
Fast, Accurate, and Versatile Data Analysis Platform for 

the Quantification of Molecular Spatiotemporal Signals 

Xuelong Mi1,13, Alex Bo-Yuan Chen2,3,4,13, Daniela Duarte5, Erin Carey5, Charlotte R. Taylor6,7, 

Philipp N. Braaker8, Mark Bright1, Rafael G. Almeida8, Jing-Xuan Lim2, Virginia M. S. Ruetten2,9, 

Wei Zheng1, Mengfan Wang1, Michael E. Reitman6,7, Yizhi Wang1, Kira E. Poskanzer6,7,10, David 

A. Lyons8, Axel Nimmerjahn5*, Misha B. Ahrens2*, Guoqiang Yu11,12,14* 

1Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 

Arlington, VA 22203, USA 
2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA 
3Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA 
4Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA 
5Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA 
6Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA 
7Neuroscience Graduate Program, University of California, San Francisco, CA, USA 
8Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK 
9Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA 
10Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA 
11Department of Automation, Tsinghua University, Beijing 100084, China 
12IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China 
13These authors contributed equally 
14Lead contact 

*Correspondence: animmerj@salk.edu; ahrensm@janelia.hhmi.org; yug@tsinghua.edu.cn  

SUMMARY 

Optical recording of intricate molecular dynamics is becoming an indispensable technique for 

biological studies, accelerated by the development of new or improved biosensors and 

microscopy technology. This creates major computational challenges to extract and quantify 

biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, 

many of which cannot be captured with existing methods. Here, we introduce Activity 

Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built 

upon advanced machine learning techniques. It decomposes complex live imaging-based 

datasets into elementary signaling events, allowing accurate and unbiased quantification of 

molecular activities and identification of consensus functional units. We demonstrate applications 

across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As 

exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons 

and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord. 
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INTRODUCTION 

Imaging cellular and molecular activity across space and time has emerged as a crucial approach 

in many fields, such as neuroscience 1, cell biology 2, pathology 3, and developmental biology 4. 
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Recent developments in modern genetically encoded fluorescent probes 5–7 and advanced 

imaging techniques 8–10 have enabled the observation of a wide range of signals, including calcium 

ions, ATP, neurotransmitters, neuromodulators, and other molecules, greatly expanding the 

breadth and depth of scientific studies. However, with the rapid growth of data generation and the 

revealing of complex spatiotemporal activity patterns such as heterogeneous spatial footprints 

and various propagations (see top row of Figure 3), quantifying and understanding the data has 

become a limiting factor. Manual inspection is simply infeasible due to the complexity and large 

data size, and even when possible, it often misses subtle yet important information. Although 

automated image analysis methods have been developed, they are typically constrained to 

modeling a specific type of signal with an assumption of simple spatiotemporal pattern or plagued 

by low accuracy, extensive processing times, and a limited set of analysis functions, failing to 

meet today's demands for a unified data analysis platform that allows flexible and accurate 

quantification of diverse and complex data from various experimental settings.  

Existing fluorescent imaging analysis techniques can be broadly classified into two categories: 

region-of-interest-based (ROI-based) methods 11–13 and event-based methods 14–16. ROI-based 

methods, such as suite2p 12 and CaImAn 11, rely on identifying regions of interest (ROIs), which 

are ill-suited to capture the spatial dynamics of molecular signals. An ROI is a fixed spatial area 

associated with a single temporal dynamic. While certain ROI methods, such as non-negative 

matrix factorization (NMF)-based approaches 11,17, permit overlap between regions, they are 

based on weighted averages of a low number of temporal components and do not allow the spatial 

dynamics to be faithfully captured. These methods can be effective for analyzing stereotypical 

neuronal signals. However, their stringent assumption of spatial stationarity often results in 

suboptimal performance and frequently distorted descriptions when the target signals exhibit 

complex and flexible spatiotemporal dynamics. Event-based methods, in contrast, are specifically 

designed to capture dynamic activities with intricate spatiotemporal features. Astrocyte 

Quantitative Analysis (AQuA) 14, developed by our team and widely used in the astrocyte field, 

pioneered event-based quantification. Because events are jointly determined by the spatial 

coherence and the temporal pattern, it allows for more flexible modeling of both spatial and 

temporal dynamics than traditional ROI-based models, in that one pixel can participate in different 

kinds of events, and any one signal can propagate across space. This makes AQuA widely 

adopted for quantifying astrocyte calcium signals that can flow along the geometry of the cell and 

exhibit subcellular and population-wide spatial dynamics.  

With growing AQuA usage18–21, we, as its developer, have received numerous requests for a fast, 

accurate, and versatile platform with more functions to enhance the quantification and analysis of 

generic molecular spatiotemporal activity. First, researchers find region or location information 

helpful in interpreting their results, and therefore, they need analysis methods that integrate 

region-based and event-based approaches. Second, as multiplexing imaging methods are 

maturing 22,23, there is a need to model more than one type of signal and analyze the interactions 

between them. Third, since scientists aim to minimize the disturbance to the system under 

investigation, data sets with low signal-to-noise ratios are generated, requiring more accurate 

algorithms to cope with large noise. Fourth, new data is getting larger and larger, frequently 

involving three spatial dimensions. The large data size necessitates better approaches in terms 

of both computational time and computer memory. Finally, although AQuA was originally 

designed primarily for astrocyte calcium activity, it has been applied to many other cell types and 

signals without thorough validation and optimization. 
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Responding to the feedback and requests, we developed Activity Quantification and Analysis 

(AQuA2), an entirely new version of AQuA. Now, the first letter A in AQuA2 stands for activity 

instead of astrocyte as in AQuA, indicating the great expansion of applicability. We introduce the 

Consensus Functional Unit (CFU) concept to integrate the ROI-based and event-based 

approaches. Potential functional units, termed CFUs, are detected with the hypothesis that a 

functional unit is expected to exhibit multiple events with a consistent spatial footprint/region. The 

CFU concept, bridging region and event definitions, can be considered a more flexible version of 

ROI, allowing signals to have different sizes, shapes, and propagation patterns while maintaining 

consistent spatial foundations. This new function can facilitate deeper biological insights by 

utilizing strengths from both ROI-based and event-based approaches. Moreover, introducing 

CFUs enables us to analyze the interaction between signals recorded by different biosensors. To 

improve the accuracy when used on noisy data, we designed a more reliable top-down strategy, 

which utilizes more information from a broader field of view than the original bottom-up approach. 

This new strategy integrates principles of probability theory while adopting innovative machine 

learning algorithms such as BIdirectional pushing with Linear Component Operations (BILCO) 24 

for ever-growing data volumes. It can efficiently and accurately quantify signals with various 

features. Furthermore, to enhance usability, we have equipped AQuA2 with a user-friendly 

interface compatible with processing 2D, 3D, and dual-color data. 

AQuA2 surpasses existing ROI- and event-based methods (suite2p 12, CaImAn 11, Begonia 16, 

and AQuA 14) in accuracy and demonstrates high efficiency, corroborated through extensive 

testing on both simulated and real-world data. Many additional signal properties, such as the 

potential functional units, the interaction between signals, and 3D signal propagation, can be 

readily captured by AQuA2 but difficult or impossible with existing methods, individually or 

combined. The user interface is optimized so that the operation is intuitive and detection 

parameters can be set based on known biological constraints. Utilizing AQuA2, we quantified the 

dynamics of multiple distinct biological signals (calcium, norepinephrine (NE) 5, dopamine 25, ATP 
6, and acetylcholine (Ach) 26), cell types (neurons, astrocytes, microglia, and oligodendrocytes), 

organs (brains and spinal cords), animals (mouse and zebrafish), and imaging modalities 

(confocal, two-photon, light sheet). Additionally, using AQuA2, we explored drug-dependent 

interactions between neurons and astroglia and discovered different modes of sensorimotor 

signal propagation in the mouse spinal cord. These results establish AQuA2 as a universally 

applicable toolkit capable of addressing a wide array of scientific inquiries. 

RESULTS 

Event detection pipeline of AQuA2 

The event-based methodology, first introduced in Astrocyte Quantitative Analysis (AQuA) 14 

provides a unique perspective for modeling spatiotemporal activities. It defined an event as a 

spatiotemporally connected region characterized by fluorescent dynamics, containing a single 

peak pattern, and originating from a single source. Adjacent pixels belonging to the same event 

are allowed to exhibit slight delay or deformation in temporal patterns, enabling the analysis of 

signals with complex features. In AQuA2, we have retained this concept but enhanced the 

reliability of the event detection pipeline by adopting a top-down framework that incorporates 

advanced machine learning algorithms. It obtains the signal events by segmenting regions with 

significant dynamics in the following steps, as depicted in Figure 1B: (1) Baseline estimation and 

dF (change in fluorescence) calculation according to the non-negative nature of dynamic signals; 
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(2) Active region detection by applying statistical tests on dF; (3) Temporal segmentation through 

machine learning and image processing techniques to ensure each segmentation (super event) 

contains a singular peak pattern. (4) Spatial segmentation based on the signal propagation 

estimated using joint alignment techniques to ensure each final event originates from a single 

source. For a more detailed explanation of each step, please refer to STAR Methods. 

 
Figure 1. Principles of AQuA2. (A) Typical input data with two spatial dimensions plus a time dimension is shown, with 
three exemplary cells illustrated in green. The example crop, centered around the middle cell, is utilized in (B), with 
intensity variations of five positions (labeled by different colors) illustrated by corresponding curves. (B) Event-based 
signal detection pipeline of AQuA2, including preprocessing, statistical test, temporal segmentation, and spatial 
segmentation. In the outcome of each step, different colors indicate the corresponding pixels/regions belong to the 
different detection results. (C) Potential outputs based on event detection pipeline, including extracted event features 
(size, duration, etc.), movie with event overlay, and propagation map. (D) Diagram for functional region analysis. It 
consists of Consensus Functional Unit (CFU) detection (cluster events with similar spatial patterns) and interaction 
analysis between CFUs (take event occurrence sequence as input, output significance p-value of dependency). The 
outcomes include CFU relation network, CFU-stimulus relation, and CFU groups. (E) Example applications of AQuA2, 
including signals of different cell types, different biosensors, dual-color data, and 3D data.  See also Figure S1. 
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The new pipeline, in contrast to AQuA, demonstrates superior accuracy and efficiency due to the 

following key enhancements: Firstly, AQuA2 adopts a top-down framework, which is intrinsically 

more robust compared to the bottom-up framework used in AQuA. The bottom-up framework, 

designed to aggregate pixels into events, tends to place excessive emphasis on the temporal 

information of individual pixels. This makes it susceptible to noise interference, especially in low 

signal-to-noise ratio (SNR) environments. In contrast, the top-down approach, which identifies 

signal events by segmenting potential active regions, achieves better performance by integrating 

the information carried by all the pixels in a broader scope. Combined with the flexibility of event-

based methods, this improvement enables AQuA2 to robustly capture a wide range of molecular 

spatiotemporal activities across various experimental setups. Secondly, by developing and 

applying advanced machine learning techniques, we made technical innovations in almost every 

component of the pipeline to achieve accurate analysis with low SNR. These efforts include the 

development of new methods for baseline fluorescence estimation, noise level estimation, peak 

detection, integration of prior knowledge, multiscale usage of spatial compactness, split of super-

events, and removal of technical artifacts (see STAR Methods). Thirdly, AQuA2 has optimized 

efficiency by incorporating an innovative machine learning algorithm called BILCO 24. This 

algorithm was specifically designed to address the most computationally intensive module, which 

accounts for approximately 70% processing time of the whole pipeline and the bottleneck for 

memory consumption in the original version of AQuA. As a result, there is an average tenfold 

improvement in both runtime and memory usage in this module. It leads to a more than two-fold 

acceleration of the entire pipeline compared to AQuA without BILCO, and its efficient memory 

usage enables the application on ten-fold larger data. 

Identifying consensus functional units and interaction analysis 

In response to the limitations of event-based methodologies, which treat individual events as 

isolated outcomes and are ignorant to the significance of regions with repetitive signals, we 

introduced the concept of Consensus Functional Units (CFU) and developed the CFU module as 

an integral component of AQuA2. We hypothesized that if one spatial region generates repeated 

signal events, it is more likely to be a functional unit, and we refer to such a region as a CFU. This 

concept offers greater flexibility compared to ROIs, allowing each occurrence of signals to have 

different sizes, shapes, and propagation patterns while maintaining consistent spatial foundations. 

On different data types or with different scopes of recordings, CFUs could represent diverse 

entities, ranging from cellular compartments, individual cells, and cell clusters to tissues and even 

entire organs. 

Based on this assumption, we have employed a hierarchical clustering algorithm to identify CFUs 

by grouping signals with similar spatial patterns, as shown in Figure 1D. The CFU behind each 

group can be represented by their average spatial pattern, while the onset time of these signals 

creates a corresponding event occurrence sequence. This sequence can facilitate the exploration 

of the interrelationships between CFUs. Compared to the classic ROI-based methods that rely on 

NMF 27 or similar approaches, our CFU identification offers several distinct advantages: Firstly, it 

inherits the flexibility of the event detection pipeline. Even when signals from the same source 

exhibit varying sizes, subtle location changes or propagations, our approach can adeptly capture 

the underlying functional unit. In contrast, ROI-based methods may segment the regions into 

several arbitrary parts under such conditions (see Figure S4). Secondly, unlike the notoriously 

hard problem of determining the number of components in ROI-based methods, the CFU module 

prompts users to set a parameter for the similarity of spatial signal patterns, fostering a more 
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intuitive approach to clustering signals together. Thirdly, CFU identification does not have any 

bias toward the size of detected components. In contrast, NMF-based methods tend to favor 

larger components to minimize errors and ignore small functional units. 

We have also developed a novel statistical approach for analyzing interactions among identified 

CFUs. The approach takes sequences of event occurrences in CFUs as its input and assesses 

the significance of dependency between any pair of two CFUs (see STAR Methods). Compared 

with traditional methods using correlation, it effectively mitigates the confounding influence of 

signal shape and duration, enabling precise measurement of interactions among CFUs displaying 

entirely different signal forms. The interaction analysis, sometimes also called network analysis, 

is particularly useful when multiple measures are available. For instance, in dual-color neuron and 

glia data, this approach can discover the associations between neuronal cells and glia, while 

traditional correlation analysis would fail due to the mismatch of the temporal characteristics of 

(calcium measurements of) neuronal spikes and glial calcium signals (see Figure 4D). 

