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Abstract 

Binding thermodynamics and kinetics play critical roles in drug design. However, it has proven 

challenging to efficiently predict ligand binding thermodynamics and kinetics of small molecules 

and flexible peptides using conventional Molecular Dynamics (cMD), due to limited simulation 

timescales. Based on our previously developed Ligand Gaussian accelerated Molecular Dynamics 

(LiGaMD) method, we present a new approach, termed “LiGaMD3”, in which we introduce triple 

boosts into three individual energy terms that play important roles in small-molecule/peptide 

dissociation, rebinding and system conformational changes to improve the sampling efficiency of 

small-molecule/peptide interactions with target proteins. To validate the performance of 

LiGaMD3, MDM2 bound by a small molecule (Nutlin 3) and two highly flexible peptides (PMI 

and P53) were chosen as model systems. LiGaMD3 could efficiently capture repetitive small-

molecule/peptide dissociation and binding events within 2 microsecond simulations. The predicted 

binding kinetic constant rates and free energies from LiGaMD3 agreed with available experimental 

values and previous simulation results. Therefore, LiGaMD3 provides a more general and efficient 

approach to capture dissociation and binding of both small-molecule ligand and flexible peptides, 

allowing for accurate prediction of their binding thermodynamics and kinetics. 

 

Keywords: Ligand binding kinetics, Ligand binding free energy, Peptide binding, Enhanced 

sampling, Ligand Gaussian accelerated Molecular Dynamics. 
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Introduction 

Both small molecules and peptides are important sources of novel drugs targeting many important 

biological processes1. It is critical to understand the binding mechanisms of small molecules and 

peptides to their target proteins, which not only deepens our understanding of fundamental 

biological processes but also facilitates the development of more potent and selective drugs for 

treating human diseases2. Several experimental techniques3, 4 have been developed to explore the 

binding interactions between the protein and small molecule or peptide. For example, structural 

biology techniques including X-ray crystallography and cryo-electron microscopy (cryo-EM) have 

been widely used to determine the complex structures of protein-small molecule and protein-

peptide complexes4. Recently, significant advancements in Deep Learning methodologies such as 

AlphaFold5 and RoseTTAFold All-Atom (RFAA)6 have led to  accurate prediction of protein-

small molecule or protein-peptide complex structures. However, such techniques provide only 

static snapshots of protein-small molecule or protein-peptide interactions. It is still challenging to 

capture small-molecule/peptide binding and dissociation processes and determine potential 

intermediate states of small-molecule/peptide binding to their target proteins, which are also 

important for drug design7.   

Recently, drug binding kinetics has been recognized to be valuable for drug design8, 9. The 

drug dissociation rate (koff) appears to correlate with drug efficacy better than the binding free 

energy8, 9. However, drug binding kinetic rates have proven more challenging to predict, due to 

the slow processes of drug dissociation and binding9, 10.With remarkable advancements in 

computer hardware and methodological developments, conventional Molecular Dynamics (cMD) 

simulations are now able to capture spontaneous small-molecule/peptide binding to their target 

proteins and predict corresponding association rates (kon)11, 12. However, it remains a difficult 
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challenge in applying cMD to capture repetitive small-molecule/peptide dissociation and rebinding 

processes within accessible timescales, thereby hindering the accurate prediction of small-

molecule/peptide binding kinetic rates13. Shan et al.13 successfully captured spontaneous binding 

of the Dasatinib drug to its target Src kinase and accurately predicted the ligand association rate 

based on tens-of-microsecond cMD simulations. Tens-of-microsecond cMD simulations12 have 

successfully captured repetitive binding and dissociation events of six small-molecule fragments 

with very weak millimolar binding affinities to the protein FKBP, allowing accurate prediction of 

fragment binding free energies. However, no dissociation events have been observed for typical 

ligand molecules in the cMD simulations. Furthermore, capturing peptide dissociation and 

rebinding processes poses an even more challenging task for cMD, given that peptides are known 

to induce significant conformational changes upon binding14 and the timescales for the peptide 

dissociation are even longer15. For example, cMD simulations with elevated temperature 

conducted for 200 μs using the Anton specialized supercomputer have captured 70 binding and 

unbinding events between an intrinsically disordered protein fragment of the measles virus 

nucleoprotein and the X domain of the measles virus phosphoprotein complex, shedding light on 

the detailed understanding of the peptide's "folding-upon-binding" mechanism16. Despite these 

advancements, it is still rather challenging for cMD to effectively simulate binding and 

dissociation of typical small molecule or peptide to their target proteins.  

Enhanced sampling methods17 have been developed to extend the accessible timescales of MD 

simulations. These methods include Metadynamics18, Steered MD19, 20, Umbrella Sampling19, 21, 

Replica Exchange MD 22, 23, Random Acceleration Molecular Dynamics (RAMD) 24, Scaled MD 

25, accelerated MD (aMD) 26, Gaussian accelerated MD (GaMD) 27, 28, Markov State Model 

(MSM)29, 30, Weighted Ensemble31, 32 , and so on. Metadynamics14, 33 simulations utilizing 
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carefully chosen collective variables (CVs) have successfully predicted the peptide binding and 

dissociation rates in the systems. Particular, 27 μs Metadynamics simulations of the peptide P53 

binding to the MDM233 predicted values of (kon, koff) at (0.43±0.22x107M-1s-1, 0.7±0.4s-1), showing 

good agreement with the corresponding experimental values of (0.92x107M-1s-1, 2.06s-1). Similarly, 

Weighted Ensemble34 of a total amount of ~120 μs cMD simulations with implicit solvent model 

for the P53-MDM2 system predicted a highly consistent binding kinetic rate (kon) of 7 s-1. MSM35 

analysis based on a total of 831 μs cMD simulations for peptide P53 binding to MDM2 accurately 

predicted values of kon and koff at 0.019x107 M-1s-1 and 2.5 s-1, respectively. Another MSM built 

on hundreds-of-microsecond cMD and Hamiltonian replica exchange simulations has been 

implemented to characterize binding and dissociation of the PMI peptide to the MDM236. The 

predicted values of (kon, koff) were (300x107M-1s-1, 0.125-1.13s-1), being comparable to the 

corresponding experimental values of (52.7x107M-1s-1, 0.037s-1). Nevertheless, MSM and 

Weighted Ensemble require expensive and exceedingly long simulations. GaMD was developed 

to provide both unconstrained enhanced sampling and free energy calculations of large 

biomolecules27, 28.  It works by applying a harmonic boost potential to reduce system energy 

barriers. The boost potential exhibits a near Gaussian distribution, which enables accurate 

reweighting of the free energy profiles through cumulant expansion to the second order27, 28. 

