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Abstract  47 

 48 
Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit 49 
for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell 50 
segmentation, enabling generalized solutions across cell types and imaging modalities. This has been driven 51 
by the ease of scaling up image acquisition, annotation and computation. However 3D cell segmentation, 52 
which requires dense annotation of 2D slices still poses significant challenges. Labelling every cell in every 53 
2D slice is prohibitive. Moreover it is ambiguous, necessitating cross-referencing with other orthoviews. Lastly, 54 
there is limited ability to unambiguously record and visualize 1000’s of annotated cells. Here we develop a 55 
theory and toolbox, u-Segment3D for 2D-to-3D segmentation, compatible with any 2D segmentation method. 56 
Given optimal 2D segmentations, u-Segment3D generates the optimal 3D segmentation without data training, 57 
as demonstrated on 11 real life datasets, >70,000 cells, spanning single cells, cell aggregates and tissue.  58 
 59 

Main  60 

Instance segmentation is the problem of unambiguously assigning each pixel in a 2D or voxel in a 3D image 61 
to unique objects of interest. Near universally, it is the first step in quantitative image analysis for many 62 
scientific fields including medical imaging1 and cell biology2. It is only through segmentation that the objects 63 
of interest to quantify, such as nuclei3,4, organelles5, cells6, bacteria7, plants8, organs1,9 or vasculature10, are 64 
explicitly identified and delineated within an image. The segmentation subsequently defines the quantitative 65 
unit of analysis to extract desired quantitative object features such as morphology11 (e.g. length, area, and 66 
volume) and molecular expression (e.g. mean marker expression12, subcellular patterns13) to perform 67 
comparative analyses or in downstream processing such as surface unwrapping14,15.  68 

Segmentation is easy when cells are isolated, well-contrasted and uniformly illuminated, and amenable to 69 
binary intensity thresholding and connected component analysis16. However, this is rare. In practice, in in-70 
vitro culture, in-situ tissues or in-vivo, cells of diverse morphologies may interact and aggregate together in 71 
clusters that cannot be easily or accurately separated by traditional watershed techniques2,17. This is further 72 
compounded by inevitable variations in the imaging acquisition and staining used to visualize cellular 73 
structures resulting in weak, partial, sparse or unspecific staining of desired foreground structures5,18.  74 

Thanks to advancements in GPU architecture, and increased availability of publically available labelled 75 
datasets, generalist or ‘foundational’ 2D cell segmentation models have emerged both for interactive 76 
segmentation using prompts such as μ-SAM19, CellSAM20 and dense segmentation of every cell such as 77 
Cellpose6 and various transformer models2. These methods leverage ‘big data’ and harness diversity in the 78 
training data to demonstrate impressive ability to segment 2D cells acquired across modalities and cell types2 79 
out-of-the box or with fine-tuning.  80 

Physiologically, however, cells interact within complex 3D environments. The importance of studying cell 81 
biology processes in the relevant physiological 3D environments is well-documented11,21-24. Moreover the 82 
emergence of 3D in-situ tissue imaging has further provided unprecedented insights into the complex nature 83 
of the tissue microenvironment and its role in development and disease; including novel cell-cell interaction, 84 
tissue organization, and diverse cell morphologies12,25. Unlocking the potential of 3D imaging necessarily 85 
requires reliable, general and scalable 3D cell segmentation solutions. Simply replicating the training strategy 86 
of 2D foundation models is likely prohibitive, requiring significant amounts of well-labelled, diverse 3D cell 87 
datasets and dedicated, specialized GPU computing.  88 