Furthermore, given that stimuli/behavior can be structured as occurrence sequences, this 

approach can directly investigate the interactions between CFUs and stimuli/behavior. For 

instance, when recording data from a swimming zebrafish, it can aid in identifying swim-related 

brain regions (see Figure 6D). Finally, the computed dependency can serve as a measure to 

cluster spatially separated CFUs into CFU groups, potentially unveiling underlying signaling 

pathways within the group. For example, when certain brain cells are consistently activated in 

close temporal proximity, our method can classify these cells together and reveal potential brain 

circuits through analysis of activation sequences (see Figure S7D).  

AQuA2 is implemented as an open-source MATLAB package, a Fiji 

Plugin, and a cloud-based web service 

We provide AQuA2 software across three distinct environments tailored to various demands: a 

MATLAB-based package, a Fiji 28 plugin written in Java, and a cloud-based online service, 

AQuA2-Cloud. The MATLAB and Fiji versions allow users to run AQuA2 locally. The MATLAB 

version makes it easier for users to extend AQuA2, while the Fiji version integrates well into the 

ImageJ ecosystem. The AQuA2-Cloud enables the offloading of computational tasks to a remote 

server, which is useful for users without sufficient local computational power for analyzing larger 

data. This empowers users with lightweight workstations to handle large-scale data through online 

analysis remotely. All these versions implement the AQuA2 pipeline, offer comprehensive 

analytical capabilities, provide step-by-step visualization of results, and share a consistent 

graphical user interface (GUI).  

AQuA2’s GUI achieves a notable advancement in user-friendliness compared to its predecessor. 

We’ve incorporated intuitive functions for imaging analysis that were previously unavailable in 

AQuA. For instance, AQuA2’s GUI now offers convenient access to capabilities such as image 

registration, photobleaching correction, and visualization of average curves for manually drawn 

regions. These additions address the preprocessing needs and result examination that were 

absent in the AQuA GUI. Moreover, we’ve enhanced the user-controlled parameters to ensure 

ease of use and alignment with biological principles. Complex parameters and technical 

intricacies have been abstracted from the GUI, leading to a smoother user experience overall. 
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Figure 2. AQuA2 improves the accuracy of AQuA. (A) Performance comparison between AQuA and AQuA2 on a two-
photon ex vivo astrocyte calcium recording from a mouse slice (recorded at 1.1 Hz), which was used as a test example 
in the AQuA paper. Similar detection results were obtained, suggesting AQuA2 can be considered a viable alternative 
for applications currently employing AQuA. (B) Performance comparison on a synthetic dataset comprising large and 
small signals under a significantly low SNR. Among the 110 ground-truth signals, AQuA2 detects 102 and AQuA detects 
105. AQuA2 generates 0 false positives, while AQuA produces 734 false positives. White triangles label the ground-
truth events in the present time points. Erroneous detections are marked by white dashed circles. (C) Performance 
comparison on a one-photon astrocyte calcium recording from the mouse spinal cord (recorded at 45 Hz). During 
detection, a mask is applied to mitigate the influence of blood vessels.  In the AQuA and AQuA2 detection results, each 
colored region presents one detected signal event. The big events were falsely split by AQuA into numerous fragments. 

See also supplementary videos. 

AQuA2 improves the accuracy and efficiency of AQuA 

To verify the improvements in accuracy, we compare the detection outcomes of AQuA and 

AQuA2 on three datasets. We first take an ex vivo calcium recording, which was used in the AQuA 

paper 14, as an example (Figure 2A). The results demonstrate that both AQuA2 and AQuA excel 

in detecting the strong signal near the soma of the astrocyte while exhibiting similar performance 

in other regions. This suggests that AQuA2 can be considered a viable alternative for applications 

currently employing AQuA. We then compare the results on a synthetic dataset with known 

ground truth (Figure 2B) and a real dataset of astrocyte calcium signals in the spinal cord (Figure 

2C). Figure 2B and Figure 2C suggest that AQuA’s performance is suboptimal under low SNR or 

in the presence of large signals. Notably, in the data presented in Figure 2B, we generated a total 

of 110 real signals. Its low SNR would render signals challenging to detect correctly. However, 

AQuA detected over 800 events in this scenario, 88% are false positives or negatives, while the 

error rate for AQuA2 is 7%.  Comparisons based on the three datasets suggest that AQuA tends 
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to produce a considerable number of false positives or inaccurately split real signals into trivial 

fragments while also omitting some significant signals. In contrast, empowered by the new top-

down framework, AQuA2 demonstrates robust and accurate performance that aligns more closely 

with human perception even when distinct signals are connected either spatially or temporally. 

To demonstrate the efficiency of AQuA2, we compare the execution times across various datasets 

as illustrated in Table 1. It is worth noting that our comparison focuses solely on the runtime of 

the event detection pipeline since it occupies over 90% of the overall computation and the runtime 

of feature extraction may differ based on the demand of users. As illustrated, AQuA2 is typically 

around twice as efficient as its predecessor. Notably, when signals in the dataset exhibit more 

complex patterns, AQuA2 demonstrates greater efficiency up to 40-fold. This improvement in 

efficiency is attributed to two key factors. Firstly, we have adopted the innovative fast algorithm 

BILCO for the alignment of propagating signals. Secondly, the improved accuracy of AQuA2 

reduces the number of false positives, thereby decreasing unnecessary computational time. 

Table 1 Running time comparison between AQuA2 and AQuA 

Data name 
Data size (pixels x 

pixels x frames) 
AQuA2 AQuA AQuA2/AQuA 

ExVivoSuppRaw (Figure 2A) 502 x 502 x 281 114.23s 355.14s 32.2% 
Synthetic data (Figure 2B) 512 x 512 x 281 77.80s 316.68s 24.6% 
Mouse astrocyte calcium (Figure 2C) 422 x 956 x 350 608.84s 3577.43s 17.0% 
Simulated data (case 1)a 512 x 512 x 250 125.60s 198.47s 63.3% 
Simulated data (case 2)a 512 x 512 x 250 125.17s 203.89s 61.4% 
Simulated data (case 3)a 512 x 512 x 250 149.61s 275.07s 54.4% 
GlusnfrSuppRaw 14 199 x 108 x 266 7.32s 19.98s 36.6% 
Mouse GRAB-ATP (Figure 6C) 256 x256 x 3372 105.32s 206.35s 51.0% 
zebrafish myelin sheath (Figure 6B) 2028 x 248 x 300 84.63s 3200.10s 2.6% 

a Simulated data used in next section 

AQuA2 outperforms peer methods on simulated data 

To further substantiate the accuracy of AQuA2, we carried out a comparative assessment of 

AQuA2’s performance against AQuA and three other peer tools: suite2p 12, CaImAn 11, and 

Begonia 16. CaImAn and suite2p are widely used ROI-based methods, while AQuA, Begonia, and 

AQuA2 are event-based methods. We evaluated these methods using synthetic data under three 

scenarios frequently observed in real signals:  size variability, location variability, and propagation. 

The performance of each method was evaluated by comparing the detection results with known 

ground truths. All the methods were fine-tuned to ensure optimal performance. More details about 

simulation are given in STAR Methods. 

Across various scenarios, aside from the specific characteristic we aim to compare, the synthetic 

data was generated without variation in other features. For example, in the scenario with size 

variability, there is no location variation and signal propagation. Within each scenario, we initially 

assessed performance under 10dB SNR and with different degrees of variation - termed 'size-

change odds', 'location-change odds', and 'propagation frame', respectively. Then, we evaluate 

the performance with a moderate variation degree under different SNRs to ensure a 

comprehensive evaluation. To evaluate the performance, we used two distinct measures: (1) the 

F1 score, which represents both precision and recall of detections; and (2) the weighted 

intersection over union (wIoU), which measures the quality of each detection at the pixel level. 

The details about the two measures are introduced in STAR Methods. 
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Figure 3. AQuA2 outperforms peer methods (suite2p, CaImAn, AQuA, and Begonia) on simulated data.  (A)-(C) 
Performance (F1 score and wIoU measure, see STAR Methods) comparison between AQuA2 and peer methods under 
scenarios of unfixed size, unfixed location, and propagation.  Top row: Illustration of signal variations.  Middle row: 
Performance comparison under different levels of signal variation under 10dB. Bottom row: Performance comparison 
under different SNRs with a moderate signal variation. For all results, we used mean ± 2 x standard deviation, derived 

from 12 independent replications of evaluation.  See also Figure S4. 

As illustrated in Figure 3, the three event-based methods, AQuA2, AQuA, and Begonia, 

consistently demonstrate superior performance compared to the ROI-based methods CaImAn 

and suite2p. This is because ROI-based techniques were initially designed for handling spatially 

stationary data, making them ill-suited for signals characterized by varying footprints or motion. 

Among the event-based methods, AQuA2 performs best, consistently achieving F1 scores and 

wIoU higher than 90% across all experiments and conditions. This highlights that AQuA2 not only 

exhibits high precision and recall, but also ensures that each detection closely matches its 

corresponding ground truth, making it an excellent choice for analyzing non-spatially-stationary 

activities. 

While AQuA and Begonia are better than ROI-based methods, they face practical challenges in 

real-world applications. The discussion on AQuA has already been provided in the previous 

section and will not be repeated here. As for Begonia, Figure S5 presents a comparison between 

it and AQuA2, revealing its significant shortcomings. Begonia is prone to overmerging and 

artifacts, especially in scenarios with dense signals and low SNR (Figure S5A-B). This is primarily 

due to its over-simplified assumptions and sub-par modeling, such as splitting connected signals 

and distinguishing true signals from noises. It is worth noting that we compared functions that 

were commonly available in peer methods. AQuA2 provides many additional functions that 
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existing peer methods do not offer. For instance, Begonia lacks comprehensive quantification of 

events, such as the signal propagation analysis (Figure S5C). Automated analysis of functional 

units and interaction analysis are also lacking in peer methods (Figure S5D). 

 

Figure 4. AQuA2 identifies the signal pattern changes in zebrafish astroglia and neurons under the addition of caffeine 
and reveals the correlation between these two cell types.  (A) The experiment setting and average projection of the 
data. Zebrafish were engaged in fictive swimming in a virtual-reality (VR) environment with realistic visual feedback 
during swimming, recorded by a light sheet microscope. Experiments of two distinct states were conducted: normal 
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state and under the influence of caffeine (drug state). Astroglia calcium (left) and neuronal calcium (right) were 
expressed using Tg(ELAVL3: GCaMP7f; GFAP: jRGECO1B). (B) Visualization of dF and AQuA2 detection results 
under different states. Each colored region represents one detected event. Two distinct signal patterns are found in the 
drug state.   (C) Left: Detected CFUs across different planes under two states. Each colored region represents one 
extracted CFU. Right: Comparison of number and size among identified CFUs in the two states. (D) The most correlated 
pair of astroglial CFU and neuronal CFU on one plane, with their curves drawn on the right. Zoom-in traces of three 
time windows (yellow, purple, green) are also given. For the curves of drug state, neuronal spikes (gray) are additionally 
extracted (by suppressing small fluctuations on dF) and compared with the average dF of astroglia (red).  (E) 
Propagation pattern of the astroglial calcium signal on different planes. The blue color shows the earliest rising time, 
while the red color shows the latest rising time.  

AQuA2 identifies signal pattern changes in zebrafish astroglia and 

neurons under the addition of caffeine 

Caffeine, functioning as a central nervous system (CNS) stimulant and an adenosine receptor 

blocker/antagonist, affects the functions of both neurons and glial cells 29–31 and regulates the 

brain's internal environment to a certain extent 29,32. Recent advancements in imaging techniques 

allow simultaneous observation of glial and neuronal signals, offering an opportunity to explore 

caffeine's impact on the activity of these cell types. However, due to the intricate characteristics 

of glial cell excitation and the distinct dynamics of neuronal and glial signals, there hasn't been a 

universal method for analysis until AQuA2 filled the gap. 

Here, we applied AQuA2 to quantify activities and identify functional units of glia and neurons in 

zebrafish whole-brain. The fish expressed green and red calcium sensors in neurons and radial 

astrocytes, respectively (Tg(ELAVL3: GCaMP7f; GFAP: jRGECO1B)). Zebrafish were engaged 

in fictive swimming in a virtual-reality (VR) environment with realistic visual feedback during 

swimming 33. It underwent two distinct states: normal and drug (where caffeine was added), as 

shown in Figure 4A. No additional stimulus was introduced. 

In Figure 4B, the dF and detection results display representative signals in two states. Notably, in 

the drug state, there are two distinct signal patterns. Pattern 1 mirrors the normal state, exhibiting 

solely neuronal signals. This pattern may reflect signal activation due to swimming behavior. In 

contrast, pattern 2 in the drug state reveals astrocytic calcium signals, often accompanied by a 

larger neuronal signal. This distinct brain activity pattern indicates a change in brain-wide 

dynamics resulting from the addition of caffeine.  

To conduct a comparative analysis between the two states, we utilized AQuA2 to illustrate the 

CFUs underlying the signal events across different depths, as illustrated in Figure 4C. The CFUs 

identified within the hindbrain region are believed to be linked to the neuronal circuits involved in 

zebrafish swimming, as detailed in Chen et al. 34. However, after caffeine addition, a distinct CFU 

map emerged. While similar CFUs to the normal state were identified, prominent astroglial CFUs 

and large neuronal CFUs were observed. These findings uncover potential signaling pattern 

sources activated during brain modulation that may mediate heightened alertness. 

AQuA2 reveals the correlation between neurons and astroglia in 

zebrafish following the addition of caffeine 

Given the pivotal roles glial cells play in supporting, nourishing, and regulating neuronal functions, 

there has been a growing fascination with the intricate interactions between glial cells and neurons 
35–37. Emerging evidence suggests that glial cells substantially collaborate with neurons in 

regulating animal behaviors 33. In the previous section, under the influence of caffeine, there were 
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alterations observed in the signaling patterns of both neurons and astroglial cells. Analyzing the 

functional units of these two cell types can provide a glimpse into the relationship between these 

two cell types.  

To explore the interactions between astroglial and neuronal signals, we utilized AQuA2 to assess 

the dependencies between astroglial CFUs and neuronal CFUs in the drug-induced state. In 

Figure 4D, the most notable correlation pair between astroglial CFU and neuronal CFU is depicted 

alongside their average curves in two states. The average curve of astroglial CFU remains almost 

constant in the normal state. However, during caffeine treatment, we observed heightened 

neuronal activity, increased astroglial activity, and an augmented correlation between neuronal 

and astroglial signals. This correlation is further highlighted when comparing the extracted spikes 

with the astroglial dF curve, potentially driven by NE after caffeine addition. 

