deconvolve 518 bulk mRNA sequencing 
GBM cases from The Cancer Genome Atlas (TCGA) and Chinese 
Glioma Genome Atlas (CCGA) datasets using the TAPE (Tissue-
AdaPtive autoEncoder) algorithm (Fig. 6H) (41–43). This analysis 
allowed us to predict the proportions of myeloid environments pres-
ent in each case, showing clear variability between patients, particu-
larly in environment 4 which is dominated by TAM-Mac-Supp and 
monocytes (Fig. 6I). Comparing the overall survival curves for pa-
tients either low or high for each myeloid environment (either lower 
or higher than the mean) and performing univariate COX propor-
tional hazard analyses showed that the abundance of the myeloid 
environments has a significant effect on GBM survival. Specifically, 
tumors with high proportions of environments 2 (featuring cluster-
ing of proinflammatory populations) and 4 (featuring clustering of 
immunosuppressive populations) were associated with worse sur-
vival, whereas high proportions of environments 1 and 3 (with low 
myeloid clustering) were associated with better survival. As the pro-
portions were correlated with one another, a multivariate model 
with the five environments could not be built. However, a multivari-
ate model using principal components of the five environments also 
showed a significant effect of varying myeloid abundance on sur-
vival (fig. S7B). Together, these IMC and ST analyses demonstrate 
that the spatially regulated compartmentalization of myeloid cell 
populations, which is instructed through tumor environmental 
cues, contributes to disease trajectory during GBM.

DISCUSSION
In this study, we have revealed the compartmentalization of key my-
eloid cell populations within GBM. Utilizing orthogonal high di-
mensional IMC analyses and deconvolved ST datasets, we robustly 

identified at least six myeloid cell populations. Microglia existed on 
a spectrum of activation states from homeostatic to proinflamma-
tory activation, with the transition being associated with a reduction 
of P2RY12, supporting previous observations made in GBM (7, 22, 
29). Macrophages were either immunosuppressive, showing up-
regulation of markers previously associated with an immunosup-
pressive phenotype in GBM myeloid cells (CD163 and CD206) (11, 
18, 22, 23), or proinflammatory. In IMC analyses, these proin-
flammatory macrophages were distinguishable from proinflamma-
tory microglia by further reduction in P2RY12 expression and 
up-regulation of CD14 and CD16. Furthermore, transcriptomic 
analysis demonstrated that they had increased interferon-γ and com-
plement signaling. Although we could identify these myeloid states 
as distinct populations, there was usually a gradient change in mark-
er expression between populations, which suggested that cells were 
transitioning between phenotypes. Specifically, diffusion pseudo-
time analysis suggested that microglia undergo proinflammatory 
activation and adopt a more macrophage-like phenotype, before 
lastly becoming immunosuppressive. This is in line with previous 
studies in GBM, which report myeloid cells in transitionary states 
between more obviously identifiable proinflammatory or suppres-
sive phenotypes (4, 24, 25), with cells able to simultaneously coex-
press M1 and M2 markers (7). Consequently, in both IMC and 
sequencing datasets, we found canonical strongly polarized TAM 
and microglial populations, as well as large intermediate popula-
tions that exhibited characteristics of microglia and macrophages 
and of mixed pro- and anti-inflammatory polarization. Notably, we 
could not distinguish monocytes from other myeloid populations 
using the IMC panel used in this study. We acknowledge this limita-
tion and that the established route of infiltrating monocyte tumor–
associated macrophage differentiation within the GBM TME will 
operate in parallel to the route of microglial differentiation we de-
scribe in this study (17, 18, 22). Nevertheless, although we were not 
able to directly address the factors that control infiltration and dif-
ferentiation spatially within the GBM TME by IMC, we could see 
evidence of monocyte to macrophage differentiation in the scRNA-
seq data and spatially mapped monocytes in the ST cases appeared 
to infiltrate and differentiate within hypoxic zones.