Despite the relative ease of acquisition, abundance of industrial annotation tools in 2D26,27 and ease of crowd-89 
sourcing and proofreading in a single field-of-view28, the Cellpose training dataset comprises just 540 training 90 
images (total ∼70,000 cells, 5 modalities) and the most recent and largest multimodal challenge2 only 1000 91 
training images (total 168,491 cells, 4 modalities). Replicating a densely labelled 3D dataset with comparable 92 
level of cell diversity and numbers, given more complex microenvironments, more variable image quality, and 93 
more diverse morphologies and cell packing is formidable5,12,25,29. Despite ongoing efforts to develop scalable 94 
3D annotation tools30-33 with AI assistance34,35 and proofreading36, it still requires significant manual expertise 95 
and intervention37-41. Moreover, labelling suffers from inter- and intra- annotator variation42-44 and be biased 96 
towards easy cases. Consequently, both classical45-48 and deep-learning based49-51 3D segmentation method 97 
development focus primarily on nuclei, which have well-defined round shapes, are separated from neighbors, 98 
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and visualizable with high clarity by nuclear dyes52. The scarce densely annotated, proofread datasets of 3D 99 
cells53 have primarily been of plant tissue8,54, or few cell aggregates17,55 or of embryos56. Even these have 100 
few unique images and have been assembled from crops or are of different timepoints of limited true 101 
biological replicates. Synthetic57,58, partial59 or generative model60,61 synthesized datasets have been 102 
proposed to alleviate the need for fully labelled data, but have so far only been demonstrated to star-convex 103 
morphologies. It is unclear how they generalize to more complex morphologies, image background and future, 104 
novel 3D imaging modalities. 105 

High quality, annotated datasets with solid ground truth and minimal noise62 are not the only limitation. The 106 
time to train or fine-tune foundation models is already a major consideration in 2D, requiring significant time 107 
investment, memory and specialized GPUs1,2,19,20,63 or careful dataset curation64. Training comparable 3D 108 
models will not only require more time and dedicated resources, but suffer additional challenges such as 109 
model overparameterization, necessitating more efficient, revised architecture designs10,17,65. Lastly, even if 110 
trained on a vast dataset, foundation models still cannot guarantee generalization nor robustness66,67. SAM 111 
models are nevertheless fine-tuned for medical1 and microscopy19 and microscopy19 datasets. Cellpose 112 
models also require retraining for best performance68. Moreover there is no way to choose what will work a 113 
priori62. Consequently, at the expense of reduced segmentation coverage or accuracy, it is more efficient for 114 
academic labs to adopt human-in-the-loop, interactive segmentation tools like ilastik69 or to use segmented 115 
nuclei as seeds for 3D watershed29.  116 

To address the shortcomings of directly training 3D segmentation models, we revisit the idea of leveraging 117 
2D cell segmentations to generate consensus 3D segmentations without data retraining. Using 2D predictions 118 
to assist 3D inference is common, largely to minimize computation and training. Primarily this involves 119 
adapting pretrained 2D models to 3D for example by inflating 2D convolutional kernels followed by fine-tuning 120 
in 3D65, or are applied to process the 3D data slice-by-slice and the outputs are combined and processed by 121 
a separately trained 3D model70. Few works examine no-training approaches. For segmentation, near-122 
universally 2D segmentation tools generate a 3D segmentation by matching and stitching 2D segmentations 123 
across xy slices6,28 whereby stitching is controlled by an overlap score. Relying on a single view these 3D 124 
segmentations are notoriously rasterized and often erroneously join multiple touching cells as 125 

tubes28,35,52,71-73. CellStitch74 and 3DCellComposer52 propose matching across orthogonal xy, xz, yz views 126 
to find a consensus 3D segmentation. However these discrete matching approaches are inherently difficult 127 
to computationally scale-up with cell numbers and cannot easily handle missing, undersegmented or 128 
oversegmented cells across slices. Interestingly, Cellpose6 proposed to average predicted 2D flow vectors 129 
along the xy, xz and yz directions to construct a 3D gradient map. By tracing the gradient map to the simulated 130 
heat origin, the 3D cell instances are found by grouping all voxels ending up in the same sink. Whilst 131 
conceptually elegant, its execution has been restricted to Cellpose predicted gradients and demonstrates 132 
limited performance on anisotropic74, noisy or morphologically non-ellipsoidal datasets17 despite training. We 133 
also empirically observe puzzling fragmentation artefacts around 3D cell centroids in the predicted 134 
segmentation, incompatible with its theory and inconsistent with simply stitching the equivalent cellpose 2D 135 
cell masks74.    136 