To investigate the activation pattern of the astroglial signal, we employed AQuA2 to visualize the 

propagation patterns of a single astroglial signal across multiple planes, showcased in Figure 4E. 

Our analysis revealed an earlier activation of signals in specific brain areas like the caudal and 

lateral medulla compared to those in the more medial regions, which experienced a delayed rising 

time. These findings shed light on the sources of astroglial calcium activity during caffeine 

exposure, offering potential insights into the pathways facilitating collaboration between astroglia 

and neurons. 

 

Figure 5. AQuA2 unveils differences in signal propagation of sensory and motor-evoked astrocyte calcium signals in 
the mouse spinal cord. (A) Experimental setting: Translaminar imaging 8 was performed in the lumbar dorsal horn of 
an awake behaving Tg(GFAP:GCaMP6f) mouse on a spherical treadmill. A pressure stimulus was applied to the 
mouse's proximal tail. (B) Temporal relationship between the applied sensory stimulus (tail pinch; black), mouse motor 
behavior (sideward and forward foot movements; purple and pink, respectively), and the average calcium activity across 
the field of view (blue).   (C) Spatial (left) and temporal (right) activity propagation maps of the three signals indicated 
in B. The color spectrum depicts earlier activation in blue and later rising times in red. (D) Detected localized functional 
units (orange and green; top) and their corresponding calcium transients (bottom). 
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AQuA2 unveils sensorimotor signal propagation patterns in the mouse 

spinal cord 

The spinal cord fulfills critical functions in transmitting sensory information, orchestrating 

movement, and triggering reflex actions 38–40. Within the spinal cord, individual laminae contain 

unique neuronal populations, exhibit distinct connectivity patterns, and serve specialized 

functional roles 41,42. A recently introduced translaminar imaging approach offers the capability for 

rapid measurements across spinal laminae, providing an opportunity to explore and comprehend 

the interactions and dynamics inherent to these distinct laminae 8. Yet, the absence of a mature 

analysis tool for this novel imaging technique requires researchers to manually partition the field 

of view (FOV) into equally sized ROIs for analysis. Given that AQuA2 is an event-based method 

with versatile applicability, it offers promising and fresh insight into the analysis of such novel data. 

We employed AQuA2 to analyze translaminar astrocyte calcium activity in the spinal dorsal horn 

of Tg(GFAP:GCaMP6f) mice. The experimental setup, depicted in Figure 5A, involved securing 

the mouse on a spherical treadmill and optically recording GCaMP6f activity through a microprism 

implanted near the lateral edge of the spinal gray matter 8. During the recordings, a pressure 

stimulus was applied to the mouse’s proximal tail. The mouse's motor behavior was tracked 

concomitantly (STAR Methods). As illustrated in Figure 5A-C, the pinch elicited noticeable calcium 

activity within the dorsal regions of the field of view, revealing this spinal region's response to the 

sensory stimulus. Within the same recording, AQuA2 also detected two motor behavior-evoked 

calcium signals that were missed by the ROI analysis mentioned above. 

To determine the distinguishing features between these sensory and motor-evoked signals, we 

utilized AQuA2 to visualize their respective signal propagation patterns. As depicted in Figure 5C, 

the sensory-evoked signal displayed a propagation pattern starting from the dorsal side, while the 

motor-evoked signals emanated from the ventral side. The findings suggest that peripheral 

sensory stimuli and motor actions engage neural circuits in distinct spinal laminae, that astrocytes’ 

activity patterns reflect this neural activity, and that the astrocyte excitation can propagate across 

spinal laminae on a seconds timescale in behaving mice. This discovery has implications for how 

astrocytes might regulate spinal neural circuit activity or plasticity and underscores AQuA2’s 

ability to uncover new biological phenomena leading to testable hypotheses about cell or circuit 

function. 

Additionally, beyond the translaminar signals, Figure 5D illustrates the detection of local signals 

within spinal laminae of the same mouse during a different trial. These signals, often missed by 

other methods, imply the existence of localized functional units, akin to those observed in the 

brain. 

AQuA2 quantifies signals across biosensors, cell types, organs, animal 

models, and imaging modalities 

The recent advancements in indicators and imaging techniques have facilitated the recording of 

diverse neurotransmitter and neuromodulator activities including ATP 6, glutamate 43, GABA 44, 

serotonin 45, NE 5, and others, significantly aiding research into brain mechanisms. Despite this 

progress, signals of numerous molecular sensors lack dedicated analysis methods. AQuA2 will 

serve as a universally applicable tool for filling this gap. 
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Figure 6. AQuA2 quantifies signals across biosensors, cell types, organs, animal models, and imaging modalities.  (A) 
Application of AQuA2 to quantifying the signals from mouse spinal microglia (expressed by Tg(CX3CR1:GCaMP5g)) 
imaging data. The comparison between dF and detection for both circular signals and the spatially complex signal 
(shown in a zoomed-in view of the selected orange box) is provided. On the right, the quantified propagation pattern of 
the spatially complex signal is given, with blue denoting early rising time and red denoting late rising time. (B) Application 
of AQuA2 for accurate quantification of distinct oligodendrocyte calcium dynamics within the CNS myelin sheath of 
zebrafish. The calcium was expressed through Tg(mbp:memGCaMP7s). The average curve of the region of interest 
(labeled by yellow) is depicted in the bottom-left. In the bottom middle, the propagation pattern of events is showcased, 
with earlier activation represented in blue and later rising times in red. On the right, a comparison between dF and 
AQuA2 results is provided, with each colored region representing a distinct detection. (C) Application of AQuA2 for the 
quantification of extracellular ATP dynamics, captured by the GRAB-ATP sensor 6 and two-photon microscope, on the 
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surface of astrocytes in acute cortical slices. Example representative events (marked by white triangles) are presented 
with their corresponding average curves (event duration is indicated by the event color). Statistical analysis of event 
temporal features (Rising duration and decay duration) is provided on the bottom-right. (D) Application of AQuA2 for 
identifying the swim-related regions on a light sheet norepinephrine (NE)-astroglia dual-color recording of zebrafish. 
NE was expressed by Tg(ELAVL3: GRABNE) and astroglial calcium was expressed by Tg(GFAP: jRGECO). On the 
left, each colored region represents a swim-related CFU. On the right, swim strength (blue) and average curves of two 
channels (red and yellow) are depicted. Three zoom-in figures are provided for three signals.  See STAR Methods for 

experimental details. 

To validate the ability of AQuA2 to quantify and analyze signals of various types, we conducted 

tests on datasets encompassing a variety of animals, cell types, molecular sensors, organs, and 

imaging modalities. Due to space constraints, only four applications are depicted in Figure 6.  

These datasets include microglia calcium recordings in the spinal cord of a mouse, 

oligodendrocyte calcium imaging in zebrafish, recordings of ATP signals in the mouse visual 

cortex, and dual-color recordings of NE signals and glial calcium in the whole brain of zebrafish. 

AQuA2 can detect microglial calcium activity, as shown in Figure 6A. These transients were 

recorded in the superficial dorsal horn of behaving Tg(CX3CR1:GCaMP5g-tdTomato) mice using 

a wearable macroscope 46. Both somatic signals and signals with irregular shapes and complex 

spatiotemporal features were identified. AQuA2, therefore, can detect signals with distinct 

spatiotemporal characteristics in the same dataset, including localized and propagating cellular 

activity. 

AQuA2 was also employed to detect and visualize temporally dense oligodendrocyte calcium 

activities within CNS myelin sheaths. The calcium sensor was expressed around the membrane 

using the zebrafish line Tg(mbp:memGCaMP7s). As illustrated in Figure 6B, the calcium 

transients distinctly exhibit signal propagation along the myelin sheath and form interconnected 

patterns in the temporal dimension. The propagation and interconnectedness pose a challenge 

for other analysis tools. However, by leveraging AQuA2, each transient was effectively isolated 

and quantified, accompanied by a clear visualization of its propagation pattern. This successful 

application underscores the capability of AQuA2 to handle intricate and complex signals. 

We also tested how AQuA2 detects biological signals other than calcium. Using AQuA2, we 

quantified extracellular ATP dynamics captured by the GRAB-ATP 6 sensor on the surface of 

astrocytes in acute cortical slices. As depicted in Figure 6C, ATP signals exhibit heterogeneous 

temporal characteristics, ranging from long-lasting (hundreds of seconds) to extremely brief (less 

than ten seconds). Despite this heterogeneity, AQuA2 successfully detects them using the same 

parameter settings, showcasing its ability to detect signals with diverse temporal characteristics. 

The relationship between NE signals and astroglial calcium signals within the brain is also an area 

of investigation for biological researchers. Employing AQuA2 on a dual-color dataset in zebrafish, 

which captures NE and astroglial calcium signals in separate channels (Tg(ELAVL3: GRABNE; 

GFAP: jRGECO)) and records zebrafish swim commands via electrophysiology, we identified and 

visualized swim-related CFUs, as depicted in Figure 6D. Upon analyzing the curves across 

different channels, the results demonstrate a notable occurrence: following zebrafish swim spikes, 

NE and astroglial signals manifested in pairs. This observation is consistent with behavior-

generating circuits engaging both NE signaling and astroglial calcium activity.  

In addition to the mentioned applications, further use cases are shown in Figures S6 and S7, 

encompassing zebrafish acetylcholine signals, zebrafish dopamine signals, and zebrafish dual-

color data featuring ATP and neuronal calcium signals, among others. Collectively, AQuA2 can 
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be effectively utilized to quantify and analyze signals across a variety of molecular sensors, cell 

types, organs, animal models, and imaging modalities, consistently providing highly informative 

results.  

DISCUSSION 

While advanced genetic fluorescent probes and imaging techniques have unleashed the potential 

for neurotransmitter, neuromodulator, and other molecular-level studies, the corresponding 

analysis tools have not progressed at the same pace. This situation necessitates researchers 

devising their own analysis pipelines or attempting to adapt mismatched analysis tools. In 

response to this need, we developed AQuA2, a completely new version of AQuA with improved 

accuracy, efficiency, versatility, and many new functions. 

Compared to the existing approaches, AQuA2 can quantify and analyze a more diverse range of 

signals and low SNR scenarios, a capability that AQuA lacks. For instance, as illustrated in Figure 

2B and Figure 2C, the limitations of AQuA's framework become evident when the target signal 

occupies a larger spatial area, leading to the frequent misidentification of broad signals as multiple 

unclear small events - an issue mentioned by Rupprecht et al. 47. Additionally, AQuA also 

struggles to effectively detect signals with longer durations, while AQuA2 successfully identifies 

signals >100s (Figure 6C). AQuA may erroneously identify any short temporal fluctuations as 

events, even when the duration of the longer target signal is presumed, particularly in low SNR 

scenarios (Figure 2C).  AQuA2 addresses these issues by embracing a novel framework, 

incorporating prior knowledge in the early stage, and making a set of technical innovations. As a 

result, AQuA2 can perform flexible detection across diverse biosensors, cell types, organs, animal 

models, and imaging modalities, verified by our real applications, as shown in Figure 6 and Figure 

S7. 

The development of the CFU analysis effectively bridges the gap between ROI-based and event-

based methods. It serves as a more flexible version of ROI, tolerating the variation between 

signals activated from the same source. This flexibility is crucial because, in many datasets, the 

territories of signals emanating from the same source are often not fixed. That will violate the 

assumption of ROI-based methods, while event-based methods lack the ability to analyze the 

region behind events. The CFU module fills this gap, enabling the analysis of functional units 

behind events with variation. To probe the functional relationship between CFUs, a new statistical 

approach was developed, taking event occurrence sequences as input. This allows AQuA2 to 

reveal interrelationships between functional units with different waveforms, such as neuronal CFU 

with spike signals and astroglial CFU with bell-shaped signals (Figure 4D). Interactions between 

CFU and stimulus/behavior can also be analyzed (Figure 6D), and the estimated dependency 

could serve as a distance measure to group CFUs into potential circuits (Figure S7D). 

Propagation analysis, a key feature of AQuA, is seamlessly integrated and optimized in AQuA2. 

It employs joint alignment techniques to match all time points among pixel curves and the 

reference curve. In contrast to the correlation-based approach, which relies on matching the entire 

curve and is consequently vulnerable to waveform variations, leading to suboptimal results, joint 

alignment analysis offers greater flexibility and the ability to provide rich, precise information, as 

shown in Figure S2A. However, the long computation time and large memory usage have been 

obstacles in using AQuA for many users. This challenge is particularly pronounced when dealing 

with spatially large events, where an increased number of pixels escalates the problem's scale. 
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For instance, in the past, propagation analysis like Figure 5C would lead to memory overflow on 

our workstation as the event occupies the whole field of view.  The adoption of our new algorithm, 

BILCO 24, has solved this problem.  Compared with the propagation analysis in AQuA, it now 

completes the analysis in only 1/10th of the time and 1/10th of memory usage, enabling AQuA2 

to efficiently examine the propagation patterns of spatially large signals. 

In addition to the improvements discussed above, AQuA2 enhances accessibility and usability. 

Three versions of the same pipeline were implemented for different users, each offering unique 

advantages. For instance, the MATLAB version allows direct code modification and debugging, 

enabling researchers to adjust the analysis for their data. The Fiji plugin version supports 

integration with other Fiji plugins and usage across different systems (Windows, Linux, and Mac) 

without requiring environment installation. AQuA2-Cloud offers online analysis, offloading 

computations to a remote server. Furthermore, AQuA2 adopts clear and user-friendly parameters, 

eliminating previously confusing settings in AQuA and ensuring ease of use without significant 

usability barriers. 

We have demonstrated numerous applications of AQuA2 across various challenges, 

encompassing the quantification of diverse signals, visualization of signal propagation patterns, 

and investigation of interactions among different signal types in dual-color data. However, the 

capabilities of AQuA2 extend beyond these tasks. For instance, with the advancing technology, 

3D fluorescent data will likely offer more insights and become the next trend. Although our paper 

primarily presents analyses on 2D images, AQuA2 has also been validated on 3D inputs, as 

depicted in Figure S3. These applications highlight AQuA2 as versatile software for 

comprehensively analyzing diverse fluorescent imaging data, facilitating a broad spectrum of 

scientific inquiries.  

Limitations of the study 

While we anticipate widespread usage of AQuA2, it is important to acknowledge its limitations. 