Recently, novel Ligand GaMD (LiGaMD)37 and LiGaMD238 approaches have been developed to 

more efficiently sample small-molecule dissociation and rebinding processes, offering accurate 

prediction of ligand binding thermodynamics and kinetics. In LiGaMD, a selective boost is 

specifically applied at the ligand’s non-bonded interaction potential energy39. In LiGaMD2, the 

selective boost extended to the essential potential energy of both the ligand and surrounding 

residues in the protein pocket, which significantly improved the sampling of ligand dissociation 
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and rebinding in a closed binding pocket38. An increasing amount of studies23, 30, 40 demonstrated 

the pivotal role of non-bonded interaction potentials in ligand binding, along with the crucial 

structural flexibility of proteins and peptides30, 41, 42, 43. Building upon the successes of LiGaMD 

and LiGaMD2, which primarily focused on small-molecules, here we introduce a more general 

approach, termed LiGaMD3, for binding simulations of both small-molecules and flexible peptides. 

In LiGaMD3, three distinct boosts are applied: one on the non-bonded interaction energy of the 

substrate, the second one on the remaining non-bonded potential energy of the system, and a third 

one on the system bonded potential energy. These boosts are designed to accelerate the substrate 

dissociation, facilitate substrate rebinding, and promote the system conformational changes, 

respectively. MDM244, a well-known oncology protein involved in regulating diverse cellular 

signaling pathways, serves as an ideal model system for investigating the binding and dissociation 

of both small molecules and highly flexible peptides. Notably, this system has been extensively 

explored through experimental studies and simulations as mentioned above, highlighting its 

critical role in drug discovery. Therefore, MDM2 bound by small-molecule drugs and peptides 

were chosen as model systems in this study. Through two microsecond LiGaMD3 simulations, we 

successfully captured repetitive ligand and peptide binding and dissociation processes across all 

MDM2 systems. LiGaMD3 facilitated highly efficient and accurate predictions of ligand and 

peptide binding thermodynamics and kinetics, being consistent with experimental binding free 

energies and kinetic rates.  

 

Methods 

LiGaMD3: Triple boost for ligand dissociation and rebinding 
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We consider a system of small-molecule/peptide L binding to a protein P in a biological 

environment E. The system comprises of N atoms with their coordinates 𝑟𝑟 ≡ {𝑟𝑟1,⋯ , 𝑟𝑟𝑁𝑁} and 

momenta 𝑝𝑝 ≡ {�⃑�𝑝1,⋯ , �⃑�𝑝𝑁𝑁} . The system Hamiltonian can be expressed as: 

 𝐻𝐻(𝑟𝑟,𝑝𝑝) = 𝐾𝐾(𝑝𝑝) + 𝑉𝑉(𝑟𝑟), (1) 

where 𝐾𝐾(𝑝𝑝)  and 𝑉𝑉(𝑟𝑟)  are the system kinetic and total potential energies, respectively. We 

decompose the potential energy into the following terms: 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑃𝑃,𝑏𝑏(𝑟𝑟𝑃𝑃)+𝑉𝑉𝐿𝐿,𝑏𝑏(𝑟𝑟𝐿𝐿) + 𝑉𝑉𝐸𝐸,𝑏𝑏(𝑟𝑟𝐸𝐸) +  𝑉𝑉𝑃𝑃𝑃𝑃,𝑛𝑛𝑏𝑏(𝑟𝑟𝑃𝑃) + 𝑉𝑉𝑃𝑃𝐿𝐿,𝑛𝑛𝑏𝑏(𝑟𝑟𝑃𝑃𝐿𝐿)  +

                           𝑉𝑉𝑃𝑃𝐸𝐸,𝑛𝑛𝑏𝑏(𝑟𝑟𝑃𝑃𝐸𝐸)+𝑉𝑉𝐿𝐿𝐿𝐿,𝑛𝑛𝑏𝑏(𝑟𝑟𝐿𝐿)+𝑉𝑉𝐿𝐿𝐸𝐸,𝑛𝑛𝑏𝑏(𝑟𝑟𝐿𝐿𝐸𝐸) + 𝑉𝑉𝐸𝐸𝐸𝐸,𝑛𝑛𝑏𝑏(𝑟𝑟𝐸𝐸)                       (2) 

where 𝑉𝑉𝑃𝑃,𝑏𝑏, 𝑉𝑉𝐿𝐿,𝑏𝑏 and 𝑉𝑉𝐸𝐸,𝑏𝑏 are the bonded potential energies of protein P, small-molecule/peptide L 

and environment E, respectively.  𝑉𝑉𝑃𝑃,𝑛𝑛𝑏𝑏 ,  𝑉𝑉𝐿𝐿𝐿𝐿,𝑛𝑛𝑏𝑏  and 𝑉𝑉𝐸𝐸𝐸𝐸,𝑛𝑛𝑏𝑏  are the self non-bonded potential 

energies in the protein P, small-molecule/peptide L and environment E, respectively. 𝑉𝑉𝑃𝑃𝐿𝐿,𝑛𝑛𝑏𝑏, 𝑉𝑉𝑃𝑃𝐸𝐸,𝑛𝑛𝑏𝑏 

and 𝑉𝑉𝐿𝐿𝐸𝐸,𝑛𝑛𝑏𝑏  are the non-bonded interaction energies between P-L, P-E and L-E, respectively. 

According to classical molecular mechanics force fields45, the non-bonded potential energies are 

usually calculated as: 

 𝑉𝑉𝑛𝑛𝑏𝑏 = 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣, (3) 

where 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣  are the system electrostatic and van der Waals potential energies. The 

bonded potential energies are usually calculated as 

                                                     𝑉𝑉𝑏𝑏 = 𝑉𝑉𝑏𝑏𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑉𝑉𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒𝑒𝑒 + 𝑉𝑉𝑣𝑣𝑑𝑑ℎ𝑒𝑒𝑣𝑣𝑒𝑒𝑎𝑎𝑒𝑒                                 (4) 

where 𝑉𝑉𝑏𝑏𝑏𝑏𝑛𝑛𝑣𝑣, 𝑉𝑉𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒𝑒𝑒 and  𝑉𝑉𝑣𝑣𝑑𝑑ℎ𝑒𝑒𝑣𝑣𝑒𝑒𝑎𝑎𝑒𝑒 are the system bond, angle and dihedral potential energies. In 

LiGaMD3, the essential non-bonded interaction potential energy of the ligand is defined as: 
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                            𝑉𝑉𝐿𝐿(𝑟𝑟) = 𝑉𝑉𝐿𝐿𝐿𝐿,𝑛𝑛𝑏𝑏(𝑟𝑟𝐿𝐿) + 𝑉𝑉𝑃𝑃𝐿𝐿,nb(𝑟𝑟𝑃𝑃𝐿𝐿).                                           (5) 

We add a boost potential selectively to the 𝑉𝑉𝐿𝐿(𝑟𝑟) according to the GaMD algorithm: 

                                      ∆𝑉𝑉𝐿𝐿(𝑟𝑟) = �
1
2
𝑘𝑘𝐿𝐿�𝐸𝐸𝐿𝐿 − 𝑉𝑉𝐿𝐿(𝑟𝑟)�

2
, 𝑉𝑉𝐿𝐿(𝑟𝑟) < 𝐸𝐸𝐿𝐿

0, 𝑉𝑉𝐿𝐿(𝑟𝑟) ≥ 𝐸𝐸𝐿𝐿 ,
                            (6) 

where EL is the threshold energy for applying boost potential and kL is the harmonic constant. The 