To derive a formal framework for 2D-to-3D segmentation unifying stitching and Cellpose proposed gradient 137 
aggregation, we revisited the instance cell segmentation problem from first principles. We find that the general 138 
2D-to-3D aggregation can be formulated as an optimization problem, whereby we reconstruct the 3D gradient 139 
vectors of the distance transform equivalent of each cell’s 3D medial-axis skeleton. This problem is then 140 
solved to obtain the corresponding 3D segmentation using gradient descent and spatial connected 141 
component analysis. To generate consensus 3D segmentations for any 2D segmentation method and using 142 
any of one, two or all three xy, xz, yz views, we developed a toolbox, u-Segment3D. u-Segment3D 143 
implements robust methods and exposes hyperparameters to flexibly handle imperfect 2D segmentations. 144 
Moreover it includes preprocessing and postprocessing methods to assist the application of pretrained 145 
models on unseen datasets, to correct and to recover missing 3D segmentation features. We first describe 146 
our formalism of 2D-to-3D segmentation. We then validate u-Segment3D by optimal, near-perfectly 147 
reconstructing the reference 3D segmentations in 11 real-life datasets, >70,000 cells from few cell aggregates, 148 
embryos, tissue, and entire vasculature networks from its 2D slice-by-slice segmentations. We then use 149 
pretrained Cellpose 2D models to demonstrate how to use u-Segment3D for any 2D method. We further 150 
validate u-Segment3D faithfully translates 2D segmentation performance and further exploits complementary 151 
information from multiple views to deliver consistent and improved 3D segmentation. In short, the better the 152 
2D segmentation, the better the resultant 3D segmentation. Finally using pretrained Cellpose 2D models, we 153 
demonstrate the flexibility and capacity of u-Segment3D to segment unseen 3D volume data bn  sets of 154 
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anisotropic cell cultures, and unwrapped embryo surfaces15; high-resolution single cells and cell aggregates 155 
with intricate surface protrusions75; thin, sprouting vasculature in zebrafish, and tissue architectures imaged 156 
with spatial multiplexing25 and electron microscopy76. 157 

The u-Segment3D package is implemented in Python 3 using open-source packages. Scripts and 158 
configuration files are available to facilitate parallel computing and deployment on CPU-based high-159 
performance computing (HPC) clusters for large 3D volumes. u-Segment3D is freely available and can be 160 
installed locally from https://github.com/DanuserLab/u-segment3D. 161 

 162 

Results  163 

A formal framework for 2D-to-3D segmentation 164 

Dense instance segmentation identifies every object instance in the image and assign a unique id to all voxels 165 
comprising an instance. This is equivalent to: (i) binary labelling every image voxel as foreground (value 1) 166 
or background (value 0), and (ii) further assigning to a foreground voxel, a unique positive integer ID, (Fig. 167 
1a). Starting with an instance segmentation of touching 2D cells, if we erode each object by 1 pixel from its 168 
border, then every cell would become spatially separated. Consequently, unique object IDs becomes 169 
redundant. The cells are equally-well represented by a binary foreground/background image, whereby object 170 
IDs are parsed by performing connected component analysis to identify spatially contiguous regions, (Fig 1b). 171 
This binary image can be factorized and equally-well computed from its 1D slices in either x- and y- directions, 172 
(Fig 1c i). Within each 1D slice we can independently identify spatially contiguous 1D regions as unique 1D 173 
‘cells’, (Fig 1c ii). However, when 1D slices are restacked into a 2D image, regardless of the 1D labelling, 174 
only unique 2D objects retain spatial adjacency across 1D slices (Fig. 1c iii). Treating all 1D cells as 175 
foreground and applying connected component analysis re-identifies 2D contiguous regions and fully 176 
reconstructs the original 2D instance segmentation (Fig. 1d iv). This immediately implies that given the perfect 177 
1D instance segmenter that accurately delineates the cell boundary even when touching in 1D, the ideal 2D 178 
segmentation can be reconstructed: run the 1D segmentation slice by slice, eroding each unique 1D ‘cell’ to 179 
ensure spatial separation, combine the 1D slices identified from x- and y- scans into a 2D binary image, apply 180 
spatial connected components to identify spatially contiguous 2D objects and reverse the amount eroded in 181 
1D. Combining orthogonal views is now necessary to resolve touching cell boundaries. These first principle 182 
arguments hold equally in 3D and higher dimensions. In 3D however, instead of 1D ‘slices’ we have x-y, x-z, 183 
y-z 2D ‘slices’. Generally, n-1 D segmentation implies n D segmentation.  184 