The detection pipeline predominantly relies on discerning the temporal patterns of signals, 

demanding a stable fluorescence baseline. Although the pipeline can accommodate gradual 

changes in the baseline, significant jitter or distortion in the image may inevitably lead to false 

positives. This is commonly observed when the animal suddenly moves but can be mitigated 

using image registration techniques. For stereotypical neuronal nuclear or somatic calcium 

signals, AQuA2's performance may not exceed that of ROI-based methods, as ROI assumptions 

align well with neuronal dynamics. But for neuropil analysis, AQuA2 may perform better, as the 

assumptions of ROI-based methods may not hold, given the possible compartmental signals and 

the near-impossibility of achieving perfect stabilization at the axon/dendrite-scale tissue level. 

AQuA2 assumes that signals are positive deviations from the baseline. Theoretically, signals with 

negative deviation from the baseline can also be modeled with AQuA2 by inverting them. However, 

further studies are warranted if a biosensor reports positive and negative signals simultaneously.  
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STAR METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data   

Raw data from Figures 2, 3, 5, 6, and S5 This paper http://dx.doi.org/10.1763
2/9f5myhx6jy.1 

Experimental Models: Organisms/Strains   

Zebrafish:Tg(mbp:memGCaMP7s; 
cryaa:mCherry) 

This paper N/A 

Mouse:Tg GFAP-Cre crossed with Ai95(RCL-
GCaMP6f)-D 

48,49 (RRID:IMSR_JAX:01288
6) 
(RRID:IMSR_JAX:02410
5) 

Mouse:Tg Cx3cr1-Cre/ERT2 crossed with 
Polr2a(CAG-GCaMP5g-tdTomato) 

50–52 (RRID:IMSR_EM:06350) 
(RRID:IMSR_JAX:02447
7) 

Oligonucleotides   

Fyn-myr-fwd-/5Phos/CATGGGCTGTGTGCAAT 

GTAAGGATAAAGAAGCAACAAAACTGACGG

G 

This paper N/A 

Fyn-myr-rev-/5Phos/CATGCCCGTCAGTTTTG 
TTGCTTCTTTATCCTTACATTGCACACAGCC 

This paper N/A 

Recombinant DNA   

P5E-mbpa 53 N/A 
pME-GCaMP7s 54 N/A 
pME-memGCaMP7s This paper N/A 
P3E-polyA; from tol2kit 55 http://tol2kit.genetics. 

utah.edu/index.php 
/Main_Page 

pDestTol2pA2-cryaa:mCherry 56 Addgene #64023 
Tg(mbp:memGCaMP7s; cryaa:mCherry) This paper N/A 

Software and algorithms   

MATLAB MathWorks https://www.mat 
hworks.com/produ 
cts/matlab.html 

AQuA2 (MATLAB version) This paper https://github.com/yu-lab-
vt/AQuA2 

AQuA2 (Fiji version) This paper https://github.com/yu-lab-
vt/AQuA2-Fiji 

AQuA2 (Cloud version) This paper https://yulab.vt.domains/
AQuA2 

AQuA 14 https://github.com/yu-lab-
vt/AQuA 

Begonia 16 https://github.com/GliaLa
b/Begonia 
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CaImAn 11 https://github.com/flatiron
institute/CaImAn 

suite2p 12 https://github.com/Mouse
Land/suite2p 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Guoqiang Yu (yug@tsinghua.edu.cn). 

Materials availability 

Zebrafish lines generated in this study will be available upon request from Misha Ahrens 

(ahrensm@janelia.hhmi.org) or David Lyons (David.Lyons@ed.ac.uk). 

Data and code availability 

• The raw data reported in this paper are either shared through Mendeley with the dataset 

identifier http://dx.doi.org/10.17632/9f5myhx6jy.1 or will be shared by the lead contact 

upon request due to the size limit of Mendeley. 

• All original code has been deposited at https://github.com/yu-lab-vt/AQuA2.     

• Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals 

Zebrafish (Ahrens lab) 

Experiments were conducted according to the guidelines of the National Institutes of Health and 

were approved by the Standing Committee on the Use of Animals in Research at Harvard 

University. Animals were handled according to IACUC protocols 22-0216 (Ahrens lab).  We did 

not determine the sex of the fish we used since it is indeterminate at this age. Fish were raised in 

shallow Petri dishes and fed ad libitum with paramecia after 4 dpf. Fish were raised on a 14 h:10 

h light:dark cycle at around 27°C. All experiments were done during daylight hours (4–14 h after 

lights on). All protocols and procedures were approved by the Janelia Institutional Animal Care 

and Use Committee. 

Zebrafish (Lyons lab) 

Adult zebrafish were housed by the bioresearch and veterinary service at the Queens Medical 

Research Institute at the University of Edinburgh. Studies were carried out with the approval of 

the UK home office and according to its regulations (project license PP5258250). Adult animals 

were maintained at a 14-h day and 10-h night cycle. Embryos were housed at 28.5°C in 10 mM 

HEPES buffered E3 medium. Zebrafish embryos were imaged at 3 dpf, before the onset of sexual 

differentiation. In this study the transgenic (Tg) mbp:memGCaMP7s was used. 

Mouse (Nimmerjahn lab) 
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All mouse procedures followed the National Institutes of Health (NIH) guidelines and were 

approved by the Institutional Animal Care and Use Committee (IACUC) at the Salk Institute under 

protocol number 13-00022. Mouse strains used in this study included GFAP-Cre (RRID: 

IMSR_JAX:012886), Ai95(RCL-GCaMP6f)-D (RRID: IMSR_JAX:024105), CX3CR1-Cre/ERT2 

(RRID: IMSR_EM:06350), and Polr2a(CAG-GCaMP5g-tdTomato) (RRID: IMSR_JAX:024477) 

mice. All mice were on a C57BL/6 J background. Mice were group-housed, provided with bedding 

and nesting material, maintained on a 12-h light-dark cycle in a temperature (22±1°C) and 

humidity-controlled (45–65%) environment, and provided with food and water ad libitum. The 

experiments involved 6- to 12-week-old heterozygous male and female GFAP-GCaMP6f mice 

(Figures 2C, 5) and 15- to 16-week-old male and female CX3CR1-GCaMP5g-tdTomato mice 

(Figure 6A). Cre-mediated DNA recombination in Cre/ERT2 mice was induced following 

established protocols. Briefly, tamoxifen (T5648, Sigma-Aldrich) was diluted in corn oil (C8267, 

Sigma-Aldrich) and injected intraperitoneally at 100 mg per kg (body weight) once a day for five 

consecutive days, followed by imaging ~3–5 weeks after the final injection. Sex as a biological 

variable was not considered in the research design and analyses, as the study’s primary goal was 

to demonstrate the analysis approach’s technical capabilities. Experimental mice used in 

individual experiments typically originated from different litters. Mice had marks for unique 

identification. No criteria were applied to allocate mice to experimental groups. 

Mouse (Poskanzer lab) 

All experiments were done in Mus musculus with a Swiss or C57BL/6J genetic background. The 

mouse protocols were approved by the University of California, San Francisco Institutional Animal 

Care and Use Committee (IACUC). Mice were housed on a 12:12 light-dark cycle and were 

provided food and water ad libitum. Approximately equal numbers of male and female mice were 

used in experiments. 

Transgenesis 

Generation of the Tg(mbp:memGCaMP7s; cryaa:mCherry) transgenic line 

To generate a Tg(mbp:memGCaMP7s; cryaa:mCherry) transgenesis construct, we first created 

a tol2kit-compatible middle-entry vector containing the coding sequence for the membrane-

tethered memGCaMP7s, pME-memGCaMP7s. To do this, we digested our previously generated 

plasmid pME-jGCaMP7s 54 (containing an untethered, cytoplasmic GCaMP7s coding sequence) 

at the start codon with NcoI-HF enzyme (GCCACCATGG, NcoI recognition sequence underlined, 

start codon in bold, NcoI-HF from New England Biolabs). Into this digested vector we then ligated 

two annealed primers, Fyn-myr-fwd and Fyn-myr-rev, phosphorylated at the 5’ end (from IDT DNA 

Technologies), which encode the myristoylation motif of human Fyn kinase flanked by 

overhanging NcoI-compatible ends. The sequence for this plasmid was verified by Sanger 

sequencing. 

To generate the final Tol2 expression construct Tg(mbp:memGCaMP7s; cryaa:mCherry), we then 

recombined 10fmol of the following entry vectors: previously described 5'-entry vector 5E-mbp 53 

ME-memGCaMP7s,  and 3E-polyA from the tol2kit 55; and 20fmol of destination vector 

pDestTol2pA2-cryaa:mCherry 56 (Addgene #64023), using LR Clonase II Plus. 3-4 clones were 

tested for correct recombination by restriction enzyme digestion. 

To establish a stable transgenic line, we injected 5pg of Tg(mbp:memGCaMP7s; cryaa:mCherry) 

plasmid DNA with 50pg tol2 transposase mRNA into wild-type zebrafish eggs at the one-cell stage. 
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This yielded memGCaMP7s-expressing oligodendrocytes in injected embryos, which were then 

raised to adulthood. Founders were identified by screening their F1 offspring for germline 

transmission using the cryaa:mCherry marker. 

GRAB-ATP virus injections 

Viral injections were done in P0-3 pups. For all injections, pups were anesthetized on ice for 3 

minutes and then positioned on a digital stereotax. Using a microinjection pump (UMP-3, World 

Precision Instruments), a mixture of AAV9-GfaABC1D-GrabATP1.0 with dye (2𝜇l virus + 0.5𝜇l 

Fast Green dye; virus titer 1.78x 1013 VG/mL) was injected at four injection sites in a 2×2 grid 

over the visual cortex. The first injection coordinate was 0.8-0.9mm lateral and 1.5-1.6mm rostral 

from lambda, and each site was separated by 0.8mm. At each site, 20-30nl of the virus was 

injected at two z-depths (0.1 and 0.2mm below the skull) at 3nl/s. Pups recovered from anesthesia 

on a heating pad before being returned to their home cage. 

METHOD DETAILS 

Data collection 

Mouse ex vivo GCaMP imaging using two-photon microscopy 

The ex vivo GCaMP dataset used in Figure 2 is a public dataset recording the astrocytic calcium 

signals of the mouse brain slice. Its description can be found in the AQuA paper 14 and it can be 

downloaded from https://drive.google.com/file/d/13tNSFQ1BFV__42TY0lZbHd1VYTRfNy 

fD/view. 

Zebrafish whole-brain imaging with a light sheet microscope (Ahrens lab) 

Zebrafish whole-brain recordings were captured using a custom light sheet microscope with 

adjustable z resolution and consistent x and y resolutions of 0.40625um/px, as described by Mu 

et al. 33. Dual-color recordings involved simultaneous scanning at wavelengths of 488 nm and 561 

nm, resolution of 2048 x 2048 pixels, with images separated using a dichroic mirror and captured 

on an Orca Flash 4.0 v2 camera. The detection objective was a 16x/0.8NA lens. 

During experiments, paralyzed zebrafish performed fictive swimming in a VR environment, with 

the drifting gratings providing visual feedback, as shown in Figure 4. For the experiment in Figure 

4, green and red calcium signals were expressed in neurons and astroglia using Tg(ELAVL3: 

GCaMP7f) and Tg(GFAP: jRGECO1b), respectively. Caffeine 1mM was added in drug state. The 

frame rate was 1.41 Hz, with 10um per plane resolution, and 26 planes were collected. For the 

experiment in Figure 6D, the green NE signal and red astroglial calcium signal were expressed 

using Tg(ELAVL3: GRABNE) and Tg(GFAP: jRGECO), respectively, in an open-loop setting with 

no visual feedback provided regardless of swim commands collected. The frame rate was set at 

4.5 Hz. One suction electrode (~60 um inner diameter) filled with external solution, was placed 

over the dorsal side of the fish’s tail and attached with gentle negative pressure. The voltage 

signal recorded by this tail was amplified and filtered (band-pass 300 Hz - 3 kHz) with a 

MultiClamp 700B amplifier. This signal was then smoothed through convolution with an 

exponential filter and used as the ‘swim signal’. 

Mouse spinal recordings (Nimmerjahn lab) 
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Mouse spinal cord imaging was performed as previously described. Briefly, animals were 

implanted with a spinal and head plate under general anesthesia approximately one week before 

laminectomy and received Buprenorphine ER/SR (0.5 mg/kg) to minimize post-operative pain.  

For intralaminar imaging through a dorsal glass window (Figures 2C, 6A), a laminectomy (2 mm 

wide × 4 mm long) was performed at the T12-T13 vertebra level, corresponding to spinal 

segments L3–L5. The dura mater overlying the spinal cord was kept intact, and a custom-cut #0 

coverslip was used to seal the laminectomy, creating an optical window for imaging.  

For translaminar imaging through an implanted glass reflective microprism (Figure 5), a 0.7 mm 

× 0.7 mm × 0.7 mm microprism with aluminum-coated hypotenuse (cat. no. 4531-0021; Tower 

Optical) was UV-cured (NOA 81; cat. no. 8106; Norland Products Inc.) to a custom-cut #0 

coverslip matching the intended laminectomy size (3 mm wide × 4 mm long). A laminectomy (3 

mm wide × 4 mm long) was performed at the T13-L1 vertebra level, corresponding to spinal 

segments L4–L6. Using a dissecting knife (cat. no. 10055-12; Fine Science Tools) attached to a 

stereotactic arm, a small incision was made 0.7 mm lateral to the central vein’s center, coinciding 

roughly with the interface between the dorsal root ganglia (DRG) and spinal white matter in adult 

mice. The incision extended 0.7 mm in the rostrocaudal direction and 0.7 mm in depth, matching 

the microprism dimensions. No spinal cord tissue was removed. No blood exuded from the 

incision site upon retraction of the dissecting knife. The microprism implant was positioned above 

the incision site and slowly lowered until fully inserted (~0.7 mm depth). Excess fluid was removed 

using sterile absorbent paper points (cat. no. 50-930-669; Thermo Fisher Scientific). The implant 

was affixed to the surrounding bone with instant adhesive (cat. no. 3EHP2; Grainger). 