LiGaMD3 simulation parameters are derived similarly as in the previous GaMD46,  LiGaMD47, 

and LiGaMD238. When E is set to the lower bound as the system maximum potential energy 

(E=Vmax), the effective harmonic force constant 𝑘𝑘0 can be calculated as: 

                                          𝑘𝑘0 = min(1.0,𝑘𝑘0′ ) = min (1.0, 𝜎𝜎0
𝜎𝜎𝑉𝑉

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑚𝑚𝑎𝑎𝑎𝑎

),                         (7) 

where 𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚, 𝑉𝑉𝑚𝑚𝑑𝑑𝑛𝑛, 𝑉𝑉𝑎𝑎𝑣𝑣𝑎𝑎 and 𝜎𝜎𝑉𝑉 are the maximum, minimum, average and standard deviation of the 

boosted system potential energy, and 𝜎𝜎0 is the user-specified upper limit of the standard deviation 

of ∆𝑉𝑉  (e.g., 10kBT) for proper reweighting. The harmonic constant is calculated as 𝑘𝑘 = 𝑘𝑘0 ∙

1
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

  with 0 < 𝑘𝑘0 ≤ 1 . Alternatively, when the threshold energy E is set to its upper bound 

 𝐸𝐸 = 𝑉𝑉𝑚𝑚𝑑𝑑𝑛𝑛 + 1
𝑘𝑘
,  𝑘𝑘0 is set to: 

                                                  𝑘𝑘0 = 𝑘𝑘0" ≡ (1 − 𝜎𝜎0
𝜎𝜎𝑉𝑉

) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑎𝑎𝑎𝑎−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

 ,                                  (8) 

if 𝑘𝑘0"  is found to be between 0 and 1. Otherwise,  𝑘𝑘0 is calculated using Eqn. (7). 

In addition to selectively boosting the essential non-bonded interaction potential energy of 

the ligand, another boost potential is applied on the remaining non-bonded potential energy of the 

system (𝑉𝑉𝐷𝐷(𝑟𝑟)) to facilitate ligand rebinding: 

𝑉𝑉𝐷𝐷(𝑟𝑟) = 𝑉𝑉𝑛𝑛𝑏𝑏 − 𝑉𝑉𝐿𝐿(𝑟𝑟) = 𝑉𝑉𝑃𝑃𝑃𝑃,𝑛𝑛𝑏𝑏(𝑟𝑟𝑃𝑃) + 𝑉𝑉𝑃𝑃𝐸𝐸,𝑛𝑛𝑏𝑏(𝑟𝑟𝑃𝑃𝐸𝐸)+𝑉𝑉𝐿𝐿𝐸𝐸,𝑛𝑛𝑏𝑏(𝑟𝑟𝐿𝐿𝐸𝐸) + 𝑉𝑉𝐸𝐸𝐸𝐸,𝑛𝑛𝑏𝑏,       (9) 
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    ∆𝑉𝑉𝐷𝐷(𝑟𝑟) = �
1
2
𝑘𝑘𝐷𝐷�𝐸𝐸𝐷𝐷 − 𝑉𝑉𝐷𝐷(𝑟𝑟)�

2
, 𝑉𝑉𝐷𝐷(𝑟𝑟) < 𝐸𝐸𝐷𝐷

0, 𝑉𝑉𝐷𝐷(𝑟𝑟) ≥ 𝐸𝐸𝐷𝐷
   (10) 

where VD is the total system potential energy other than the essential non-bonded ligand potential 

energy ligand, ED is the corresponding threshold energy for applying the second boost potential 

and kD is the harmonic constant.  

                                          𝑉𝑉𝐵𝐵(𝑟𝑟) = 𝑉𝑉𝑃𝑃,𝑏𝑏(𝑟𝑟𝑃𝑃)+𝑉𝑉𝐿𝐿,𝑏𝑏(𝑟𝑟𝐿𝐿) + 𝑉𝑉𝐸𝐸,𝑏𝑏(𝑟𝑟𝐸𝐸)                               (11) 

The third boost potential is calculated using the total bonded potential energy of the system as:  

                        ∆𝑉𝑉𝐵𝐵(𝑟𝑟) = �
1
2
𝑘𝑘𝐵𝐵�𝐸𝐸𝐵𝐵 − 𝑉𝑉𝐵𝐵(𝑟𝑟)�

2
, 𝑉𝑉𝐵𝐵(𝑟𝑟) < 𝐸𝐸𝐵𝐵

0, 𝑉𝑉𝐵𝐵(𝑟𝑟) ≥ 𝐸𝐸𝐵𝐵
                      (12) 

This leads to LiGaMD3 with a triple-boost potential ∆𝑉𝑉(𝑟𝑟) = ∆𝑉𝑉𝐿𝐿(𝑟𝑟) + ∆𝑉𝑉𝐷𝐷(𝑟𝑟) + ∆𝑉𝑉𝐵𝐵(𝑟𝑟).  

Energetic Reweighting of LiGaMD3 

To calculate potential of mean force (PMF)48 from LiGaMD3 simulations, the probability 

distribution along a reaction coordinate is written as 𝑝𝑝∗(𝐴𝐴). Given the boost potential ∆𝑉𝑉(𝑟𝑟)
 
of 

each frame, 𝑝𝑝∗(𝐴𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝𝑝(𝐴𝐴), as: 

 𝑝𝑝�𝐴𝐴𝑗𝑗� = 𝑝𝑝∗�𝐴𝐴𝑗𝑗�
〈𝑒𝑒𝛽𝛽∆𝑉𝑉(𝑟𝑟��⃑ )〉𝑗𝑗

∑ 〈𝑝𝑝∗(𝐴𝐴𝑚𝑚)𝑒𝑒𝛽𝛽∆𝑉𝑉(𝑟𝑟��⃑ )〉𝑚𝑚𝑀𝑀
𝑚𝑚=1

, 𝑗𝑗 = 1, … ,𝑀𝑀,  (13) 

where M is the number of bins, 𝛽𝛽 = 𝑘𝑘𝐵𝐵𝑇𝑇 and 〈𝑒𝑒𝛽𝛽∆𝑉𝑉(𝑒𝑒)〉𝑗𝑗  
is the ensemble-averaged Boltzmann 

factor of ∆𝑉𝑉(𝑟𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

 〈𝑒𝑒𝛽𝛽∆𝑉𝑉(𝑒𝑒)〉 = 𝑒𝑒𝑒𝑒𝑝𝑝 �∑ 𝛽𝛽𝑘𝑘

𝑘𝑘!
𝐶𝐶𝑘𝑘∞

𝑘𝑘=1 �, (14) 

where the first two cumulants are given by 
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𝐶𝐶1 = 〈∆𝑉𝑉〉,

𝐶𝐶2 = 〈∆𝑉𝑉2〉 − 〈∆𝑉𝑉〉2 = 𝜎𝜎𝑣𝑣2. (15) 

The boost potential obtained from LiGaMD3 simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor28, 49. The reweighted free energy 𝐹𝐹(𝐴𝐴) = −𝑘𝑘𝐵𝐵𝑇𝑇 ln 𝑝𝑝(𝐴𝐴)  is 

calculated as: 

 𝐹𝐹(𝐴𝐴) = 𝐹𝐹∗(𝐴𝐴) − ∑ 𝛽𝛽𝑘𝑘

𝑘𝑘!
𝐶𝐶𝑘𝑘2

𝑘𝑘=1 + 𝐹𝐹𝑒𝑒,   (16) 

where 𝐹𝐹∗(𝐴𝐴) = −𝑘𝑘𝐵𝐵𝑇𝑇 ln 𝑝𝑝∗(𝐴𝐴) is the modified free energy obtained from LiGaMD2 simulation 

and 𝐹𝐹𝑒𝑒 is a constant. 