However, how much do we need to erode to guarantee applicability to heterogeneous cell size and 185 
morphology? Firstly, the ideal erosion process should be uniform with respect to individual cell boundary, as 186 
this ensures maximal separation from neighbors at all points on the boundary.  Secondly, we observe that 187 
iterative application of uniform erosion evolves any cell shape to its medial axis skeleton77 (MAT). At this 188 
point, every object must be spatially separated.  Crucially for 2D-to-3D segmentation, the skeleton of 2D 189 
slices coincides with the medial axis skeleton of the corresponding 3D object. Resolution permitting, the 2D 190 
skeletal slices of each unique 3D object remain spatially proximal after 3D stacking, enabling identification 191 
by spatial proximity. Then, reversing the erosion will yield the 3D instance segmentation. To implement a 192 
reversible erosion process we note that the medial-axis skeletons are attractors of distance transforms77,78, 193 
Φ and are the ‘ridges’ in the distance transform78,79. Thus uniform erosion is performed by iteratively advecting 194 

the foreground coordinates with stepsize 𝜂, in the direction of the local gradient, ∇Φ. Finally, as the distance 195 
transform is continuous and real-valued, the 3D distance transform gradients can be approximately 196 
reconstructed from its 2D slice counterparts. The general 2D-to-3D segmentation algorithm (Fig. 1d) is thus:  197 

1. Generate all 2D segmentations in orthogonal x-y, x-z, y-z views. 198 
 199 

2. Choose a distance transform specifying the 2D medial-axis skeleton and apply this to compute the 2D 200 
gradients for the 2D segmentations in x-y, x-z, y-z views. 201 

 202 

3. Reconstruct the 3D gradients of the distance transform ∇Φ𝑥𝑦𝑧
3D  from the 2D gradients, using an averaging 203 

function, 𝐹  204 
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where   ∇Φ𝑥𝑦𝑧
3D ≈ 𝐹(∇Φ𝑥𝑦

2D + ∇Φ𝑥𝑧
2D + ∇Φ𝑦𝑧

2D) 205 

Use 𝐹 to also reconstruct the 3D foreground binary, 𝐵 206 
4. Identify all (𝑥, 𝑦, 𝑧) foreground coordinates in 𝐵.  207 

Foreground ≔ {(𝑥𝑡=0
1, 𝑦1

𝑡=0, 𝑧1
𝑡=0), … . , (𝑥𝑛

𝑡=0, 𝑦𝑛
𝑡=0, 𝑧𝑛

𝑡=0)}| 𝐵(𝑥𝑛
t=0, 𝑦𝑛

t=0, 𝑧𝑛
t=0) = 1 208 

 209 
5. Apply gradient descent in 3D to iteratively propagate all foreground coordinate points for a fixed number 210 

of total iterations, 𝑇, to uncover its 3D skeleton attractor  211 

(𝑥𝑛
𝑡 , 𝑦𝑛

𝑡 , 𝑧𝑛
𝑡 ) ← (𝑥𝑛

𝑡−1, 𝑦𝑛
𝑡−1, 𝑧𝑛

𝑡−1) − 𝜂 ∇Φ𝑥𝑦𝑧
3D (𝑥𝑛

𝑡−1, 𝑦𝑛
𝑡−1, 𝑧𝑛

𝑡−1) 212 

 213 
6. Group all coordinates at final advected positions by spatial proximity and assign to each a unique positive 214 