Our IMC analyses demonstrated that microglial cells tended to 
localize within the GBM tumor edge and macrophage-derived 
TAMs to accumulate in the tumor core, supporting previous obser-
vations made in both human GBM and in murine models (11, 16, 
24, 28, 44, 45). However, this compartmentalization was not mutu-
ally exclusive, as the numerous myeloid populations were present in 
each tumor region analyzed. However, the positioning of the differ-
ent myeloid cells within the TME was nonrandom: Myeloid cells 
preferentially positioned with cells of the same or similar phenotype 
and positioned away from myeloid cells of a dissimilar phenotype. 
This could suggest some degree of active avoidance or exclusion of 
myeloid cells with other nonmyeloid cells, but it more likely reflects 
cells responding to stronger migratory cues from other immune and 
myeloid cells. This behavior differed in strength between popula-
tions, being strongest in immunosuppressive TAMs, and was also 
recapitulated when analyzing ST datasets. Furthermore, most cell-
to-cell interactions made by myeloid cells were with other myeloid 
cells. These analyses suggest myeloid cell interactions as a major cel-
lular determinant of myeloid cell positioning, which is not unex-
pected given their role as the primary producers of chemokines and 
other signals that elicit responses from myeloid cells (5). We found 
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clear regionalization in chemokine genes and cytokine signaling 
pathways that correlated with myeloid cell positioning. Notably, 
although the abundance of certain myeloid populations differed 
between the edge and core regions of the tumor, the overall com-
partmentalization behavior of myeloid populations was broadly 
similar in both parts of the tumor. This suggests that the factors that 
coordinate myeloid cell activities (whether deriving from myeloid 
or tumor cells or the environment) are conserved throughout the 
GBM TME.

Hypoxia was identified as a major controller of myeloid cell com-
partmentalization within GBM, particularly influencing immuno-
suppressive populations. In IMC analyses, immunosuppressive 
myeloid cells (CD163+ and CD206+) were found to be most strong-
ly linked to hypoxic areas, although this association was also ob-
served, albeit less significantly, in other macrophage populations. In 
contrast, nonactivated microglia exhibited the lowest association 
with hypoxia across all analyses. This is in support of previous stud-
ies that have reported that macrophages, rather than microglia, ac-
cumulate in hypoxic areas of the TME (9, 22). Immunosuppressive 
myeloid cells also showed an interaction with the vasculature in IMC 
analyses that was consistently observed throughout the TME. Further 
examination of this population by transcriptomics revealed that it 
was a combination of monocytes and immunosuppressive macro-
phages, explaining their vascular association. In agreement with 
IMC analyses, both monocytes and immunosuppressive macro-
phages exhibited a preferential localization within hypoxic niches in 
ST analyses. However, the presence of hypoxic signaling within the 
monocytes implied that most were already being influenced by the 
GBM environment and were likely differentiating into macrophages. 
We saw greater infiltration of immunosuppressive myeloid cells in 
IMC analyses into hypoxic areas of the tumor core. These observa-
tions are supported by previous characterizations of immunosup-
pressive myeloid cells in GBM, which have typically found them to 
be blood-derived macrophages with high expression of hypoxia-
related genes (9, 17, 18, 28). Our results are supported by recent 
studies that found similar localization of immunosuppressive my-
eloid cells, along with CD8+ T cells, to hypoxic zones within the 
TME in GBM (37, 38). Together, our findings from IMC, ST, and 
scRNA-seq all indicate that hypoxia plays a pivotal role in the dif-
ferentiation of myeloid populations in GBM toward an immunosup-
pressive phenotype, as reported in TAMs in various cancer types 
(37, 38, 46). Nevertheless, as acute hypoxia in the context of stroke 
leads to polarization of proinflammatory myeloid cells (47), it is like-
ly the prolonged exposure to hypoxia in context with tumor-specific 
factors that collectively promotes the polarization of myeloid cells to 
the immunosuppressive phenotype within the GBM TME.

Accumulation of myeloid cells in hypoxic niches could also be 
attributed to the release of chemotactic signals induced by hypoxia 
(46). Our investigation unveiled heterogeneous expression of che-
mokines throughout the TME, with specific chemokines correlating 
with immunosuppressive populations in hypoxic regions. Other 
chemokines (e.g., CCL-2, CCL-3, and CCL-4) were associated with 
the positioning of proinflammatory macrophage and microglial 
populations. This in agreement with previous studies reporting sim-
ilar populations located at the tumor periphery serve as the primary 
source of these chemokines, with authors hypothesizing that they 
are responsible for recruiting additional myeloid cells (5, 28, 44). 
Alternatively, these chemokines may themselves affect myeloid phe-
notype, with CCR2 knockout resulting in a greater proportion of 

microglia in mouse tumors, although not by blocking monocyte in-
filtration but by blocking monocyte-to-macrophage differentiation 
(22). In agreement with a recent report (38), IL-1B signaling was 
spatially associated with immunosuppressive myeloid cells in hy-
poxic zones, although we could not confirm a similar association of 
CCL8 due to poor detection of CCL8 in the ST cases.