Ligand binding kinetics obtained from reweighting of LiGaMD3 Simulations 

Reweighting of ligand binding kinetics from LiGaMD3 simulations followed a similar protocol 

using Kramers’ rate theory that has been recently implemented in kinetics reweighting of the 

GaMD50, 51, 52. Provided sufficient sampling of repetitive ligand dissociation and binding in the 

simulations, we record the time periods and calculate their averages for the ligand found in the 

bound (τB) and unbound (𝜏𝜏𝑈𝑈 ) states from the simulation trajectories. The 𝜏𝜏𝐵𝐵  corresponds to 

residence time in drug design53. Then the ligand dissociation and binding rate constants (koff and 

kon) were calculated as: 

 𝑘𝑘𝑏𝑏𝑜𝑜𝑜𝑜 = 1
𝜏𝜏𝐵𝐵

.  (17) 

 𝑘𝑘𝑏𝑏𝑛𝑛 = 1
𝜏𝜏𝑈𝑈∙[𝐿𝐿]

,  (18) 

where [L] is the ligand concentration in the simulation system. 
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According to Kramers’ rate theory, the rate of a chemical reaction in the large viscosity 

limit is calculated as52: 

 𝑘𝑘𝑅𝑅 ≅
𝑤𝑤𝑚𝑚𝑤𝑤𝑏𝑏
2𝜋𝜋𝜋𝜋

𝑒𝑒−Δ𝐹𝐹 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ,  (19) 

where 𝑤𝑤𝑚𝑚 and 𝑤𝑤𝑏𝑏 are frequencies of the approximated harmonic oscillators (also referred to as 

curvatures of free energy surface54) near the energy minimum and barrier, respectively, 𝜉𝜉 is the 

frictional rate constant and Δ𝐹𝐹 is the free energy barrier of transition. The friction constant 𝜉𝜉 is 

related to the diffusion coefficient D with 𝜉𝜉 = 𝑘𝑘𝐵𝐵𝑇𝑇/𝐷𝐷. The apparent diffusion coefficient D can 

be obtained by dividing the kinetic rate calculated directly using the transition time series collected 

directly from simulations by that using the probability density solution of the Smoluchowski 

equation55. In order to reweight ligand kinetics from the LiGaMD3 simulations using the Kramers’ 

rate theory, the free energy barriers of ligand binding and dissociation are calculated from the 

original (reweighted, ∆F) and modified (no reweighting, ∆F*) PMF profiles, similarly for 

curvatures of the reweighed (w) and modified (𝑤𝑤∗, no reweighting) PMF profiles near the ligand 

bound (“B”) and unbound (“U”) low-energy wells and the energy barrier (“Br”), and the ratio of 

apparent diffusion coefficients from simulations without reweighting (modified, 𝐷𝐷∗) and with 

reweighting (D). The resulting numbers are then plugged into Eq. (17) to estimate accelerations of 

the ligand binding and dissociation rates during LiGaMD3 simulations52, which allows us to 

recover the original kinetic rate constants. 

System Setup 

The complex structures of MDM2 bound by the Nutlin 3 drug, P53 and PMI were obtained from 

the 5C5A, 1YCR and 3EQS PDB files, respectively. The AMBER ff14SB force field56  was used 

for the protein and peptide. The GAFF2 force field57 with AM1-BCC charge was used for the 
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Nutlin 3 small molecule.  Each system was solvated in a periodic box of TIP3P water molecules 

with a distance of 18 Å from the solute to the box edge using tleap. Therefore, the ligand/peptide 

concentration was 0.00335 M in the simulation system. Appropriate number of Na+/Cl- ions were 

added to achieve system neutrality.  

Simulation Protocol 

Each system was energy minimized and gradually heated to 300 K in 1 ns with the Langevin 

thermostat and harmonic restraints of 1.0 kcal/mol/Å2 on all non-hydrogen atoms of the protein 

and the ligand using the AMBER23 software58. The simulation system was firstly energy 

minimized with 1.0 kcal/mol/Å2 constraints on the heavy atoms of the proteins, including the 

steepest descent minimization for 50,000 steps and conjugate gradient minimization for 50,000 

steps. The system was then heated from 0 K to 300 K for 200 ps. It was further equilibrated using 

the NVT ensemble at 300 for 200 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1 

kcal/mol/Å2 constraints on the heavy atoms of the protein, followed by 2 ns short cMD without 

any constraint. The LiGaMD3 simulations proceeded with 2 ns short cMD to collect the potential 

statistics, 50.0 ns LiGaMD3 equilibration after adding the boost potential and then three 

independent 2,000 ns production runs. It provided more powerful sampling to set the threshold 

energy for applying the boost potential to the upper bound (i.e., E = Vmin+1/k) in our previous study 

ligand dissociation and binding using LiGaMD51. Therefore, the threshold energy for applying the 

ligand essential non-bonded potential (first boost) and the remaining non-bonded potential energy 

of the system (second boost) were set to the upper bound in the LiGaMD3 simulations. The 

threshold energy for applying the third boost to the system bonded energy potential was set to the 

lower bound. In order to observe ligand/peptide dissociation during LiGaMD3 production 

simulations while keeping the boost potential as low as possible for accurate energetic reweighting, 
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the (σ0P, σ0D, σ0B) parameters were set to (2.0 kcal/mol, 6.0 kcal/mol, 6.0 kcal/mol) for the 

LiGaMD3 simulations of the MDM2 bound by the Nutlin 3, PMI and P53. LiGaMD3 production 

simulation frames were saved every 0.4 ps for analysis. In the LiGaMD simulations performed for 

comparison, the (σ0P, σ0D) parameters were set to (4.8 kcal/mol, 6.0 kcal/mol) for simulations of 

the MDM2-Nutlin 3 system and (7.0 kcal/mol, 6.0 kcal/mol) for MDM2-PMI system, respectively. 

The threshold energies for applying the boosts in the LiGaMD simulations were set to the upper 

bound. Example simulation files of the LiGaMD3 simulations of the MDM2-Nutlin 3 system are 

included in the Supporting Information.  