integer object id. 215 

𝐿𝑡=𝑇(𝑥𝑛
𝑇 , 𝑦𝑛

𝑇 , 𝑧𝑛
𝑇) = 𝑖𝑑 ∈ 𝕫+ 216 

7. Transfer the labels back from the final to the initial coordinates to obtain the 3D instance segmentation. 217 

3𝐷 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∶= 𝐿𝑡=0(𝑥𝑛
𝑡=0, 𝑦𝑛

𝑡=0, 𝑧𝑛
𝑡=0) = 𝐿𝑡=𝑇(𝑥𝑛

𝑇 , 𝑦𝑛
𝑇 , 𝑧𝑛

𝑇) = 𝑖𝑑 ∈ 𝕫+ 218 

We assume throughout that gradients are unit length normalized, ∇Φ ←
∇Φ

|∇Φ|
 . In order to operationalize this 219 

conceptual algorithm effectively for real datasets and models that predict imperfect 2D segmentations we 220 
developed a comprehensive toolbox, u-Segment3D. 221 

 222 

u-Segment3D is a toolbox to create consensus 3D segmentations from 2D segmentations 223 

u-Segment3D aims to execute a robust, consistent and scalable framework of generating consensus 3D 224 
segmentations given an input volume and 2D segmentations or model outputs from orthogonal views, (Fig. 225 
1e, Suppl. Movie 1). To achieve this, u-Segment3D implements robust algorithms for each key component 226 
of the outlined general 2D-to-3D segmentation algorithm. To retain flexibility to account for imperfect 2D 227 
segmentations, algorithms expose tunable hyperparameters.  228 

First is implementing multiple distance transforms to allow choices between speed, accuracy, and 229 
compatibility with 2D model outputs, (Extended Data Fig. 1). There is no unique definition nor computation 230 
for an object’s medial-axis skeleton77,78. u-Segment3D considers a single centroid lying on/near the medial-231 
axis as valid and usable for 2D-to-3D segmentation. Our implemented distance transforms are categorized 232 
into two classes; ‘explicit’ (Extended Data Fig. 1b) or ‘implicit’ (Extended Data Fig. 1c) by how their attractor 233 
is specified. Explicit transforms define explicit attractor coordinates which are incorporated as boundary 234 
conditions in computation (Methods). This ensures gradients are 0 in the attractor and enables stable 235 
convergence via gradient descent (Suppl. Movie 2). u-Segment3D implements single ‘point’ and multi ‘point 236 
set’ source attractors. The single point is the internal medial centroid, whose placement is adjustable by 237 
percentage thresholding of the cells’ Euclidean distance transform (EDT) (Extended Data Fig. 1d, Methods), 238 
extending the definition in Cellpose6. The point set is its 2D skeleton (Methods). To compute the distance 239 
transforms, u-Segment3D considers two different partial differential equations (PDEs); the Eikonal equation 240 
which gives the geodesic solution and the Poisson equation which gives the heat diffusion solution, as used 241 
in Cellpose6. The Eikonal equation is faster to solve using the fast marching method80 but generate less 242 
smooth gradients. The Poisson equation is solved exactly using LU decomposition (Methods).  243 

Implicit transforms specify the medial skeleton implicitly as ridges. Consequently, convergence to the attractor 244 
is unstable7,78 (Suppl. Movie 2) but is more efficient, requiring solve only the PDEs without additional 245 
constraints. The Eikonal equation can then be solved using EDT which is also an intermediary output of many 246 
2D segmentation models3,7. Irrespective of the chosen distance transform, it is imperative for 2D-to-3D 247 
segmentation that the distance transform is computed in the cell to faithfully capture its shape. Iterative 248 
solutions implemented by Cellpose to solve the Poisson equation are not applicable.  When diffusion is 249 
restricted in elongated and torturous structures, the gradients collapse to zero (Extended Data Figure 1e). u-250 
Segment3D’s exact solution remains robust, never zero even in very long structures, as evidence by raising 251 
the distance transform by an exponent 𝑝, Φ𝑝 to avoid floating-point introduced non-unique gradients.  252 