Fluorescence image data were acquired with a wearable multi-color microscope (Figure 5) or 

macroscope (Figure 2C, 6A) using 473 nm excitation by a fiber-coupled DPSS laser. For imaging 

through the dorsal optical window (Figures 2C, 6A), using the wearable macroscope on freely 

behaving mice (16" x 16" open field), the typical average light power at the tissue surface was 

<250 μW mm−2. For imaging through the implanted microprism (Figure 5), using the multi-color 

microscope on focally restrained mice, 275-325 μW mm−2 was used. Translaminar image data 

were acquired four weeks after microprism implantation and at around 75 μm focal depths from 

the vertical microprism-tissue interface, where 0 μm was defined as the point when cells or blood 

vessels first came into focus. Our recordings showed no signs of phototoxicity at the specified 

light powers, such as a gradual increase in baseline fluorescence, lasting changes in activity rate, 

or blebbing of labeled cells. All data were acquired at the image sensor’s full resolution (1280 × 

960 pixels) and maximum frame rate (~45 Hz). The image data were preprocessed as previously 

described, including illumination correction, background subtraction, and image registration. In a 

subset of recordings (Figures 2C, 5), mechanical stimuli were delivered to the animal’s tail using 

a rodent pincher system (cat. no. 2450; IITC Life Science, Inc.). Pinch pressures were applied in 

the dorsoventral direction approximately 6 mm from the base of the animal’s tail. Synchronously 

acquired analog data included the pressure sensor output from the rodent pincher system and 

the on-off TTL signal of the wearable microscope’s light source, which were recorded at 1 kHz 

using DAQExpress 2.0 software (National Instruments). Pinch application and mouse behavior 

were also recorded on a video camera (≥20 Hz; Stingray F-033, Allied Vision Technologies) using 

AVT SmartView software (v1.11). To synchronize imaging with video data, we placed a near-

infrared LED within the video camera’s FOV, triggered from the microscope’s light source drive 

signal (TTL pulse). The video data were cropped to the LED-on period and scored manually 

regarding mouse motor activity, pinch onset, and offset. 
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Zebrafish oligodendrocyte calcium recording (Lyons lab) 

In the experiment depicted in Figure 6B, calcium in oligodendrocytes of zebrafish was expressed 

around the membrane using the Tg(mbp:memGCaMP7s). The expression was recorded using 

an LSM880 confocal microscope operating in airy scan fast mode, with a 20x water immersion 

lens. The zebrafish were then subjected to imaging for a total of 300 frames and 10 stacks. The 

acquisition frequency was set at 0.85 Hz, and the resolution was 0.0595373um per pixel. Then 

the data underwent several processing steps, including airy scan processing, maximum intensity 

projection, and registration using turbo reg. The final processed data had dimensions of 2028 

pixels x 248 pixels x 300 frames. 

Mouse GRAB-ATP recording (ex vivo acute slices) using a 2P microscope 

(Poskanzer Lab) 

In the experiment depicted in Figure 6C, acute coronal slices from the visual cortex (300um thick) 

were collected from P28-42  mice, as described previously by Pittolo et al. 57. All imaging was 

done at room temperature on a custom 2P microscope using a 920 nm laser, 525/50 emission 

filter, 256×256 pixel resolution, 20x objective with 1.0 N.A. (Olympus), a spatial resolution of 

2.08um/px, and a frame rate of 5.62 Hz. Before 2P imaging, each slice was incubated for ~5 

minutes in a 20mL recirculating standard artificial cerebrospinal fluid (ACSF) bath with 1uM TTX 

+/- 500nM POM1. Then, GRAB-ATP dynamics were recorded for 5 ~ 6 minutes. Before AQuA2 

detection, all videos were smoothed along the z-axis by averaging every 2 frames. 

Synthetic data generation 

For the synthetic data utilized in contrasting the performance of AQuA and AQuA2, we employed 

randomly generated signals, each exhibiting varying SNR. For the synthetic data used to compare 

all the peer methods, we simulated datasets based on templates derived from real signals. To 

emulate authentic brain activity, we employ three distinct synthetic settings: unfixed size, unfixed 

location, and propagation. These datasets were generated under a consistent 10dB SNR. 

Consequently, across these scenarios, we evaluate performance under varying SNRs: 0dB, 

2.5dB, 5dB, 7.5dB, 10dB, 15dB, and 20dB—resulting in a total of 6 distinct settings. Within each 

setting, we generate 4 diverse ground truth patterns and incorporate random noise for each 

pattern repeated 3 times. 

Definition of SNR 

We define the SNR of simulation using the following formula: 

𝑆𝑁𝑅 = 20 ⋅ log10 (
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑛𝑜𝑖𝑠𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
),                                       (1) 

where the average signal intensity is the average intensity of all pixels belonging to the ground 

truth. 

Synthetic data for comparing performance of AQuA and AQuA2 

We simulated the synthetic data used in Figure 2B with size 500 pixels x 500 pixels x 500 frames, 

and a background image that changes gradually in the y dimension. We initially generated 100 

signal centers at random positions, then applied Gaussian filters with uniformly distributed sizes 

on both spatial and temporal dimensions to them. As a result, those signals have radii ranging 

from 10 to 40 pixels, durations ranging from 10 to 20 time points, and centers with intensity ranging 
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from 10% to 20% dF/F0. Afterward, we generated 10 signals using a similar approach in the same 

dataset, this time incorporating large Gaussian filters to simulate scenarios involving both large 

and small signals. The large signals have radii ranging from 40 to 80 pixels, durations ranging 

from 80 to 150 frames, and centers with intensity ranging from 30% to 40% dF/F0. Large signals 

are allowed to overlap with small signals, thus some small signals may be obscured. Finally, 

Gaussian noise was added, with the variance equal to the baseline value on each pixel to model 

the phenomenon of photon collection through microscopy. A rough estimation of the SNR across 

the whole dataset is around -10dB. 

Synthetic data for comparing performance of Begonia and AQuA2 

We simulated the synthetic data used in Figure S5B with size 500 pixels x 500 pixels x 300 frames, 

and a background image that changes gradually in the y dimension. We generated 300 signal 

centers at random positions, then applied Gaussian filters with uniformly distributed sizes on both 

spatial and temporal dimensions to them. As a result, those signals have radii ranging from 10 to 

40 pixels, durations ranging from 10 to 20 time points, and centers with intensity ranging from 10% 

to 20% dF/F0. Gaussian noise was added, with the variance equal to twice of the baseline value 

on each pixel. A rough estimation of the SNR across the whole dataset is around -16dB. 

Spatial template of the signals for peer method comparison 

Given that ROI-based methods often demand users to define signal sizes, we utilized the regions 

of neuronal signals in mice as spatial templates, since the sizes of these signals are relatively 

consistent. These templates underwent processing involving morphological closing and dilation 

to fill gaps and refine boundaries. The templates are then randomly translated and rotated on a 

mask of size 512 pixels x 512 pixels, with the constraint that the closest distance between two 

ROIs should be larger than 5 pixels. On the final mask, there are 66 spatial templates, each with 

a size close to 20 pixels x 20 pixels. 

Temporal template of the signals for peer method comparison 

Similarly, ROI-based methods typically require the specification of the decay constant, which 

implies a fixed temporal pattern. To enable these methods to achieve relatively good performance, 

we adopted a signal template with a fast intensity increase and slow decay. The template reaches 

its maximum intensity of 1 at the third time point, with the first two frames reaching 0.4 and 0.8, 

respectively. Then the template presents a decay following the function 𝑒−0.3𝑡, where t is the time 

point after the peak. In general, if we consider a threshold of 20%, the temporal duration of the 

template is approximately 8 time points. 

Ground truth data generation for peer method comparison 

We generated ground truth data of size 512 pixels x 512 pixels x 250 frames, using both spatial 

templates and temporal templates. For each spatial template, we uniformly distributed the peaks 

of the temporal pattern with a density of 0.04. To prevent signals from being too close for 

distinction, we retained only the first signal if two peaks were located within a time window of 

length 5 frames. Furthermore, to ensure that each signal is fully contained within the data, we do 

not allow the peaks to be in the initial or final frames. Following convolution with the temporal 

pattern at peak positions, each spatial template generates approximately 7-8 signal events. 

Furthermore, within the synthetic settings featuring variable sizes, diverse locations, and 

propagation, to guarantee the distinguishability of each ground-truth event, we prohibit signal 
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centers from overlapping. The center, in this context, is defined as the portion exhibiting an 

intensity surpassing 50%. 

For ground-truth labeling, a watershed algorithm based on the signal centers is used, with the 

constraint that pixels labeled as ground truth must have an intensity greater than threshold 0.2. 

In general, each synthetic data contains approximately 400-500 events. 

Synthetic setting - unfixed size for peer method comparison 

To simulate potential changes in the size of signal events, we randomly altered the size of signals 

that correspond to the same spatial template while keeping their spatial center unchanged. A 

parameter called “size-change odds” controls the maximum size change, where a “size-change 

odds” of x means that the size can randomly vary from 
1

𝑥
 to x times its original size. Dilation and 

shrinkage have equal chances of occurring. The parameter varies from 1 to 2 in increments of 

0.25. To achieve this, we generated a uniformly random variable between 1 and the parameter to 

represent the scale factor and another uniformly random variable between 0 and 1 to determine 

whether to dilate or shrink, with a threshold of 0.5. When testing the robustness under different 

SNRs, we set the “size-change odds” to be 1.5. 

Synthetic setting - unfixed location for peer method comparison 

To simulate potential changes in the location of signal events, we randomly moved the position 

of signals that correspond to the same spatial template to a nearby region. The “location-change 

odds” parameter controls the maximum distance of translation, where an odds of x means that 

each signal event may be shifted within a range of 0 to x times the template diameter. The angle 

of translation is also random. In our setting, the parameter varies from 0 to 1 in increments of 0.2. 

To achieve this, we generated two uniformly random variables: one ranging from 0 to the 

parameter to represent the translation distance, and another ranging from 0 to 2𝜋 to represent 

the rotation angle. When testing the robustness under different SNRs, we set the “location-change 

odds” to be 0.4. 

Synthetic setting - propagation for peer method comparison 

In our simulation of signal propagation, we generated signals with two distinct types of potential 

propagation: “move” and “grow”, with equal chances of occurring. For the “move” propagation 

type, the signal patterns of pixels remain the same, but with a gradually changing delay among 

adjacent pixels. As a result, the signal appears to move to another position. Similarly, in the “grow” 

setting, there is also a gradually changing delay, but the signal patterns of pixels within the same 

event differ in duration. Pixels that produce signals earlier have a longer duration achieved by 

interpolation, and all pixels within the same event end at the same time point. Thus, such signals 

appear to grow into a larger region. 

For both propagation types, we set the propagation speed to be the same, at 0.15 times the radius 

of the spatial template. This means that the patterns of pixels with a distance of 0.15 times the 

radius will be delayed by one time point. The propagation direction is fixed within one event but 

is selected uniformly from 0 to 2𝜋. Additionally, all signals have the same propagation length, 

denoted by the “propagation frame” parameter in our setting. In our simulation, the parameter 

varies from 0 to 10 in increments of 2. When testing the robustness under different SNRs, we set 

the “propagation frame” to 4. 
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Synthetic data for comparing correlation-based method and joint alignment for 

propagation analysis 

We generated synthetic data with dimensions of 500 pixels x 500 pixels x 100 frames, featuring 

a row-dependent waveform and column-dependent delay for each pixel. Before the peak, the 

waveform follows a Gaussian shape for each pixel, while post-peak, it exhibits an exponential 

decay with a parameter linked to the row. Typically, the duration of the curve ranges from 30 

frames (at the top row) to 70 frames (at the bottom row). Concurrently, the curves of pixels 

experience varying delays across different columns, ranging from 0 (at the leftmost) to 20 (at the 

rightmost). Subsequently, noise was introduced to achieve an SNR of 0 dB in the synthetic data. 

During the application of the correlation-based method, we utilized the average curve of the entire 

dataset as the reference curve. 

AQuA2 event detection pipeline 

To enhance the accuracy, efficiency, and versatility of AQuA, we have re-engineered the event 

detection pipeline using advanced machine-learning techniques. The pipeline comprises five 

steps as shown in Figure S1A, with the first four being essential for detecting signals, the fifth 

being optional for detecting temporally global signals, and the final step being used to quantify 

the detections. Step 1 (Preprocessing) addresses experimental artifacts such as motion and 

photobleaching effects, removes baseline fluorescence, and estimates noise variance. After this 

step, 𝑑𝐹/𝜎 is displayed, where dF represents dynamic fluorescence and 𝜎 denotes the noise 

standard deviation. Step 2 (Active region detection) applies a statistical test to identify active 

regions, each of which potentially contains activity. As each active region may encompass 

multiple signals, Steps 3 (Temporal segmentation) and 4 (Spatial segmentation) are designed to 

segment these regions so that each result adheres to our signal event assumption of containing 

only one peak and originating from a single source. Step 5 (Global signal detection) is optional 

and involves detecting global signals based on removing the signal events detected in the first 

four steps. 

Step 1: Preprocessing in AQuA2 

The preprocessing step in AQuA2 tackles image registration, photobleaching correction, baseline 

estimation, and noise modeling, aiming to prepare well-processed data for subsequent analysis. 

Due to the optional nature of image registration and photobleaching correction, we have placed 

their introduction towards the end. 

Baseline estimation in preprocessing: The raw fluorescence F consists of three components: 

baseline 𝐹0, signal 𝑆, and noise 𝑁. Baseline refers to the background signal present in the image. 

It does not reflect changes in molecular concentration, thus lying outside the scope of interest. 

Therefore, accurate estimation of the baseline is a crucial step to mitigate baseline impact on the 

analysis of target signals. 

Traditional baseline estimation methods often rely on a single projection of the imaging data as 

the baseline, disregarding potential temporal variations. This oversight can result in false 

detections. For example, if the baseline steadily decreases over time, using a constant baseline 

would inevitably lead to overestimation in certain time intervals and underestimation in others. 

Therefore, it's imperative to account for the trend of baseline changes for accurate signal detection.  
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To distinguish between baseline and signals, we presume that the baseline represents the slow-

changing component along the temporal dimension, while target signals change faster. This 

contrast serves as the foundation for baseline estimation. Under the assumption of a slow-

changing baseline and non-negative signals, we model the baseline for each pixel by a piece-

wise linear function: Initially, we apply a moving average filter (typically with a window of 25 time 

points) to mitigate the impact of noise. Subsequently, we segment each pixel’s time course into 

intervals (the default segment length is 200 time points). By linking the minimum point of each 

time segment, we derive a piecewise linear function representing the trend. To counterbalance 

the bias introduced by selecting the minimum point, a predetermined quantity is then added. 