It is also highly probable that myeloid compartmentalization is 
influenced by the positioning and interaction with tumor cells. 
However, compared to some solid tumors, the different compo-
nents of the TME in GBM do not commonly show a macro-
scopically obvious segregation into defined immune and tumor 
compartments, likely due to the highly infiltrative nature of tumor 
cells in GBM. Unexpectedly, we found that all myeloid populations 
showed some degree of spatial avoidance (i.e., a preference to local-
ize away from) of tumor and neuroglial cells in the TME. Although 
this may represent an activate avoidance of tumor cells by myeloid 
cells, as discussed above, myeloid cells likely preferentially respond 
to other cues from other myeloid cells that dictate their positioning. 
A potential caveat of our analyses is that we did not differentiate 
between the three known neoplastic subtypes present in GBM 
(27, 48). However, existing data suggest that they may differen-
tially shape the myeloid landscapes in GBM. For example, GBM 
tumors rich in mesenchymal subtype have the highest myeloid cell 
density, while those abundant in proneural subtype show the lowest 
macrophage proportion (6, 49). Myeloid cells can directly shape tu-
mor cell fate, with macrophages being shown to drive differentiation 
of tumor cells toward a mesenchymal phenotype (50). Further stud-
ies are therefore required to address how specific myeloid and neo-
plastic cell subtypes interact during GBM.

The clinical significance of the spatial arrangement of immune 
cells within a tumor has been demonstrated in various cancer types 
(23, 40, 51), frequently offering superior prognostic value compared 
to the mere abundance of immune cells (52–54). Because of the pre-
viously described clustering of myeloid populations in different ar-
eas of the TME, we were able to extract the transcriptomic signatures 
of the different spatial arrangements of myeloid populations. These 
different myeloid environments were each dominated by myeloid 
cells of a different phenotype. When we then deconvolved 518 bulk 
RNA-seq cases using these signatures, we found reduced survival 
time in patients with tumors that were enriched with environments 
where either proinflammatory or immunosuppressive populations 
were highly clustered. This demonstrates that the topology of my-
eloid populations in GBM is associated with disease outcome. 
Specific immunosuppressive myeloid populations identified using 
scRNA-seq (e.g., CD73 and MARCO high) have been associated 
with poor survival in GBM (9, 10). Our spatial analyses add context 
to these findings, suggesting that these cells are located in hypoxic 
areas and are likely vascular-associated. Proinflammatory macro-
phages are associated with disease progression in lower-grade glio-
mas, with fewer immunosuppressive macrophages compared to 
GBM (55–57). The detrimental effect of proinflammatory niches 
may therefore represent areas transforming from low- to high-grade 
tumor. Previous studies have demonstrated that tissue hypoxia 
detected by magnetic resonance imaging (39, 58) or by hypoxic-
responsive factors (35, 59) is an indicator of poor prognosis in 
GBM. Our results add spatial context to these findings, suggesting 
that an important component through which hypoxia controls pro-
gression and treatment responsiveness is by shaping the positioning 
and phenotype of myeloid cells. Overall, these results align with an 
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expanding body of research that indicates that the spatial structure 
of the GBM TME plays a decisive role in determining the clinical 
course (23, 60). Ultimately, better understanding of the biology of 
GBM and revealing how cells communicate within the TME will 
allow us to start deconstructing the heterogeneity in GBM and strat-
ify patients for targeted treatments.

MATERIALS AND METHODS
Clinical samples for IMC
Eight primary IDHWT GBM cases were retrieved from the Depart-
ment of Cellular Pathology at Salford Royal Hospital bank [Table 1; 
Ethics Integrated Research Application System (IRAS) ID 244538 
for informed consent of tissue use in research]. The interface be-
tween tumor and cortex (edge) and the tumor core were annotated 
by a neuropathologist on H&E-stained sections. TMAs were subse-
quently generated using 3-mm-diameter cores, with three cores 
taken per case.