Second is implementing a content-based averaging function, 𝐹 to fuse 2D image stacks, (Extended Data Fig. 253 
2). 2D slice-by-slice segmentation may miss or under- or over-segment a cell across slices. Inspired by 254 
multiview image fusion81,82, u-Segment3D fuses multiple image stacks using linear inverse local variance 255 
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weighting (Extended Data Fig. 2a, Methods). Using EDT as example, segmentation errors across slices 256 
cause non-continuity such that erroneous pixels have high local variance. Using inverse weighting the value 257 
of pixels from images with high-variance are down-weighted in the final fusion (Extended Data Fig. 2b). 258 
Increasing the size of the local pixel neighborhood enables correcting larger errors. For a 1x1x1 pixel 259 
neighborhood, 𝐹 is the mean average fusion of Cellpose6 and therefore no error correction. With a 5x5x5 260 
pixel neighborhood, binary thresholding on the fused EDT perfectly recovers the foreground nuclei without 261 
artefacts (Extended Data Fig. 2c).  262 

Third, is robustly implementing gradient descent in 2D and 3D, (Extended Data Fig. 3). For downstream 263 
spatial proximity clustering gradient descent must propagate points of the same attractor together whilst 264 
retaining spatial compactness (Extended Data Fig. 3b). We verify our implementation using a synthetic 2D 265 
image of two objects, a circle within a doughnut (Extended Data Fig. 3a). Though simple, the object gradients 266 
is complex with features typical of more nuanced morphologies such as local sinks and separating flows of 267 
opposite orientation. Running 100 iterations, whereas Cellpose implementation has orphaned foreground 268 
points of the ring and has an erroneous line attractor for the circle, u-Segment3D propagates points stably 269 
converging towards their two point attractors (Extended Data Fig. 3c) and perfect reconstruction of the original 270 
objects.  271 

Last is implementing robust spatial proximity clustering using image-based connected component analysis, 272 
(Extended Data Fig. 4). Too many or too few clusters directly translates to over- and under- segmentation. 273 
With heterogeneity in cell shape, points will not converge to their attractors at the same time. Running gradient 274 
descent to ensure convergence for all cells is limiting in 3D. Consequently clustering must generalize to 275 
uniform point densities and irregular-shaped attractors. Adaptive local histogram thresholding used by 276 
Cellpose6 is sensitive to point density. Density-based clustering are sensitive to the minimum number of 277 
points or radius used to define a cluster. u-Segment3D instead exploits the fact that foreground coordinates 278 
are on an image grid (Extended Data Fig. 4a). The final advected coordinates are rasterized (if floating-point) 279 
using flooring (step i). A count of the number of coordinates in each voxel is tabulated (step ii) and smoothed 280 
with a Gaussian filter of 𝜎 to build an approximate kernel density heatmap, 𝜌 (step iii). 𝜌 is sparse, enabling 281 

clusters represented by regional hotspots to be identified using a global threshold, 𝑚𝑒𝑎𝑛(𝜌) + 𝑘 ⋅ 𝑠𝑡𝑑(𝜌) 282 

where 𝑘 can be used for adjustment. Connected component analysis labels all spatially contiguous regions 283 

with unique ids (step iv). The final segmentation is generated by indexing into this labeled image at the final 284 
advected coordinates of foreground voxels, and transferring the labeling to initial coordinates. 𝜌 enables 285 