Noise modeling in preprocessing: Once the baseline is isolated, the preprocessing step 

focuses on modeling the noise to effectively identify the target signals. While many methods 

typically estimate a single variable to represent the noise standard deviation for the entire dataset 
12,14, this may not accurately capture the reality. In fluorescent data, the noise level can vary 

significantly across different locations, with brighter pixels exhibiting stronger noise while the noise 

in darker regions is comparatively weaker. That's one reason why researchers usually use 𝑑𝐹/𝐹0 

to represent signal strength. 

Taking this phenomenon into account, we initially estimate the noise at the pixel level. We operate 

under the assumption that the noise at different time points on the same pixel follows an 

independent and identically distributed Gaussian distribution. Given that real signals might lead 

to an overestimation of noise, we estimate noise by calculating the square of the difference 

between adjacent time points with the following equation rather than directly computing variance. 

𝜎2 =
1

2
𝑚𝑒𝑎𝑛𝑡=2,…,𝑇(𝑋(𝑡) − 𝑋(𝑡 − 1))

2
                                         (2) 

The noise estimation, as described above, may not be entirely accurate due to the limited 

temporal length of each pixel and an insufficient number of samples. Thus, an estimation 

leveraging information from all pixels is anticipated to enhance robustness. Given that 

fluorescence recording conforms to an optical process following a Poisson distribution, there 

exists a pronounced correlation between the noise variance and the expectation value  (baseline) 
58. We propose harnessing this correlation by employing a linear function to model the relationship 

between variance and baseline value, thus integrating information from all pixels for enhanced 

estimation accuracy. 

Recognizing that recording may be influenced by truncation and saturation, leading to different 

relationships at both low and high baseline levels, we employ a three-segment piecewise linear 

function instead of a simple linear function (Figure S2B). The modeling of this function can be 

efficiently solved by transforming the determination of the endpoints of each segment into a 

shortest path problem within a constructed graph (Figure S2C). In this graph, each pixel is treated 

as a sample/node and organized into several layers, where each node in the graph represents a 

potential endpoint. For instance, the connection between node 𝑢 in layer 1 and node 𝑣 in layer 2 

signifies one segment in the piecewise linear function with these two nodes as endpoints. To 

ensure the piecewise linear function is unidirectional, we sort the nodes based on their baseline 

values. Only edges between a node 𝑢 and the next-layer node 𝑣 with a higher baseline value 

(𝐹0(𝑣)  >  𝐹0(𝑢)) are permitted. To minimize the fitting error between samples and the piecewise 

linear function, we assign the weight of an edge as the cumulative absolute error between 

samples and the piecewise linear function, calculated as 𝑤(𝑢, 𝑣)  = ∑ |𝑣𝑎𝑟(𝑖)  −𝑖∈ {𝐹0(𝑢)≤ 𝐹0(𝑖)≤ 𝐹0(𝑣)
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 𝑓(𝑢,𝑣)(𝐹0 (𝑖))|. Here, 𝑣𝑎𝑟(𝑖) and 𝐹0(𝑖) represent the variance and baseline value of the 𝑖𝑡ℎ node, 

and 𝑓(𝑢,𝑣)(𝐹0(𝑖)) is the estimated variance of the baseline value 𝐹0(𝑖) on the segment between 

nodes 𝑢 and 𝑣. We designate the first and last layers to comprise only a few nodes close to the 

minimum and maximum baseline values, respectively, enabling automatic determination of the 

overall start and end points from these nodes. 

By solving the shortest path within this constructed graph, which can be achieved with linear 

complexity, we establish a robust relationship between baseline and noise variance. This 

integration of baseline information enables us to obtain a more reliable noise estimation, 

enhancing the accuracy of our analysis. 

Optional image registration in preprocessing: In fluorescent imaging data, it's common to 

encounter sudden movements of animals leading to jitter or drifting in the recorded data. These 

artifacts often manifest as rigid translations, given the limited field of view in microscopy. To 

mitigate motion artifacts, AQuA2 provides the option to utilize the cross-correlation algorithm 59 to 

align each frame with a reference image. By default, the reference image is determined by 

averaging the first 10 frames. 

𝑚𝑎𝑥Δ𝑥,Δ𝑦 𝑀(Δ𝑥, Δ𝑦)  =  {𝐼1 ∗ 𝐼2}(Δ𝑥, Δ𝑦)  =  ( ∑ ∑   𝐼1(𝑥, 𝑦)𝐼2(𝑥 + Δ𝑥, 𝑦 + Δ𝑦)𝑦𝑥 )    (3) 

where Δ𝑥, Δ𝑦 represents the translation in two dimensions, 𝑀 shows the similarity, * denotes the 

convolution symbol, and 𝐼1 and 𝐼2 represent two images. 

This algorithm calculates the optimal shift between two images by identifying the maximum 

similarity among all possible translations, where similarity is indicated by the summation of two 

images' dot product. While it may appear necessary to iterate through every element in the image 

for each (Δ𝑥, Δ𝑦) to compute similarity, the convolution theorem in the Fourier domain offers a 

highly efficient solution 59. Once the optimal shift is determined, rectifying the translation involves 

shifting the images in the opposite direction. 

Optional photobleaching correction in preprocessing: Photobleaching is another common 

artifact observed in fluorescent imaging data, wherein fluorescent probes gradually degrade due 

to exposure to excitation light, leading to a loss of fluorescence capability. Such decay effect is 

typically modeled by an exponential function 60. AQuA2 offers two approaches to model 

photobleaching decay: (1) Global Modeling: Decay is modeled globally on the average curve of 

all pixels by fitting the decay with the model 𝑓(𝑡)  =  𝑎𝑒−𝑏𝑡  +  𝑐. Then, the fluorescence intensity 

is divided by the decay to remove the photobleaching influence; (2) Intensity-based Correction: 

Acknowledging that the bleaching rate may vary across pixels with different intensities, an 

intensity-based correction method is employed. Pixels are clustered based on their baseline 

intensity, and decay is modeled on the average curve of each cluster. 

Step 2: Active region detection in AQuA2 

With 𝐹0  estimated in the preceding step, we can derive dF, which exclusively comprises 

components, signals denoted as S, and noise labeled as N. Due to the unknown distribution of 

signal intensity, Bayesian decision-making cannot be employed to determine the optimal 

threshold for distinguishing between signal and noise. Hence, we leverage the non-negativity of 

signals and employ hypothesis testing to detect active regions. 𝑑𝐹/𝜎  serves as a z-score, 

indicating the likelihood of a voxel belonging to a signal or not, where 𝜎  denotes the noise 

standard deviation. By applying thresholding based on a user-defined parameter on 𝑑𝐹/𝜎, we 
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can filter out voxels more likely to be noise. The remaining voxels, exhibiting high z-score, are 

aggregated as potential active regions. 

Notice that people may have some prior knowledge about the target signals according to the 

experiment setting. The information on the size (default set at 20 pixels), duration (default set at 

5 time points), or shape of the signals (default set the circularity constraint at 0) could be 

introduced as filters. Recognizing that bright pixels are typically more reliable, we utilize a top-

down multiple thresholding strategy to incorporate this prior knowledge. At each threshold level, 

regions above the threshold are examined using the filters. Candidate regions that pass the filter 

criteria are retained as active regions (regions with lower intensity will override those with higher 

intensity). 

Step 3: Temporal segmentation in AQuA2 

Recall that an event is defined as a spatiotemporally connected region characterized by 

fluorescent dynamics, exhibiting a single peak pattern and originating from a single source. In the 

preceding step, spatiotemporally connected regions potentially containing target signals are 

detected. However, within a single active region, multiple signal events may appear. Therefore, 

segmentation becomes necessary. 

In this step, AQuA2 performs temporal segmentation on the active regions to ensure the presence 

of a single peak pattern. This is achieved through the following procedures: identifying regions 

with significant peak patterns as seeds, expanding these seeds into subregions, and merging 

subregions with similar temporal patterns. The resulting regions after temporal segmentation are 

termed super events, each exhibiting only one peak pattern. For convenience and without loss of 

generality, in this step, we work on the score map which is dF normalized by the estimated noise 

standard deviation. 

Identifying regions with significant peek patterns as seeds: To ensure that each result 

contains a single peak pattern, the active region is segmented by first identifying potential peak 

patterns. This is accomplished by assessing the temporal significance of candidate regions 

selected using a top-down, multi-threshold, and multi-scale strategy. 

The candidate region selection begins with a top-down multi-threshold strategy. This approach is 

chosen because regions under a low threshold may contain multiple peak patterns, similar to the 

active region, whereas candidate regions above a high threshold are more likely to contain only 

one peak pattern. 

The multi-scale strategy employed for region selection involves considering large-scale yet weak 

signal regions, achieved through downsampling operations. This aids in aggregating information 

over a broader field of view while enhancing SNR. Additionally, this strategy incorporates spatial 

morphology considerations. For instance, if two candidate regions possess identical size and 

intensity but differ in spatial morphology—one resembling a complex winding line and the other 

having a regular shape like a square or circle—intuitively, the latter should hold greater 

significance. By aggregating information from neighboring regions, this strategy integrates 

morphology considerations. By default, AQuA2 considers scales of 2×2, 4×4, and 8×8. 

To ensure the singularity of the result's peak, if any seeds have already been detected within the 

selected candidate region, AQuA2 will preserve these seeds without reassessment. Otherwise, 
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the temporal significance of the candidate region is evaluated. Only if the significance is 

sufficiently high will the region be deemed to contain a peak pattern and thus be utilized as a seed. 

To measure the temporal significance of a candidate region, AQuA2 avoids direct evaluation on 

its average curve. This is because potential signal propagation and the presence of other signals 

could disrupt the significance assessment, making it difficult to establish a suitable time window 

for evaluation. Instead, AQuA2 measures the temporal significance at each pixel and combines 

the pixels’ significances to evaluate the region’s significance. The significance of each pixel is 

assessed based on the contrast between the selected time window and neighboring time points. 

Considering the nature of peaks, the contrast significance is evaluated twice: once comparing the 

selected window with the preceding neighbors, and another time comparing it with the subsequent 

neighbors. 

For each pixel, assuming the intensities of the selected time window are (𝑥1, 𝑥2, … , 𝑥𝑛), and the 

intensities on the time window with a certain length before and after are (𝑥𝑛+1, 𝑥𝑛+2, … , 𝑥𝑛+𝑚), 

where n is the number of foreground pixels and m is the number of background pixels (by default, 

n=m), the contrast 𝐿 can be calculated as follows: 

𝐿 =
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
−  

𝑥𝑛+1+𝑥𝑛+2+⋯+𝑥𝑛+𝑚

𝑚
      (4) 

Given that the selection of candidate regions is biased by the thresholding operation, AQuA2 

employs order statistic theory to evaluate temporal significance. This approach assumes that both 

foreground and background are sampled from the same null hypothesis distribution, and thus the 

bias and variance of the contrast L can be calculated given the order information. 

𝑧𝑜𝑟𝑑𝑒𝑟 =
𝐿−𝜇𝐿(𝐽,𝐻0)

𝜎𝐿(𝐽,𝐻0)
,      (5) 

where J is the relative order of foreground group and background samples, 𝐻0 represents the null 

hypothesis distribution (here we assume it is Gaussian distribution), 𝜇𝐿(𝐽, 𝐻0)and 𝜎𝐿(𝐽, 𝐻0) denote 

the calculated bias and standard deviation under order J and null hypothesis 𝐻0. 

After determining the significance of each pixel's curve, the next step involves aggregating these 

values to evaluate the significance of the entire region. However, since each pixel corresponds to 

a different duration, it's crucial to assign varying weights to their significance. Pixels with longer 

durations typically provide more reliable data and therefore warrant greater weighting. Thus, we 

can calculate the region’s significance: 

𝑧�̅�𝑟𝑑𝑒𝑟 =
∑ √𝑛𝑖𝑧𝑖,𝑜𝑟𝑑𝑒𝑟 𝑖

√𝑛
,       (6) 

where 𝑧�̅�𝑟𝑑𝑒𝑟 is the region’s significance and 𝑛𝑖 is the length of the selected time window of ith 

pixel. Such a combination strategy assigns a duration-based weight 𝑛𝑖  for each pixel. It is 

consistent with treating each intensity sample within ith pixel as having a score 𝑧𝑖,𝑜𝑟𝑑𝑒𝑟 such that 

the significance of the sample group for 𝑖th pixel is √𝑛𝑖𝑧𝑖,𝑜𝑟𝑑𝑒𝑟. 

We have backgrounds on two sides for each pixel, and thus finally two significant scores for each 

selected region. To pass the seed significance test, both the scores of two sides should be larger 

than a user-defined threshold (the default value is 3.5 due to multiple testing).  
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After completing the seed detection step, it's plausible that no seeds are found in certain active 

regions. This absence suggests that these regions lack sufficient temporal significance and may 

represent false positives. We will consequently eliminate these regions. Hence, the seed 

detection step doubles as a significance filter, aiding in the removal of temporally non-significant 

active regions. By eliminating such regions early in the process, we enhance the reliability of 

subsequent analyses and ensure that only genuinely significant regions are further considered. 

Growing seeds into subregions: If one active region contains multiple seeds, we expect to 

segment the region into “subregions”. Each subregion should be a grown region from a seed. 

Although multiple region growing methods could be applied, we adopt a marker-controlled 

watershed algorithm due to its high efficiency and consistency with intuition. To implement this 

marker-controlled watershed, we first reverse the 𝑑𝐹/𝜎 and then set the values of all seeds to be 

negative infinity. The part outside the active region is also treated as another seed, and the 

boundary values of the active region are set to be positive infinity. As the watershed algorithm 

runs on this processed map, nearly all the pixels within the active region will be assigned to some 

seed except the final ridges between adjacent subregions. To eliminate these ridges, we conduct 

an additional round of subregion growth to fill the gaps.  

Merging subregions with similar temporal patterns: Considering the potential over-

segmentation of the active region due to the texture or gap within the fluorescent image, AQuA2 

employs a merging step to merge the neighboring subregions with a similar peak pattern. The 

obtained results are termed “super events”. 

Two rules for merging subregions are used: spatially neighboring subregions with similar signal 

patterns should be merged (the similarity is introduced in the following), while temporally adjacent 

subregions with large spatial overlap (measured by intersection over union, IoU) should not. 

Based on these rules, within one active region, AQuA2 greedily searches for neighboring 

subregion pairs with the smallest temporal dissimilarity and merges them if their spatial overlap 

is tolerable until the temporal dissimilarity exceeds a certain threshold. 