Simulation Analysis 

The VMD59 and CPPTRAJ60 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand/peptide binding and unbinding time 

periods (τB and τU) were recorded from individual simulations (Tables 1 & S1). With high 

fluctuations, τB and τU were recorded for only the time periods longer than 1 ns. The 1D and 2D 

free energy profiles, as well as the ligand binding free energy, were calculated through energetic 

reweighting of the LiGaMD3 simulations. The center-of-mass distance between the small-

molecule/peptide and the protein pocket (defined by protein residues within 5 Å of the ligand, 

denoted as dMDM2-substrate) and small-molecule heavy atom or peptide backbone RMSDs relative to 

the PDB structures with the protein aligned were chosen as the reaction coordinates. The bin size 

was set to 1.0 Å. The cutoff for the number of simulation frames in one bin was set to 500. The 

ligand binding free energies (∆G) were calculated using the binding kinetic rates as ∆𝐺𝐺 =

−RTLn�𝑘𝑘𝑏𝑏𝑜𝑜𝑜𝑜/𝑘𝑘𝑏𝑏𝑛𝑛� . The ligand dissociation and binding rate constants (kon and koff) were 
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calculated from the LiGaMD3 and LiGaMD simulations with their accelerations analyzed using 

the Kramers’ rate theory (Table S2). 

 

Results 

Microsecond LiGaMD3 simulations captured repetitive small-molecule and peptide 

dissociation and rebinding to the MDM2 

Both LiGaMD and LiGaMD3 have effectively captured the binding and dissociation processes of 

the Nutlin 3 small molecule to the MDM2 protein across all three independent 2,000 ns simulations 

(Figs. 1B & 1C). However, LiGaMD encountered difficulty in capturing the rebinding of the PMI 

peptide to the protein, as no frames with peptide RMSD < 5 Å were observed in all three 2,000 ns 

simulations (Fig. 1F). In contrast, LiGaMD3 demonstrated consistent performance in successfully 

capturing the repetitive binding and dissociation of the PMI peptide in the MDM2 (Fig. 1E). 

Moreover, an additional system wherein MDM2 is bound by the peptide P53 was included to 

further evaluate the performance of LiGaMD3 (Fig. 2). LiGaMD3 could capture multiple times of 

P53 binding and dissociation in 2000ns simulations (Fig. 2).  

    The LiGaMD3 simulations of the MDM2-Nutlin 3 system yielded an average boost potential of 

12.92 kcal/mol with a standard deviation of 4.05 kcal/mol (Table 1). In contrast, achieving ligand 

dissociation and binding required a significantly larger boost in LiGaMD, with an average boost 

potential of 94.92 kcal/mol and a standard deviation of 4.01 kcal/mol (Table 1). For the MDM2-

PMI and MDM2-P53 systems, LiGaMD3 simulations recorded average boost potentials of 

45.11±7.04 kcal/mol and 45.59±7.03 kcal/mol, respectively (Table 1). Notably, the boost 

potentials applied in simulations of peptide-protein systems are much higher compared to that of 

small molecule-MDM2 system. LiGaMD3 required substantially smaller boosts than LiGaMD 
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simulations, indicating its enhanced efficiency in sampling, which was also advantageous for 

accurate energetic and kinetic reweighting.  

    RMSDs of the small-molecule/peptide relative to their experimental bound structures with the 

MDM2 protein aligned were computed (Figs. 1, 2 & Table 1) to calculate the number of small-

molecule/peptide dissociation (ND) and binding (NB) events in each of the 2,000 ns LiGaMD3 

simulations. With close examination of the ligand/peptide binding trajectories, RMSD cutoffs of 

the ligand unbound and bound states were set to >15 Å and <5.0 Å, respectively. Due to 

fluctuations in small-molecule/peptide-protein interactions, we recorded only the corresponding 

binding and dissociation events that lasted for more than 1.0 ns. In 2,000 ns simulations of the 

MDM2-Nutlin 3 system, LiGaMD3 consistently captured 5-7 binding and 5-7 dissociation events, 

whereas LiGaMD captured only 3-5 binding and 3-6 dissociation events (Fig. 1 & Table 1). The 

total number of binding events recorded in LiGaMD3 was 18, compared to 11 in LiGaMD. The 

total number of dissociation events in LiGaMD3 and LiGaMD was 17 and 13, respectively. Hence, 

LiGaMD3 demonstrated improved efficiency in capturing both binding and dissociation events 

compared to LiGaMD. Additionally, no rebinding events were observed in LiGaMD simulations 

of PMI to MDM2 (Fig. 1F), whereas each 2,000 ns LiGaMD3 simulation successfully captured 4-

6 binding and 4-6 dissociation events, indicating its superior capability in capturing flexible 

peptide-protein interactions (Fig. 1E & Table 1). Similar numbers of peptide dissociation (5-6) 

and binding (4-5) events were observed in simulations of the MDM2-P53 system (Fig. 2 & Table 

1). In summary, LiGaMD3 simulations successfully captured repetitive dissociation and rebinding 

events of both small-molecules and flexible peptides to the MDM2 on three model systems: Nutlin 

3 bound to MDM2 (MDM2-Nutlin 3), PMI bound to MDM2 (MDM2-PMI), and P53 bound to 

MDM2 (MDM2-P53) (Figs. 1, 2 & S1).  
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Ligand and peptide binding kinetic rates and free energies calculated from LiGaMD3 

agreed well with experimental data. 

The successful simulations of repetitive small-molecule and flexible peptide binding and 

dissociation in LiGaMD3 allowed us to predict the small-molecule and peptide binding kinetic 

rate constants (Fig. S2 & Table 2). We recorded the time periods for the small-molecule and 

peptide found in the bound (τB) and unbound (τU) states throughout the LiGaMD and LiGaMD3 

simulations. Without reweighting, the binding rate constant (kon*) and dissociation rate constant 

(koff*) for Nutlin 3 were directly calculated from the LiGaMD trajectories as 1.69 ± 0.28×109 M-

1⋅s-1 and 3.68 ± 2.10×106 s-1 (Table 2). In comparison, in LiGaMD3, these rate constants were 

calculated as 1.16 ± 0.28×109 M-1⋅s-1 and 2.77 ± 0.75×107 s-1, respectively (Table 2). The peptide 

binding rate constants (kon*) were directly calculated from the LiGaMD3 trajectories as 8.57 ± 

1.37×108 M-1⋅s-1 and 1.02±0.29 × 109 M-1⋅s-1 for the MDM2-PMI and MDM2-P53 systems, 

respectively (Table 2). 

Next, we performed reweighting on the LiGaMD and LiGaMD3 simulations of ligand-MDM2 

systems to calculate acceleration factors for the small-molecule/peptide binding and dissociation 

processes (Table S2) and to recover the original kinetic rate constants using the Kramers’ rate 

theory (Table 2). In the LiGaMD simulations, the dissociation free energy barrier (∆Foff) 

significantly decreased from 9.10±1.26 kcal/mol in the reweighted PMF profiles to 2.77±1.76 

kcal/mol in the modified PMF profiles for the system of MDM2-Nutlin 3 (Fig. S1 and Table S2). 