probabilistic cluster identification. By increasing 𝜎 u-Segment3D can ‘fuzzy’ link erroneously multiple clusters, 286 
equivalent to merging segmentations in the final 3D. We validated our implementation, by reconstructing the 287 
2D cell segmentation as we propagate foreground coordinates along the gradients of the geodesic centroid 288 
distance transform (Extended Data Fig. 4b i,ii). As expected, initially (iteration 0), the segmentation is identical 289 
to applying connected component analysis to the foreground binary. As iterations increase, and attractors 290 
are found, detected cell numbers converge on the true number (Extended Data Fig. 4b iii, top). 291 
Correspondingly, segmentation quality, measure by the intersection-over-union (IoU) and F1 score, 292 
increases to 1 (Extended Data Fig. 4b iii, bottom). These observations translate also to elongated, touching 293 
cells (Extended Data Fig. 4c). Moreover, only our clustering recovers the number of clusters present in the 294 
final coordinates propagated by either Cellpose or u-Segment3D’s gradient descent for the synthetic image 295 
of a circle within a doughnut (Extended Data Fig. 3d, 4d). In contrast Cellpose’s clustering artificially breaks 296 
up what should be single clusters (Extended Data Fig. 3d). This critically impacts Cellpose 3D segmentation 297 
of low signal-to-noise ratio cells (Extended Data Fig. 4e,f). Whereas, Cellpose 3D grossly oversegments and 298 
fractures individual cells, u-Segment3D’s gradient descent and connected component clustering recovers 299 
complete cell segmentations when applied to reparse the same predicted foreground binary and 3D gradients 300 
(Extended Data Fig. 4e,f, Suppl. Movie 3).  301 

To maximize the utility of pretrained 2D models, u-Segment3D further implements preprocessing and 302 
postprocessing modules. The image to segment may not reflect the quality, acquisition, noise distribution and 303 
modality of the training dataset that a model was trained on. Preprocessing can help transform input images 304 
to improve performance29,64. However it is dataset and model-specific. Nevertheless, the following general 305 
order of processing implemented by u-Segment3D works well in practice: intensity normalization, none or 306 
any combination of denoising, deconvolution and ridge feature enhancement, and uneven illumination 307 
correction with optional gamma correction (Methods). Postprocessing follows the order of filtering out 308 
implausible segmentations based on size and consistency with the reconstructed 3D gradients (as in 309 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592249doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.592249
http://creativecommons.org/licenses/by-nd/4.0/


Cellpose6), then optionally, spatial-connectivity aware label diffusion to refine segmentations to better adhere 310 
to cell boundaries within a guide image, and guided filtering to recover missing or intricate subcellular details 311 
to the individual cell segmentations. No postprocessing requires further 3D training (Methods).  312 

The rest of the paper explores in detail each module of u-Segment3D, highlighting salient parameters and 313 
specific modifications for application to real datasets.  314 

 315 

3D smoothing of reconstructed 3D gradients from 2D and suppressed gradient descent are 316 
essential for 2D-to-3D segmentation 317 

To understand how the different components of the 2D-to-3D algorithm may impact 3D segmentation, we 318 
first empirically investigated 1D-to-2D segmentation of cell morphologies from the Cellpose6 and Omnipose7 319 
training datasets, which can be intuitively visualized (Extended Data Fig. 5). We first examined the 320 
approximation of 2D gradients using 1D gradients (Extended Data Fig. 5a). To compute 1D gradients, we 321 
consider each disconnected 1D region as a unique ‘cell’. Then, for each cell, we computed the distance of 322 
its coordinate to the slice centroid, took central differences and unit length normalized the vectors. The 2D 323 
gradients are reconstructed by stacking the x- and y- direction gradients and smoothing with a 2D Gaussian 324 
filter, width 𝜎. We then performed gradient descent to recover the 2D segmentation and compute the gradient 325 
descent trajectory. Across single cells representing spherical, convex, branched and vessel morphologies, 326 
Gaussian filtering was essential to recover the original 2D segmentation (Extended Data Fig. 5b). With no 327 
smoothing, 1D gradients have insufficient 2D context. The reconstructed 2D gradients can fail to specify a 328 
single fixed-point attractor. Consequently trajectories do not connect all foreground pixels to a single point, 329 
unlike 2D computed gradients. 2D Gaussian filtering however restores lost 2D correlations. Increasing 𝜎, 330 
trajectories are regularized ultimately converge to single points. The smoothing is conformalizing the initial 331 
shape, shifting its 2D centroid towards the centroid of its convex hull. For concave structures, this attractor 332 
may lie outside the cell. To examine the implications of this for gradient descent, we considered full image 333 
segmentations. For a Cellpose exemplar (90 cells), across many cells, the reconstructed 2D gradients 334 
smoothed by 𝜎 = 1  contains more than one attractor (Extended Data Fig. 6a). Consequently, after 50 335 