Since subregions are grown solely based on intensity, unexpected intensity fluctuations among 

𝑑𝐹/𝜎 values can lead to irregular shapes. Consequently, certain subregions may contain small 

portions of frames with pixels outside the primary region. Using the footprint of the region may 

therefore overestimate spatial overlap, potentially preventing the merging of subregions that 

should be combined. Moreover, after region growing, some subregions may persist longer than 

the majority time window, allowing additional peaks to become involved. This complicates the 

comparison of signal patterns. To address this issue, we extract representative or majority 

subregions to ensure that the most significant and prevalent features of each subregion are 

accurately captured. These representative or majority parts will replace the subregions during the 

merging process. 

To measure the temporal dissimilarity of two patterns x and y, dynamic time warping (DTW) is 

used to find the best matches for each time point. Given the obtained optimal warping function 

P={(𝑘𝑥,𝑖, 𝑘𝑦,𝑖)}, where i is the index of the path, 𝑘𝑥,𝑖 and 𝑘𝑦,𝑖 represent the corresponding time 

points on x and y respectively, the average distance of each pair of corresponding time points can 

be calculated: 

𝑑(𝑥, 𝑦) =
∑ |𝑘𝑥,𝑖−𝑘𝑦,𝑖|

(𝑘𝑥,𝑖,𝑘𝑦,𝑖)∈𝑃

|𝑃|
 ,    (7) 
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where |P| represents the size of the path P. 

However, 𝑑(𝑥, 𝑦) is an absolute distance measure, which can be easily affected by the signal 

duration and is not suitable to serve as a dissimilarity measure. Thus, AQuA2 normalizes the 

distance by the minimum duration among x and y, then uses the following metric as the 

dissimilarity measure between signal patterns. This final distance metric incorporates information 

on delay, shape difference, and duration. 

𝐷(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

min (𝐿𝑥,𝐿𝑦)
,     (8) 

where 𝐿𝑥 and 𝐿𝑦 denote the lengths of time windows for signal patterns x and y. 

Step 4: Spatial segmentation in AQuA2 

Although a super event is supposed to be a spatiotemporal connected region with a single peak 

pattern, the definition of the event also requires the event to originate from a single source. We 

assume that in an event, the signal source is the location where the signal is first activated. 

Therefore, the signal source can be detected by propagating information. The spatial 

segmentation in AQuA2 consists of two major procedures: propagation estimation and the 

extraction and expansion of signal sources. 

Propagation estimation: To determine the potential propagation or delay at each pixel, it is 

intuitive to identify the reference shift that maximizes correlation with the pixel's curve. However, 

despite similarities in patterns, gradual deformation within the super event can render propagation 

information unreliable, as depicted in Figure S2A. 

Acknowledging the potential for deformation, we utilize alignment techniques to identify the 

optimal match or warping path between the pixel's curve and the reference (the average temporal 

pattern from the largest subregion). Among alignment techniques, AQuA2 employs joint alignment, 

which integrates structural information from the data and has demonstrated superior performance 
24. To enhance efficiency, joint alignment is solved using the BILCO algorithm 24, developed by 

our team, which achieves a 10-fold improvement in both time and memory usage. 

Before applying the BILCO algorithm, several detailed operations are performed. For all pairs to 

be aligned, the time course is normalized by its noise standard deviation, and its corresponding 

reference is scaled to the same range for correct alignment. This takes into account the quality of 

the time series, assigning a larger weight to those with a high SNR. Additionally, to further improve 

efficiency, a downsample operation is performed on super events with a large size. For example, 

if the spatial size of one super event is 4000 pixels, a 2×2 downsample operation will be 

performed. 

Segmentation based on propagation: AQuA2 employs a multi-threshold strategy, which is 

executed in ascending order of 50% rising time, derived from propagation information, to identify 

potential source regions. The contrast between the candidate region and its surroundings is then 

calculated to determine the source. The system offers ten levels of sensitivity for signal source 

detection, with level 10 being the most sensitive and level 1 being the least.  

There would be three cases in a super event: (1) No signal source region is detected. Then the 

super event is like a stationary signal activity and there is no need to segment. (2) Only one signal 

source is found. It denotes the super event comes from the same signal source, and thus still no 
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need to segment. (3) Multiple signal sources are extracted, which means the super event is indeed 

coming from different sources. Here, we will assign each pixel to a different source using a 

marker-controlled watershed algorithm. 

It's crucial to emphasize that while our objective is to spatially segment the super event to ensure 

each final event originates from a single source, this segmentation shouldn't rely solely on pixel 

labels. Due to the potential interference in the data, doing so may lead to the center of one region 

being labeled as one event while its surroundings are considered as another event. To prevent 

such occurrences, we aggregate the intermediate results from step 3, the subregions, to form the 

final event based on the majority source label. 

Step 5: Global signal detection in AQuA2 

Global signal detection is an optional step aimed at identifying signals of extended duration that 

may have been obscured by signals detected in earlier stages. For instance, if a signal component 

is the sum of 10 temporally disjoint local signals, each with a duration of 10, over a global signal 

in the same time window with a duration of 100, then the previous steps would only be able to 

detect signals with shorter durations. The detection of the global signals is achieved by first 

removing the impact of local detections, where the intensities of the voxels in the local detections 

are interpolated according to the temporal boundaries of each detection, and then repeating the 

previous steps with a different duration limitation. 

AQuA2 CFU identification 

With the intuition that regions exhibiting repetitive signals are more likely to bear biological 

significance, we introduce the concept of a CFU. A CFU is defined as a spatial area generating a 

set of events with similar locations and morphologies. Events associated with a specific CFU 

share similar spatial territories, although not necessarily identical. The CFU concept combines 

the strengths of both ROI-based and event-based methodologies. It retains the notion of a “region” 

from ROI, grouping events with spatial consistency, while incorporating the flexibility of event-

based methods to allow for some spatial variation among signals. 

This concept serves as a more generalized version of ROI, offering increased flexibility. Unlike 

ROI, which is spatially static and confines signals to precisely the same territories, CFU 

acknowledges that signals may exhibit slight spatial variations. This flexibility is crucial for 

exploring functional units, as signals often do not maintain exactly the same territories in most 

data. Signals with higher intensity will span larger territories, while those with lower intensity will 

occupy relatively smaller areas. ROI-based methods may segment the union territory of these 

signals into multiple parts, identifying the overlapped region as a core ROI and the surrounding 

regions as independent ROIs, leading to the identification of false positive ROIs. The flexibility 

inherent in CFU positions it as a promising solution for exploring the functional units within such 

datasets. 

CFU can be conceptualized as a collection of events characterized by consistent spatial patterns.  

Intuitively, identifying CFU can be framed as a clustering method. Among classical unsupervised 

clustering algorithms, AQuA2 adopts a hierarchical clustering approach. This choice is motivated 

by the advantage of utilizing the interpretable largest allowable inconsistency as a 

hyperparameter, as opposed to relying on a predetermined cluster number - a challenging aspect 

to ascertain. In the task of exploring functional units, the unknown number of functional units 

makes methods like K-means hard to apply, and there is the potential for false positive events to 
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be clustered into distant regions. However, the hierarchical clustering approach ensures that only 

signals with similar territories are clustered together. Even with potential false positive events, a 

filter based on the number of signals associated with CFU can effectively eliminate such instances. 

Using the hierarchical clustering approach, the keys in CFU identifications are how to define the 

spatial territory of one event and how to estimate the consistency/inconsistency between two 

territories. Each event is a set of voxels {𝑥𝑖, 𝑦𝑖 , 𝑡𝑖} and we can reformulate the coordinates into the 

form {𝑝𝑗, 𝑛𝑗}. Here, 𝑖 is the voxel index, 𝑗 is the pixel index, 𝑝𝑗 represents the spatial location of 

one pixel, and 𝑛𝑗 denotes the count of voxels located at the same 𝑝𝑗 position. Inspired by the fact 

that a pixel with a longer duration 𝑛𝑗 holds greater importance, we calculate a weighted spatial 

set {𝑝𝑗, 𝑤(𝑝𝑗)} to demonstrate the spatial territory for each event, 

𝑤(𝑝𝑗) =
𝑛𝑗

max(𝑗)𝑛𝑗 
,       (9) 

where 𝑤(𝑝𝑗) is the weight assigned to the pixel 𝑝𝑗. 

Having obtained the spatial territories of signal events, our subsequent step involves estimating 

the consistency between any pair of two events. Common measures like cosine similarity or 

Pearson's similarity necessitate input vectors of the same dimension. However, our spatial 

territories may comprise weight parameters with varying sizes. While an option is to fill the weights 

with zeros for pixels outside the event, this approach has its drawbacks. As each event may only 

occupy a small fraction of the field of view, the filled weights will dominate the vectors and 

unreliably inflate the consistency. Here we selected the weighted version of Jaccard similarity 61 

to handle this task. This choice accommodates the varying sizes of spatial territories and provides 

a more accurate measure of consistency. Its unweighted version, commonly known as 

intersection over union, is a standard measure for evaluating the match between two objects in 

computer vision tasks. 

𝐽(𝑤1, 𝑤2) =
∑ min (𝑤1(𝑝𝑗),𝑤2(𝑝𝑗))𝑝𝑗∈𝑃1∪𝑃2

∑ max (𝑤1(𝑝𝑗),𝑤2(𝑝𝑗))𝑝𝑗∈𝑃1∪𝑃2

,    (10) 

where 𝑤1 and 𝑤2 are the weighted spatial vectors of event 1 and event 2, and 𝑃1 ∪ 𝑃2 denotes the 

union set of pixel positions for these two events. 

Once the crucial keys have been addressed, the clustering algorithm commences by treating 

each signal event as an individual group.  It then iteratively clusters the most spatially consistent 

signal groups until the consistencies of all pairs are below the user-defined consistency. The 

consistency is set to 0.3 by default. In a subsequent step aimed at eliminating CFUs likely 

comprised of false positive events, an event number filter is applied, utilizing a default threshold 

of 3. For each remaining signal group, AQuA2 transforms the average spatial vector into a visual 

map to showcase the CFU's position. Additionally, it captures the 50% rising times of the events 

within the group to construct the corresponding occurrence sequence for that CFU. These 

occurrence sequences play a pivotal role in quantifying the interactions between CFUs in 

subsequent analyses. 

Settings for AQuA2 and its peer methods 

In order to showcase the optimal performance of peer methods and ensure a fair comparison 

among them, we fine-tune their input parameters prior to application. 
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AQuA2 

We apply the MATLAB version of AQuA2 to the synthetic data with the following parameters: We 

set the boundary removal “regMaskGap” to 0, minimum size “minSize” to 20, threshold “thrARScl” 

to 3, smoothing parameter “smoXY” factor to 1, baseline cut “cut” to 250, and minimum duration 

“minDur” to 2. All other parameters are set by default. In real-world applications, for optimal 

performance, fundamental parameters such as “minSize”, “minDur”, and “thrARScl” might be 

adjusted based on the specific characteristics of the data. 

AQuA 

We apply the MATLAB version of AQuA with the following parameters: We set “regMaskGap” to 

0, “smoXY” to 1, “thrARScl” to 3, and “minSize” to 20. All other parameters are set by default. 

Notably, when comparing AQuA and AQuA2 in real applications, they shared the same basic 

parameter settings for a fair comparison. 

Begonia 

We apply the Begonia, a MATLAB package, to the synthetic data. The script code we used is the 

demo code for processing a single recording, with the following modifications: We let Begonia 

estimate the baseline using its default method rather than the 5th percentile of the first 100 frames. 

We set the min duration parameter “roa_min_duration” to 5, and the minimum size to be 20 to 

make it consistent with other event-based methods. The resultant activity regions (ROAs) are 

directly considered as events and compared with the ground truth. 

CaImAn 

We apply the newest Python version of CaImAn to the synthetic data. The script we use is 

modified based on “demos/notebooks/demo_pipeline.ipynb”. The changes are listed below: Since 

there is no registration issue, we bypass the motion correction part. With the known temporal 

template of the signals, we specified the decay speed “decay_time” to 0.3. According to the spatial 

templates in our ground truth, we set the expected half size of neurons “gSig” to 15x15 and the 

half size of the patches to 50. The number of components per patch “K” is set to 10, while merging 

threshold “merge_thr” is specified as 0.5. Additionally, the amount of overlap between patches 

“stride_cnmf” is set to 10. To compare with ground truths, we extract the ROIs “estimates.A”, their 

dFF “estimates.F_dff”, and their decomposed spikes “estimates.S” to form spatiotemporal events. 

suite2p 

We apply the newest Python version of suite2p to the synthetic data. Since there is no registration 

issue, we set the parameter “do_registration” to False. The decay speed “tau” is specified as 0.3. 

Moreover, considering the spatial template we use, we set “spatial_scale” to 1 for good 

performance. Three features, ROIs' position “stat”, ROIs' curves “F”, and decomposed spikes 

“spks” are used to form spatiotemporal events. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Workstation configuration 

All experiments were conducted on a workstation with Intel(R) Xeon(R) Gold 6140@2.30Hz 

processor, 128GB memory, running Windows 10 64-bit and using Microsoft VC++ compiler. No 
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GPU was used. Two ROI-based methods were implemented in Python, while the other three 

event-based methods were implemented in MATLAB. 

Event evaluation for ROI-based methods 

AQuA2, AQuA, and Begonia are event-based methods that directly use the detected events as 

results, eliminating the need for further processing. In contrast, two ROI-based methods, CaImAn 

and suite2p, extract ROIs and their corresponding dF and decomposed spikes as results. Since 

ROIs are only spatial concepts, they cannot be used to compare with spatiotemporal ground truth 

events. Thus, we integrate spikes, dF, and ROIs into events for comparison. 

To form spatiotemporal events based on ROIs, we first estimate the standard deviation of noise, 

denoted as 𝜎, in the average dF curve of the target ROI. Time windows larger than 3𝜎 are 

considered as candidate time windows that may contain signals. Next, we utilize the information 

from decomposed spikes. We apply a filter to the spikes to remove false positives and assume 

that each remaining spike represents one detected signal event. We use these spikes as the 

center of the signal to segment the candidate time windows temporally. By combining the spatial 

ROI and segmented time windows, we can obtain signal events for performance evaluation. 