Similarly, for the MDM2-Nutlin 3, MDM2-PMI, and MDM2-P53 systems, the dissociation free 

energy barrier (∆Foff) significantly decreased from 9.65±0.76, 9.05±0.23, 7.23±0.40 kcal/mol in 

the reweighted PMF profiles to 0.79±0.10, 0.89±0.07, 0.67±0.18 kcal/mol in the modified PMF 

profiles in LiGaMD3 simulations, respectively (Table S1 and Fig. S1).  Curvatures of the 
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reweighed (w) and modified (𝑤𝑤∗, no reweighting) free energy profiles were calculated near the 

ligand Bound (“B”) and Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well 

as the ratio of apparent diffusion coefficients calculated from LiGaMD and LiGaMD3 simulations 

with reweighting (D) and without reweighting (modified, 𝐷𝐷∗ ) (Table S2). According to the 

Kramers’ rate theory, the association and dissociation of the Nutline 3 small molecule in LiGaMD 

were accelerated by 0.32 and 5.30×104 times. In contrast, in LiGaMD3, the association and 

dissociation of the Nutlin 3 were accelerated by 1.40 and 1.79×106 times, respectively. Moreover, 

the association of the peptide in the LiGaMD3 was accelerated by 1.47 and 1.27 times for the 

MDM2-PMI and MDM2-P53 systems, respectively. While the peptide dissociation was 

significantly accelerated by 1.28×107 and 6.96×105 times for the MDM2-PMI and MDM2-P53 

systems, respectively. Therefore, the reweighted kon in the MDM2-Nutlin 3 system with LiGaMD 

and LiGaMD3 were calculated as 5.26±0.65×109 M-1⋅s-1 and 8.29±4.80×108 M-1⋅s-1, respectively, 

being in consistent with the experimental values of 3.3×107 M-1⋅s-1. Similarly, for the MDM2-PMI 

and MDM2-P53 systems, the reweighted kon values were predicted as 5.76±4.80×108 and 

8.03±7.42×108,  respectively, being consistent with the corresponding experimental values61 of 

5.27×108 and 9.20×106 M-1⋅s-1(Table 2). The reweighted koff values for the Nutlin 3 in the MDM2-

Nutline 3 with LiGaMD and LiGaMD3 were calculated as 69.51±58.37 s-1 and 15.45±4.69 s-1, 

being in accordance with the experimental of 0.48 s-1. For the peptide in the MDM2-PMI and 

MDM2-P53 systems, the reweighted peptide koff were calculated from LiGaMD3 simulations as 

2.66±1.73, 28.0±19.2 s-1, in agreement with the corresponding experimental values61 of 0.037 and 

2.06 s-1, respectively.   

Based on the ligand binding kinetic rates (kon and koff), we calculated the ligand binding free 

energies as ∆𝐺𝐺 = −RTLn�𝑘𝑘𝑏𝑏𝑜𝑜𝑜𝑜/𝑘𝑘𝑏𝑏𝑛𝑛�. The resulting binding free energies in the MDM2-Nutlin 3 
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system with LiGaMD and LiGaMD3 were -10.18±2.22 kcal/mol and -11.02±0.59 kcal/mol, 

respectively, demonstrating high consistency with the experimental value of -10.96 kcal/mol. In 

the MDM2-PMI and MDM2-P53 systems (Table 1), the calculated peptide binding free energy 

values were -11.86±1.16 kcal/mol and -10.59±0.11 kcal/mol, exhibiting strong agreement with the 

corresponding experimental values of -12.02 kcal/mol and -9.27 kcal/mol respectively. The root-

mean square error (RMSE) of binding free energy for the three systems was only 0.94 kcal/mol. 

Hence, LiGaMD3 simulations achieved both efficient sampling and accurate small-

molecule/peptide binding thermodynamics and kinetics calculations. 

 

Multiple ligand binding and dissociation pathways were identified from LiGaMD3 

simulations. 

We closely examined the LiGaMD3 trajectories to explore the pathways involved in the small-

molecule/peptide binding and dissociation of the MDM2. Two primary pathways were identified 

for the binding and dissociation, denoted as “pathway 1” (residues 65-95, including motifs β3, β1’, 

α1’ and β2’) and “pathway 2” (residues 97-106, α2’ helix) (Figs. 3 and S2). These pathways were 

consistently observed in the binding and dissociation of Nutlin 3, PMI and P53. Binding of Nutlin 

3 via pathways 1 and 2 were observed 13 times and 5 times, respectively (Fig. 3B). The same 

pathways 1 and 2 were identified in the simulations of the MDM2-PMI and MDM2-P53 systems. 

Peptide binding in the MDM2-PMI and MDM2-P53 systems occurred along pathways 1 and 2 for 

9 and 7 times, respectively (Fig. 3B). Similarly, peptide P53 binding events along pathways 1 and 

2 were 8 and 6, respectively (Fig. 3B). The same pathways were identified for the dissociation of 

the MDM2-Nutlin 3, MDM2-PMI and MDM2-P53 systems (Fig. 3C). Dissociation of Nutlin-3 

via pathways 1 and 2 were observed 11 and 6 times, respectively (Fig. 3C). Peptide dissociation 
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in the MDM2-PMI system along pathways 1 and 2 occurred 9 and 9 times, respectively (Fig. 3C). 

Similarly, peptide P53 dissociation along pathways 1 and 2 occurred 6 and 8 times, respectively 

(Fig. 3C).  

 

Small-molecule and Peptide binding to the MDM2 involved Induced Fit 

After identifying the pathway 1, which involves motifs β3-β1’-α1’-β2’ (residues 65-95), we further 

investigated the relationship between conformational changes within this region upon small-

molecule/peptide binding. Therefore, the ligand RMSD and the number of contacts between the 

ligand and residues 65-95 in MDM2 (denoted as Ncontact) were used as reaction coordinates to 

calculate 2D PMF profiles (Figs. 4A-4C). Four low-energy states were identified in the 2D PMF 

profile of the MDM2-Nutlin 3 system including the Bound (“B”), Intermediate (“I1” and “I2”), 

and Unbound (“U”) (Fig. 4A). The ligand RMSD and Ncontact of these states centered around (3.0 

Å, 24), (9.0 Å, 37), (20.1 Å, 0), and (50.0 Å, 0), respectively (Fig. 4A). In the MDM2-PMI system, 

four low-energy states were identified: Bound (“B”), Intermediate (“I1” and “I2”), and Unbound 

(“U”) (Fig. 4E), with the PMI peptide RMSD and Ncontact centered around (3.5 Å, 60), (9.7 Å, 85), 

(27.5 Å, 0), and (50 Å, 0), respectively (Fig. 4E). Similarly, in the MDM2-P53 system, four low-

energy states were observed: Bound (“B”), Intermediate (“I1” and “I2”), and Unbound (“U”) states 

(Fig. 4I), with the P53 peptide RMSD and Ncontact centered around (4.0 Å, 64), (8.5 Å, 78), (30.5 

Å, 0), and (60.8 Å, 0), respectively (Fig. 4I).Compared to the Bound state, the intermediate “I1” 

and “I2” states exhibited significant conformational alterations in the MDM2-Nutlin 3, MDM2-

PMI, and MDM2-P53 systems (Figs. 4B, 4F & 4J). In the intermediate “I1” and “I2” states, motifs 

β3-β1’-α1’-β2’ (residues 65-95) in the MDM2-Nutlin3 system moved outward significantly 

compared to the X-ray Bound structures, resulting in the opening of the binding pocket (Fig. 4B). 
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Two critical interactions were identified in “I1” state: a hydrogen bond interaction between 

MDM2:Q72 and Nutlin 3 and aromatic interaction between MDM2:Y67 and Nutlin 3 (Fig. 4C). 