IMC tissue staining
Sections from TMAs (5-μm thickness) underwent staining with 
lanthanide-conjugated antibodies as instructed by the manufacturer 
(61). Briefly, sections underwent deparaffinization, followed by anti-
gen retrieval at 96°C for 30 min in tris-EDTA at pH 8.5. Nonspecific 
binding was blocked with 3% bovine serum albumin for 45 min, 
followed by incubation with lanthanide-conjugated primary anti-
bodies (overnight at 4°C) which were diluted in phosphate-buffered 
saline (PBS) with 0.5% bovine serum albumin (Table 2). Antibodies 
were conjugated with metals using Maxpar Antibody Labeling Kits 
(Standard BioTools) and were validated with positive control tissue 
(tonsil for immune-targeted antibodies), and dilutions were opti-
mized with GBM tissue. Slides were then washed with PBS and 0.1% 
Triton X-100 in PBS. Slides then underwent nuclear staining with 
iridium (1:400, Intercalator-Ir, Standard Bio Tools) for 30  min at 
room temperature, before being briefly (10 s) washed with ultrapure 
water and air-dried. Images were acquired of metal-stained tissue 
sections on a Hyperion IMC as per the manufacturer’s instructions 
(Standard BioTools). Each TMA core was imaged in a separate re-
gion of interest. Briefly, the tissue was laser-ablated in a rastered pat-
tern in a series of 1-μm2 pixels. The resulting plume of ablated tissue 
was then passed through a plasma source, ionizing it completely 
into its constituent atoms. Time-of-flight mass spectrometry then 
discriminated the signal for each of the metal-conjugated antibod-
ies, and images for each antibody were reconstructed based off the 
metal abundancy at each pixel. Staining was reviewed by a neuropa-
thologist using MCD Viewer (Standard BioTools). In representative 
images of IMC, data shot noise was removed using the IMC-Denoise 
algorithm (62).

Cell segmentation of IMC images
Single-cell information was extracted from IMC images using an 
established protocol (63). Briefly, stacks of TIFF images were ex-
tracted from MCD files for each region of interest whereby individ-
ual channels corresponded to each lathanide-conjugated antibody. 
Ilastik (64) was then used to produce a pixel probability classifier 
that identified background, cytoplasmic, and nuclear pixels. The re-
sulting pixel probability maps were then converted into cell segmen-
tation masks that identified the regions corresponding to individual 
cell boundaries. These cell segmentation masks were then applied to 

each of the antibody channels, generating single-cell expression data 
for each of the channels, along with the spatial context of where the 
cell was in the tissue. The accuracy of cell segmentation was com-
pared to manual segmentation in 50 random cells per TMA core by 
Jaccard analysis using Scikit-Image (v0.22.0), with the resulting ac-
curacy being comparable to similar published approaches (15).

Analysis of single-cell IMC data
Single-cell IMC data were analyzed in Python using packages de-
signed to analyze single-cell data (Scanpy, v1.9.3) and spatial mo-
lecular data (Squidpy v1.2.3 and ATHENA v0.1.3) (65–67). The 
mean cell intensity of each marker was normalized to the 99th per-
centile of its expression. Leiden clustering (19) was then used to 
identify cell populations present in the IMC data, which were then 
manually annotated based on patterns of marker expression corre-
sponding to known cell types and activation states. The transition 
between myeloid populations was assessed using diffusion pseudo-
time and PAGA analyses (68) using Scanpy.

Spatial distribution and interaction analyses in IMC data
Metrics were calculated at the single-cell level, before being mean 
averaged at the population level for each region of interest. For spa-
tial distribution analyses, the distance between each cell and the 
nearest member of each other population was calculated. For inter-
action analyses, the number of interactions made by each cell (either 
calculated as six nearest neighbors or cell-to-cell contact) to other 
populations was calculated and expressed as a proportion of total 
interactions. The observed values for mean distances and propor-
tions of interactions were then subtracted from the values predicted 
by a random distribution of cells, which was calculated by randomly 
distributing cell labels 300 times within each region. This corrected 
interactions for differences between regions in abundances of inter-
acting populations. The resulting differences between observed 
and predicted values were separately averaged across all edge and 
core regions, with statistical difference from random distribution 
(observed − predicted  =  0) assessed using Wilcoxon tests with 
Benjamini-Hochberg correction. Cross-pair correlation analysis was 
also applied to quantify interactions between cells (32, 33). This 
method measured whether cells from different populations were 
found within a 20-μm distance of each other (indicating cell-cell in-
teractions) more or less frequently than what a random distribution 
of populations would predict. Rao’s quadratic entropy is a measure of 
phenotypic heterogeneity and was calculated between each cell and 
the cells it makes direct cell-to-cell contact using ATHENA (67), 
with values mean averaged at the population levels for each region.