Metrics for performance evaluation 

To assess the accuracy of different detection methods, we employ two metrics: the weighted 

Intersection over Union (wIoU) and the F1 score. The wIoU evaluates the quality of detection at 

the pixel level while the F1 score measures the match relationship between detections and ground 

truths at the signal level. 

wIoU 

Motivated by the intuition that the brighter pixels should be assigned with larger weight, we use 

weighted IoU rather than the standard IoU to evaluate the quality of detection. This approach also 

helps to eliminate the impact of ground truth selection. The wIoU for a pair of detection 𝐷𝑖 and 

ground truth 𝐺𝑗, (𝐷𝑖, 𝐺𝑗), can be expressed as, 

wIoU(𝐷𝑖, 𝐺𝑗) =
∑ 𝑤(𝐷𝑖∩𝐺𝑗)

∑ 𝑤(𝐷𝑖∪𝐺𝑗)
,     (11) 

where the weight w of each pixel is the assigned weight according to the intensity. 

The wIoU score ranges from 0 to 1, with a high score indicating a good match. However, pixels 

outside the ground truth are often of low intensity, which may result in an overestimation of the 

score if the detection includes many false positive pixels. For example, consider an extreme case 

where a detection 𝐷𝑖  completely encompasses the corresponding ground truth 𝐺𝑗 , but also 

includes many pixels with 0 intensity such that its size is 10 times larger than that of 𝐺𝑗. In this 

case, the estimated wIoU(𝐷𝑖, 𝐺𝑗) will be 1, which is not reasonable. To avoid this issue, we set a 

lower bound of weight c = 0.1 that 𝑤(𝑝𝑖𝑥𝑒𝑙𝑘) = max (𝑐, 𝐼(𝑝𝑖𝑥𝑒𝑙𝑘)) where 𝐼(𝑝𝑖𝑥𝑒𝑙𝑘 is the intensity 

of 𝑝𝑖𝑥𝑒𝑙𝑘 in ground truth data, and 𝑤(𝑝𝑖𝑥𝑒𝑙𝑘) is the weight assigned to 𝑝𝑖𝑥𝑒𝑙𝑘. 

For each detected event 𝐷𝑖, we define the highest score among all pairs between it and all ground-

truth events as wIoU𝐷𝑖
. Similarly, for each ground-truth event 𝐺𝑗, the corresponding highest score 

is denoted as wIoU𝐺𝑗
. We can then calculate an overall score by averaging the score of both 

detections and ground truths using the following formula: 
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wIoU =
∑ wIoU𝐷𝑖

𝐼
𝑖 + ∑ wIoU𝐺𝑗

𝐽
𝑗

|𝐼|+|𝐽|
,     (12) 

where I and J are the sets of indexes of detections and ground truths, respectively, and |𝐼| and 

|𝐽| are the number of indexes in I and J. 

F1 score 

A pair of detection 𝐷𝑖 and ground truth 𝐺𝑗 matches when the following condition holds: 

𝑖 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑘wIoU(𝐷𝑘, 𝐺𝑗), 𝑗 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑘wIoU(𝐷𝑖 , 𝐺𝑘),    (13) 

where D and G represent the detection set and ground truth set, respectively. That means that 

𝐷𝑖/𝐺𝑗 is the most closely matched detection/ground truth for 𝐺𝑗/𝐷𝑖 among all other options at the 

pixel level. This definition helps to eliminate the impact of ground truth selection, as the match 

relationship remains unchanged regardless of whether pixels higher than 20% or 50% are 

selected as ground truth. 

Let the number of matches be denoted as TP, the number of detections with no corresponding 

ground truth as FP, and the number of ground truths with no corresponding detection as FN. The 

F1 score can then be calculated as follows: 

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
     (14) 

Interaction analysis of CFUs 

Given that the curves of two correlated CFUs may have different waveforms, baseline trends, or 

contamination from signals not originating from the measured CFU due to potential overlap, 

directly calculating the correlation coefficient is not suitable. Instead, AQuA2 uses the occurrence 

sequences as features to analyze the interaction between two CFUs. 

We propose a new statistical approach by examining the significance of co-occurrence between 

events in two sequences. Assuming the null hypothesis that each sequence follows a Poisson 

process with density 𝜆, we can calculate the probability p that at least one event occurs within a 

time window of duration L. 

𝑝 = 𝑃(𝑁 ≥ 1) = 1 − 𝑃(𝑁 = 0) = 1 − 𝑒−𝜆𝐿 ,   where  𝑃(𝑁 = 𝑘) =
(𝜆𝐿)𝑘

𝑘!
𝑒−𝜆𝐿 (15) 

Taking one sequence, say sequence 2, with n events in it as a conditional sequence, we can 

place n time windows centered at the events in sequence 2 and count how many windows have 

at least one event from sequence 1. Note that the probability of a time window having at least one 

event is p under the null hypothesis. Assuming there are m windows that meet the criteria, 

meaning m co-occurring pairs of events in two sequences, the significance of dependency can 

be evaluated by, 

p-value1|2 =  ∑ (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 = 𝑛
𝑘=𝑚 ∑ (

𝜆2𝑇
𝑘

) (1 − 𝑒−𝜆1𝐿)
𝑘

(𝑒−𝜆1𝐿)
𝑛−𝑘𝜆2𝑇

𝑘=𝑚   (16) 

where 𝜆1 and 𝜆2 represent the densities of event sequences in CFU1 and CFU2, respectively. L 

is the window size that we may judge two events co-occur, and T denotes the sequence length. 

This is a test based on the Binomial distribution (n,m,p). 
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Notably, to avoid the situation where two events in one sequence refer to the same event in 

another sequence, our code does not allow time windows to overlap. This results in different 

lengths of time windows for different events. In this case, the saddle-point approximation method 
62 is used to efficiently calculate the p-value. 

During the analysis of the interaction between each pair of CFUs, AQuA2 will, by default, switch 

the conditional sequence and gradually adjust the length of the time window L until it reaches a 

user-defined value. The minimum p-value is then used as the final measure of significance to 

describe their dependency. It is important to highlight that the proposed methodology exhibits 

directionality, implying that we can take a specific sequence as a condition. For instance, the 

sequence of some CFU, or a stimulus sequence. Moreover, it doesn’t necessitate the time window 

to be centered around the event, permitting shifts in the windows. 

The output features of AQuA2 

The output features of AQuA2 can be divided into two categories: event-level features and CFU-

level features. All the results can be obtained in the output “res.mat” file. Event-level features 

focus on the quantification of individual events, while CFU-level features describe the active 

functional units in the fluorescence imaging data. 

Event-level features can be further divided into three classes: (1) Basic features of individual 

events, including voxel set, duration, area size, average curve of spatial footprint, average dF 

curve of spatial footprint, rising time, peak p-value, area under the curve (AUC), and others. These 

features serve as filters to select valuable signals and can also be utilized for statistical analysis, 

such as comparing changes in signal activity before and after the application of stimuli/drugs in 

control experiments. (2) Propagation-related features, including propagation speed, propagation 

map, and propagation trend in various directions. These describe the propagation information of 

events and can be used to uncover potential signal pathways. (3) Network features, which involve 

the distances between events and user-defined regions (e.g., cell regions or landmarks), as well 

as assessing the co-occurrence of events in spatial or temporal dimensions. The former reflects 

the association between specific regions and events, while the latter can be used to analyze the 

collective characteristics of events, such as signal bursts. 

CFU-level features can also be categorized into three types: (1) Individual CFU information, 

including the spatial map, event sequence, average curve, and average dF curve. This is the 

result of CFU identification and can be utilized to visualize the active functional units in the data. 

(2) The dependency between every pair of CFUs, as well as the relative delay between two CFUs. 

This is the result of CFU interaction analysis. Users could utilize this information to understand 

the interaction between CFUs. (3) The information of CFU groups, including CFU indexes and 

the relative delay of each CFU. This is the result of further postprocessing, which employs 

hierarchical clustering based on the dependency between CFU pairs. It can cluster CFUs into 

groups, show their relative order, and may unveil circuit pathways. 
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Figure S1, related to Figure 1. Principles of AQuA2. (A) In-depth pipeline providing a comprehensive overview of 
intermediate results, detailing every step of the event detection procedure in AQuA2: preprocessing, statistical testing, 
temporal segmentation, spatial segmentation, optional global signal detection, and final feature extraction. Each colored 
region corresponds to a distinct result in each step. (B) Details on the CFU module, beginning with the conversion from 
spatiotemporal events into spatial maps, followed by CFU interaction analysis and CFU grouping. 
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Figure S2. Supplementary diagrams for method parts. (A) A comparison between the correlation-based method and 
AQuA2 for propagation analysis. The top row displays simulation data featuring column-dependent delay and row-
dependent waveform. The bottom row exhibits ex vivo astrocytic calcium recordings from mice. As demonstrated, the 
rising map generated by the correlation-based method tends to be noisy and prone to the influence of waveform, often 
leading to suboptimal outcomes. In contrast, AQuA2 employs joint alignment techniques, enabling it to deliver smooth, 
comprehensive, and precise information. (B) The noise variance versus baseline value of all the pixels. Each blue circle 
represents one pixel/sample. The green, yellow, and purple line segments of the piecewise linear function represent 
the relationships under truncation, normal, and saturation cases, respectively. The horizontal red line segments 
represent the noise variance for outliers. (C) The graph model for solving the piecewise linear function. Using the 
shortest path algorithm, the model could be solved efficiently. Each node on the vertical line represents the candidate 
ends of line segments, each edge represents the summation of absolute differences between pixels' noise variance 
and the line segment linking two candidate ends. Thus, the cost of the shortest path is equal to the piecewise linear 
function with the minimum absolute error. 
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Figure S3. AQuA2 can be applied to 3D time-lapse imaging data. (A) AQuA2 GUI schematic diagram for 3D data. Each 
colored region represents one detected event. (B) The signal propagation pattern was detected by applying AQuA2 on 
3D astrocytic calcium recording in zebrafish expressing Tg(GFAP: jRGECO1B) under caffeine influence, with blue 

indicating early rising time and red indicating late rising time. 
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Figure S4. Detection results of peer methods on different experimental settings under 10dB SNR. From the first column 
to the fourth column, the experimental settings are pure ROI signals, signals with a size-change odd value of 2, signals 
with a location change value of 2, and signals with a propagation frame value of 6, respectively. For the ground truth 
and event-based methods, we use the color to represent the frequency of events at each pixel (with dark blue and 
bright yellow representing the lowest and highest frequencies, respectively). For the ROI-based methods, we visualized 

each detected ROI by a colored region and compared the results of CaImAn and suite2P with the CFU results of AQuA2. 
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Figure S5. Comparison of Begonia and AQuA2. (A) Performance comparison on experimental data (ex vivo astrocytic 
calcium imaging in a mouse brain slice 14). Each colored region indicates one detected event. A white dashed box 
highlights the major signals of interest, and its average curve is shown on the right. The time intervals of detected 
signals by the two methods are marked with line segments in corresponding colors. (B) Performance comparison on 
synthetic data under low SNR. From top to bottom, the rows display ground truth, raw data, Begonia detection results, 
and AQuA2 detection results. Each colored region indicates one detected event. White dashed circles mark example 
false positives. (C) Comparison of event analysis. Begonia allows limited quantification, while AQuA2 supports 
extensive analyses, including propagation quantification. An example of propagation analysis (oligodendrocyte myelin 
sheath calcium imaging data from Tg(mbp:memGCaMP7s) zebrafish) is shown, with blue indicating early rising times 
and red indicating late rising times. (D) Comparison of functional unit analysis. Begonia only provides an auxiliary ROI 
manager and requires manual annotation by the user, while AQuA2 supports automated CFU identification and analysis. 
An example of AQuA2’s CFU module (neuronal calcium imaging data from the mouse visual cortex) is shown. Each 
colored region indicates one detected CFU. Although some neurons are visible in the background, they are silent in 
the experiment and thus not detected. 
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Figure S6. Application of AQuA2 on dual-color zebrafish recording. (A) Virtual environment for fictively swimming 
paralyzed fish. A custom light sheet microscope was used to record neuronal calcium (Tg(ELAVL3: GCaMP8f)) and 
astroglial calcium (Tg(GFAP: jRGECO)). The frame rate is 3.01 Hz. Swim commands were detected by two probes. 
During the whole duration, two time windows were selected, labeled by blue and yellow masks, to observe the zebrafish 
signals in the non-swim interval or swim interval. (B) Detection example on one plane. Each colored region represents 
one detected signal event. (C) Detected CFUs of two intervals on different planes. Each colored region is one CFU. (D) 
Obtained correlated CFUs.  Top: three different CFU groups on different planes in non-swim intervals, with their average 
curves shown below. Bottom: Correlated CFUs found in the cross channel of the swim interval with their average curves 
shown on the right. 
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Figure S7. Supplementary applications of AQuA2. (A) Application of AQuA2 to identifying CFU groups on the zebrafish 
acetylcholine imaging. During the experiment, paralyzed zebrafish performed fictive swimming in a virtual reality 
environment. Acetylcholine signals were expressed using Tg(ELAVL3: AChSnFR) and captured using a custom light 
sheet microscope with a z-resolution of 5um/px and x and y resolutions of 0.40625um/px. The frame rate was set at 
2.87 Hz. Each CFU group is labeled with a distinct color, with their average curve shown on the right. Each group 
shows a distinct signal pattern. (B) Utilizing AQuA2 to identify correlated CFUs between the ATP channel and Neuron 
channel in zebrafish, despite waveform differences. ATP and neuronal signals were expressed using Tg(ELAVL3:ATP) 
and Tg(ELAVL3:jRGECO), respectively, recorded by a custom light sheet microscope with a z-resolution of 10um/px 
and x-y resolutions of 0.40625um/px. The frame rate was set at 4.2 Hz. The average curves of CFUs for both channels 
(green and orange) are displayed on the right, alongside swim strength (blue). Zoom-ins of two time windows are 
provided. The obtained CFUs demonstrate a strong correlation with swimming behavior. (C) Application of AQuA2 to 
identifying the most significant CFU group on different planes of zebrafish dopamine imaging. Each colored region 
represents one detected CFU, with the average curve of all these CFUs illustrated on the right. The dopamine was 
expressed using Tg(GFAP: GRAB-DA) and recorded by a custom light sheet microscope with a z-resolution of 
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4.9um/px and x and y resolutions of 0.40625um/px. The frame rate was set at 3.01 Hz. This application demonstrates 
AQuA2's capability to quantify dopamine activity. (D) Application of AQuA2 to the CFU group identification and analysis 
in astroglia-neuron imaging in zebrafish. Astroglial calcium and neuronal calcium were expressed through Tg(ELAVL3: 
GCaMP7f; GFAP: jRGECO1B). Each connected colored region is one CFU, and the color shows relative delay in this 
group. Using AQuA2, potential brain circuits can be found through CFU grouping. 
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