While in the “I2” state, Π-Π interactions were observed between MDM2:Y77 or MDM2:Y81 and 

Nutlin 3 (Figs. 4C&4D). In the MDM2-PMI system, significant conformational changes occurred 

upon peptide PMI binding, involving particularly motifs β3-β1’-α1’-β2’ (residues 65-95), resulting 

in distinct open and closed conformations in the “I1” and “I2” states, respectively (Fig. 4F). In the 

“I1” state, hydrogen bonds were formed between MDM2:Q72 and PMI:W7, MDM2:Q72 and 

PMI:D5 (Figs. 4G). In the “I2” state, Π-Π interactions were formed between MDM2:Y77- 

PMI:Y6, MDM2:Y81 and PMI: W7 (Figs. 4H). In the MDM2-P53 system, significant 

conformational changes occurred upon peptide P53 binding, involving particularly motifs β3-β1’-

α1’-β2’ (residues 65-95), resulting in a more closed conformation in the “I1” and “I2” states (Fig. 

4J). In the “I1” state, hydrogen bonds were formed between MDM2:Q72 and P53:L22, 

MDM2:Y67 and P53:D21 (Fig. 4K). In the “I2” state, Π-Π interactions were formed between 

MDM2:Y77 and P53:F19, MDM2:Y81 and P53:F18 (Figs. 4K&4L). Hence, residues Q72, Y67, 

Y77 and Y81 in the MDM2 protein play pivotal roles during ligand binding in the intermediate 

conformational states. 

In order to further explore the mechanism of ligand binding to the MDM2, we computed 2D PMF 

free energy profiles to characterize conformational changes of both the protein and ligand during 

binding. The intermediate “I1” and “I2” states showed quite large conformational changes in the 

motifs β3-β1’-α1’-β2’ (residues 65-95). Therefore, we calculated 2D PMF profiles regarding the 

RMSD of the ligand and the MDM2 motifs β3-β1’-α1’-β2’ (residues 65-95) RMSD (denoted as 

Loop RMSD) relative to the experimental bound structures with the protein aligned (Figs. 5A-5C).  

For the MDM2-Nutlin 3 system, three low-energy states were identified from the 2D PMF profile, 
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including the Bound, Intermediate “I2” and Unbound (Figs. 5A). The protein motifs β3-β1’-α1’-

β2’ at the peptide-binding site adopted the “Open” conformation in the I2 state (Figs. 5A and 5B). 

The peptide and loop RMSDs centered around (4.5 Å, 1.0 Å), (18.0 Å, 2.9 Å) and (59.0 Å, 2.0 Å) 

in the Bound “B”, Intermediate “I2” and Unbound “U” states, respectively (Fig. 5A).  For the 

MDM2-PMI system, three low-energy states were identified from the 2D PMF profile, including 

the Bound “B”, Intermediate “I1” and Unbound “U”. The peptide and loop RMSDs centered 

around (5.0 Å, 0.8 Å), (10.2 Å, 3.0 Å) and (58.2 Å, 2.0 Å) in the “B”, “I1” and “U” states, 

respectively (Figs. 5B). Four low-energy conformational states were identified in the MDM2-P53 

system. The peptide and loop RMSDs centered around (5.2 Å, 0.8 Å), (10.5 Å, 3.9 Å), (31.0 Å, 

4.0 Å) and (61.0 Å, 1.9 Å) in the Bound “B”, Intermediate “I1” and “I2”, and Unbound “U” states, 

respectively (Fig. 5C).  

In addition, we examined the conformational dynamics exhibited by the small molecule 

and peptides during their binding processes. In this regard, the ligand radius of gyration (Rg) was 

calculated and monitored for possible conformational changes. The small-molecule/peptide Rg and 

the center-of-mass distance between protein pocket and ligand (denoted as dMDM2-substrate) were 

used as reaction coordinates to calculate 2D PMF profiles. From the reweighted 2D PMF profiles 

(Fig. 5D-5F), we identified a low-energy “Bound” state in all three systems, for which the dMDM2-

substrate and Rg in the MDM2-Nutlin3, MDM2-PMI and MDM2-P53 systems centered around (8.6 

Å, 4.4 Å), (14.0 Å, 6.3 Å) and (13.0 Å, 8.3 Å), respectively. This suggested that successful 

sampling of complete small-molecule/peptide binding was captured in the LiGaMD3 simulations. 

Notably, in the intermediate states, the peptides sampled a wider range of Rg and the protein motifs 

β3-β1’-α1’-β2’ exhibited higher RMSDs compared with the bound states. Therefore, the small-
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molecule and peptides binding to the MDM2 protein showed predominantly an “induced-fit” 

mechanism. 

 

 
Discussions 

We have presented a new LiGaMD3 method to improve sampling efficiency and accurately 

predict thermodynamic and kinetic properties associated with the binding of small molecules and 

highly flexible peptides. LiGaMD3 works by selectively boosting the essential non-bonded 

interaction potential energy of the ligand, as well as the remaining non-bonded potential energy 

and all the bonded potential of the system. Non-bonded potential interactions play a critical role 

in ligand dissociation and rebinding, while the bonded potentials mainly contribute to 

conformational changes of the system. Utilizing microsecond timescale simulations, LiGaMD3 

effectively captures repetitive dissociation and rebinding processes of both small molecules and 

peptides in three model systems of MDM2 bound by different small molecules and flexible 

peptides. These simulations then enable accurate predictions of ligand/peptide binding free 

energies and kinetic rate constants.  

LiGaMD3 simulations revealed the critical role of nonbonded potentials in governing 

ligand dissociation and rebinding process, being consistent with previous computational findings23, 

32, 62. Non-bonded interactions have been recognized as one of the main factors that govern the 

ligand binding to its target protein43. Furthermore, our simulations identified multiple pathways 

for ligand binding and dissociation and revealed an “induced-fit” mechanism of ligand binding, 

being consistent with earlier simulation results15, 33, 63. Compared with the cMD64, Metadynamics65, 

Weighted Ensemble,66 MSM30 and Replica Exchange MD simulations41, LiGaMD3 offers a more 
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efficient and  user-friendly approach. LiGaMD3 also shows advantages over previous LiGaMD, 

particularly in its ability to accurately capture peptide binding to proteins. While microsecond 

cMD simulations have proven effective in capturing small molecule and highly flexible peptide 

binding to target proteins, the slower kinetics of ligand dissociation remain beyond the accessible 

timescale of cMD. Weighted Ensemble32 and MSM30 methods have shown promise in accurately 

predicting small molecule and peptide binding kinetics, but typically require extensive 

computational resources, often involving tens-of-microsecond simulations30. Metadynamics, with 

carefully designed CVs, can efficiently capture both ligand binding and unbinding. However, the 

predefined CVs may impose constraints on binding pathways and conformational space. The 

approach may also encounter challenges such as the “hidden energy barrier” problem and slow 

convergence if important CVs are omitted.67 Overall, previous methods have been computationally 

demanding, necessitating significantly longer simulations to adequately characterize ligand 

binding thermodynamics and kinetics. LiGaMD3 captures the repetitive small-molecule and 

peptide dissociation and binding events within only microsecond simulations, offering an efficient 

approach to characterizing ligand binding dynamics and extending the capabilities of the LiGaMD 

methodology to binding of highly flexible peptides.  
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Table 1. Summary of LiGaMD3 simulations performed on small molecule and peptide binding to 
the MDM2. ∆V is the total boost potential. ND and NB are the number of observed ligand 
dissociation and binding events, respectively. ∆Gsim and ∆Gexp are the ligand-MDM2 binding free 
energies obtained from LiGaMD3 simulations and experiments, respectively. a The simulation 
binding free energy is estimated using ∆Gsim=-RT Ln(koff/kon). 