Clustering and assortativity measures of myeloid cells 
in IMC data
Clustering coefficients (30) and assortativity (31) were calculated on 
six–nearest neighbor graph of myeloid cells in each region using 
Networkx (v3.1). A high clustering coefficient that designates a pop-
ulation forms densely interconnected clusters, and a low value sug-
gests that population is more loosely clustered in the TME (30). 
Assortativity is another measure of clustering in a network and mea-
sures the tendency of cells to connect to cells of the same population 
rather than cells of a different population (31). Clustering coefficients 
for each population were calculated by extracting each population 
as a subgraph and calculating their average clustering coefficients. 
The observed clustering coefficients were then compared to a random 
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distribution as described above, whereby cell labels were randomly 
distributed 300 times.

Cell environment analysis in IMC data
The environmental expression of GLUT1, pERK1/2, and fibrinogen 
was calculated by taking the mean average expression of each mark-
er in a 40-μm-diameter window centered on each cell. The distribu-
tion of the resulting environments was then statistically compared 
between cells from either edge or core of the tumor or between 

different populations using linear mixed models (LMMs) in which 
cells were nested within regions, which were nested within individ-
ual cases. Correction for tests was performed using a Holk-Šídák 
correction.

Reanalysis of myeloid cells from a single-cell 
sequencing dataset
We analyzed 127,339 myeloid cells from a multistudy scRNA-seq 
dataset that incorporated 240 patients from 26 separate sequencing 

Table 2. Antibody panel for IMC. 

Metal channel Antigen Type Clone/catalog # Supplier

89 Smooth muscle actin Vascular 1A4 Abcam

113 Cd68 Myeloid KP1 BioLegend

115 Cd235ab Vascular/erythrocytes KIR2 BioLegend

139 Pan-cytokeratin Epithelial AE-1/AE-3 BioLegend

141 S100B Neoplastic EP1576Y Abcam

142 MHC1 Immune EMR8–5 Abcam

143 Vimentin Neoplastic RV202 Standard BioTools

144 Cd14 Myeloid D7A2T Cell Signaling

145 Ki67 Proliferation B56 BD Pharmingen

146 Cd16 Myeloid SP175 Abcam

148 Cd66b Myeloid G10F5 Novus

149 Cd11b Immune EP1345Y Abcam

150 Cd44 Neoplastic IM7 BioLegend

151 Granzyme B Immune EPR20129–217 Abcam

152 Cd45 Immune CD45-2B11 eBioscience

153 Cd31 Vascular JC/70A Novus

154 Cd11c Myeloid EP1347Y Abcam

155 HIF1a Signaling EP12154 Abcam

156 Cd4 Immune EPR6855 Abcam

158 Cd109 Neoplastic C9 Santa Cruz

159 Olig2 Neoplastic Polyclonal, AB9610 Millipore

160 Vista Myeloid D5L5T Cell Signaling

161 iba1 Myeloid Polyclonal, 019–19741 Wako

162 Cd8a Immune CD8/144B eBioscience

163 GLUT1 Signaling EPR3915 Abcam

164 Nestin Neoplastic 25/Nestin BioLegend

165 Fibrinogen Vascular EPR18145–84 Abcam

166 Cd74 Myeloid LN2 BioLegend

167 Met Signaling Met D1C2

168 P2RY12 Myeloid HPA014518-100UL Merck

169 Cd163 Myeloid EDHu-1 Bio-Rad

170 Cd3 Immune D7A6E Cell Signaling

171 pERK1/2 Signaling D13.14.4E Cell Signaling

172 TMEM119 Myeloid Polyclonal, ab185333 Abcam

173 Sox2 Neoplastic 245610 R&D

174 MHCII Immune TAL1B5 Abcam

175 Cd206 Myeloid E2L9N Cell Signaling

176 GFAP Neoplastic/astrocytes GA5 Sigma-Aldrich
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studies (26). We analyzed a 25% random sample of cells labeled as 
microglia, macrophages, or monocytes by the original authors. 
Batch effects were corrected using the Harmony algorithm (69), 
populations were identified using Leiden clustering (19), and con-
nectivity of the populations was assessed using PAGA analysis (66, 
68). Overexpression analyses were performed with the Decouplr 
(v1.3.4) using hypergeometric tests (false discovery rate  <  0.05). 
These used published gene lists from studies assessing the pheno-
types of microglial in other conditions (70–75), of myeloid cell acti-
vation (76), and myeloid cells in GBM (7) and other cancers (77, 
78). Gene lists from canonical pathways of biological processes pro-
vided by Molecular Signatures Database (MSigDB) (79) and of 
cellular identities from PanglaoDB (80) were also used. Activity 
inference for pathways from the PROGENy (Pathway RespOnsive 
GENes for activity inference) database (81) was performed using 
multivariate linear modeling.