System Method ID NB ND ∆V 
(kcal/mol) 

∆𝐺𝐺𝑠𝑠𝑑𝑑𝑚𝑚𝑎𝑎   
(kcal/mol) 

∆𝐺𝐺𝑒𝑒𝑚𝑚𝑝𝑝  
(kcal/mol) 

MDM2-Nutline3 LiGaMD 
Sim1 5 6 

94.92±4.01 -10.18±2.22 

-10.96 

Sim2 3 3 
Sim3 3 4 

MDM2-Nutline3 LiGaMD3 
Sim1 6 5 

12.94±4.05 -11.02±0.59 Sim2 7 7 
Sim3 5 5 

MDM2-PMI LiGaMD3 
Sim1 4 4 

45.11±7.04 -11.86±1.16 -12.02 Sim2 6 5 
Sim3 6 6 

MDM2-P53 LiGaMD3 
Sim1 5 6 

45.59±7.03 -10.59±0.11 -9.27 Sim2 4 5 
Sim3 5 6 
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Table 2 Comparison of kinetic rates obtained from experimental data and LiGaMD3 simulations 

for ligand binding to MDM2. kon and koff are the kinetic dissociation and binding rate constants, 

respectively, from experimental data or LiGaMD3 simulations with reweighting using Kramers’ 

rate theory.𝑘𝑘𝑏𝑏𝑛𝑛∗  and 𝑘𝑘𝑏𝑏𝑜𝑜𝑜𝑜∗  are the accelerated kinetic dissociation and binding rate constants 

calculated directly from LiGaMD3 simulations without reweighting. 

System Method kon (M-1·s-1) Δlog(kon) koff (s-1) Δlog(koff) 𝑘𝑘𝑏𝑏𝑛𝑛∗  (M-1·s-1) 𝑘𝑘𝑏𝑏𝑜𝑜𝑜𝑜∗  (s-1) 

MDM2-
Nutlin 

Experiment 3.3 × 107 - 0.48 - - - 
LiGaMD 5.26±0.65×109 1.82 69.51±58.37 1.36 1.69±0.28×109 3.68±2.10×106 
LiGaMD3 8.29±4.80×108 1.37 15.45±4.69 1.39 1.16±0.31×109 2.77±0.75×107 

MDM2-
PMI 

Experiment 5.27× 108 - 0.037 - - - 
LiGaMD3 5.76±4.80×108 0.04 2.66±1.73 1.85 8.51±1.37×108 3.41±0.96×107 

MDM2-
P53 

Experiment 9.2×106 - 2.06 -     
LiGaMD3 8.03±7.42× 108 1.94 28.0±19.2 1.13 1.02±0.29×109 1.95±0.73×107 
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Figure 1. Comparison of LiGaMD and LiGaMD3 simulations on the MDM2 protein bound by the Nutlin 

3 small molecule and PMI peptide: Computational models of the MDM2 bound by the Nutlin 3 small 

molecule (A) and PMI peptide (D); Time courses of ligand root-mean-square deviation (RMSD) relative to 

the experimental bound structure (PDB ID: 5C5A) in the MDM2-Nutlin 3 system calculated from 

LiGaMD3 (B) and LiGaMD (C) simulations, respectively. Time courses of peptide RMSD relative to the 

experimental bound structure (PDB ID: 3EQB) in the MDM2-PMI calculated from LiGaMD3 (E) and 

LiGaMD2 (F) simulations, respectively.    
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Figure 2.  (A) Computational model of the MDM2 bound by the P53 peptide; (B) Time courses of peptide 

P53 RMSD relative to the experimental bound structure (PDB ID: 1YCR) in the MDM2-P53 system 

calculated from LiGaMD3 simulations.    
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Figure 3. Pathways of ligand/peptide binding and dissociation in the MDM2 protein. (A) Cartoon 
representation of the protein. Binding and dissociation pathways are denoted by the arrow lines. Number 
of binding (B) and dissociation (C) events through the different pathways captured by the LiGaMD3 
simulations. 
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Figure 4. 2D Potential of Mean Force (PMF) free energy profiles and low-energy conformational states of 
ligand/peptide binding to the MDM2: (A) 2D PMF profile regarding the ligand heavy atom RMSD and the 
number of contacts between the ligand and residues 65-95 of MDM2 in the LiGaMD3 simulations of Nutlin 
3 binding to the MDM2 protein; (B) Low-energy “Intermediate” conformations “I1” (blue) and “I2” (red) 
as identified from the 2D PMF profiles of Nutlin 3 binding to MDM2 protein; (C-D) Important ligand-
MDM2 interactions in the low-energy conformations “I1” (C) and I2 (D).  (E) 2D PMF profile regarding 
the peptide backbone RMSD and the number of contacts between the PMI and residues 65-95 of the MDM2 
in the LiGaMD3 simulations of PMI binding to the MDM2 protein; (F) Low-energy “Intermediate” 
conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF profiles of PMI binding to MDM2 
protein; (G-H) Important PMI-MDM2 interactions in the low-energy conformations “I1” (G) and I2 (H). 
(I) 2D PMF profile regarding the peptide backbone RMSD and the number of contacts between the P53 
and residues 65-95 of the MDM2 in the LiGaMD3 simulations of P53 binding to the MDM2 protein; (J) 
Low-energy “Intermediate” conformations “I1” (blue) and “I2” (red) as identified from the 2D PMF 
profiles of P53 binding to MDM2 protein; (K-L) Important P53-MDM2 interactions in the low-energy 
conformations “I1” (K) and I2 (L). 
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Figure 5. (A-C) 2D PMF profiles regarding the ligand heavy atom RMSD or peptide backbone RMSD and 
the MDM2 loop (residues 65-95) RMSD relative to their corresponding experimental bound structure in 
the LiGaMD3 simulations of Nutlin 3(A), PMI peptide (B) and P53 peptide (C)  binding to the MDM2 
protein; (D-F) 2D PMF profiles regarding the distance between the ligand/peptide and MDM2 binding 
pocket and the Rg of the substrates in the LiGaMD3 simulations of Nutlin 3 (D), PMI peptide (E) and P53 
(F) binding to the MDM2 protein. 
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