Deconvolution of ST dataset
We analyzed a published ST dataset of 19 IDHWT GBM cases taken 
from the tumor core (37). Data analysis was performed using Scanpy. 
Briefly, low-quality spots (<1000 counts) and mitochondrial genes 
were removed, and counts were normalized per cell and log-
transformed. The cell type composition of each spot was then cal-
culated using cell2location (v0.1.3) (82). Reference expression 
signatures of the myeloid cell populations were created from the 
single-cell sequencing dataset by taking the mean over all cells with-
in each population. Reference signatures for nonmyeloid popula-
tions were similarly created from the “annotation level 3” labels 
from the Ruiz-Moreno et al. dataset (26) and were included in the 
matrix of reference expression signatures to account for all potential 
cell populations present in the GBM TME, ensuring accurate decon-
volution. The resulting abundances are the lower limit at which the 
model is confident, in other words, at least this amount is present.

Predicting transcriptomic controllers of myeloid 
cell positioning
To understand factors that control myeloid cell positioning, the abun-
dance of each myeloid cell population estimated from deconvolution 
was correlated with potential explanatory factors using Pearson’s R 
correlation. Factors that did not vary between populations [<0.05 
standard deviation (STD)] were removed, and the remaining analyses 
were corrected for multiple tests using a Benjamini-Hochberg correc-
tion. Explanatory factors were either single genes (chemokines), sig-
natures of hallmark biological processes provided by MSigDB (79), or 
gene signatures of responses to cytokine signaling provided by Cyto-
Sig (83), which were quantified in each spot using hypergeometric 
tests in Decouplr.

Identification of myeloid environments and their 
transcriptomic signatures
To identify the different myeloid environments, spots were clustered 
on the basis of the estimated abundance of myeloid cells populations 
from deconvolution. Population data were scaled to unit variance 
and zero mean and batch-corrected between cases using the BBKNN 
(batch balanced nearest neighbours) algorithm (84). Distinct pat-
terns of myeloid abundance (constituting different environments) 
were identified using Leiden clustering in Scanpy (19). For assess-
ments of connectivity between environments, each spot was con-
nected to each of its surrounding six spots. To investigate the 

contribution of nonmyeloid cells to the transcriptomes of the differ-
ent environments, any genes with >0.1 (counts) STD between my-
eloid populations in the reference expression signatures used for 
deconvolution of ST data were excluded from analysis (2115 genes 
removed, leaving 10031). The remaining genes were then compared 
between environments using hypergeometric tests using gene lists 
from MSigDB and by calculating DEGs using Wilcoxon rank sum test 
(85). The resulting DEGs (P < 0.01, 1.5 fold enrichment, 117 genes 
per cluster) were then used for overrepresentation analysis by Enrichr 
web services via GSEApy (v1.0.4), accessing the Gene Ontology 
databases (79, 86, 87).

Deconvolution of bulk sequencing
The transcriptomic signatures of the myeloid environments were 
used to deconvolve bulk mRNA sequenced from IDHWT GBM cases 
from the TCGA PanCancer atlas (160 cases) and CCGA (358 data-
bases) (42, 43). Bulk mRNA data from both datasets were indepen-
dently sequenced on the Illumina HiSeq V2 platform, count data 
RSEM (RNA-seq by expectation maximization) normalized, and 
batch normalized (42, 43). Deconvolution to estimate the propor-
tion of myeloid environments in each bulk case was then performed 
using the TAPE algorithm (41), which sampled 500 spots from each 
myeloid environment, and was ran with the following hyperparam-
eters: variance threshold of 0.99, min-max scaling. The resulting 
proportions of myeloid environments were associated to patient 
survival using Cox proportional hazards models ran using the eh-
rapy (v0.3.0) (88). Kaplan-Meier curves compare patients having 
the high (top 50%) or low estimates for the presence of that 
environment.

Statistical analyses
Statistical tests were performed using the statsmodels (v0.13.5) and 
ehrapy packages and are specified for individual methods. For cell 
environment analyses, calculations were at the cell level, and so for 
LMMs, both region and case were used as grouping factors. For all 
other LMMs, data were mean-averaged at the region level, and pa-
tient case was used a grouping factor. Where LMMs were used con-
currently, a Holm-Šídák correction was used for the calculation 
of P values.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
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