iterations of gradient descent we oversegment (143 cells). Nevertheless, the reconstruction is good (𝐹1 =336 

0.77, IoU=0.91), with the fragmentation splitting off largely small cell fragments.  many cells are correctly 337 

segmented. Expectedly, increasing 𝜎 regularizes the reconstructed gradients. For 𝜎 = 5, segmentation (93 338 

cells, F1=0.94, IoU=0.93) is on-par from ideal 2D gradients (93 cells, F1=0.98, IoU=1.00). Beyond 𝜎 > 5, 339 
gradients interact across neighboring cells, decreasing IoU and F1 performance (Extended Data Fig. 6a iv). 340 
Consequently, the number of predicted cells drops. Thus 𝜎 should be less than the smallest separation 341 
distance between the medial axis skeletons of any two cells. For long and thin tubular structures in the 342 
Omnipose exemplar (86 cells), increasing 𝜎  shifts the attractor centroid into neighboring cells. Thus 343 

increasing 𝜎 improved F1 but also decreased IoU, with an optimal balance at 𝜎 = 3 (F1=0.49, IoU=0.60) 344 
(Extended Data Fig. 6b iv). As motivated, gradient descent is only used to separate adjacent cells, not to be 345 
run to convergence. We hypothesize improved segmentations with fewer iterations. To implement this without 346 

changing total iterations, we use a variable stepsize7, 𝜂 =
1

1+𝜏⋅𝑡
  which decays temporally with increasing 347 

iteration number 𝑡 and 𝜏 adjusts the decay rate. Applying the suppressed gradient descent7 with 𝜎 = 1 now 348 

perfectly reconstructed the 2D segmentation (86 cells, F1=1.00, IoU=1.00) (Extended Data Fig. 6c).  349 

To test if insights from 1D-to-2D translate to 2D-to-3D we conducted the analogous reconstruction experiment 350 
for single 3D cells (Extended Data Fig. 7a). Similar to 1D-to-2D, the 2D geodesic centroid distance transform 351 
(Methods) was computed slice-by-slice in orthogonal xy, xz, yz stacks, treating spatially contiguous 2D 352 
regions as unique ‘cells’. The 3D gradients was then reconstructed by averaging (𝐹  with 1x1x1 pixel 353 
neighborhood). 3D cells were selected to represent a spectrum of distinct morphologies from pseudo-354 
spherical, to pseudo-convex and branched, and with different types of surface protrusions (Extended Data 355 
Fig. 7b). Applying suppressed gradient descent (𝜏 = 0.1) for 200 iterations, we found similar results as 1D-356 
to-2D, with 3D cell examples of pseudo-spherical, pseudo-convex and branched morphologies with different 357 
types of surface protrusions, (Extended Data Fig. 7b,). Gaussian smoothing aids regularization and 358 

increasing 𝜎 ensures convergence to a single cell, even for the highly branched cell with filopodia (𝜎 = 15). 359 

The same cell was fragmented into several regions at branch junctions at lower 𝜎 = 1 . As expected, 360 

increasing 𝜏 = 0.5 recovers perfect construction of the branched cell at the lower 𝜎 = 1. 361 
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In summary, Gaussian filtering of the reconstructed 3D gradients from 2D is key for 3D segmentation, but not 362 
implemented by Cellpose 2D. 𝜎 should be smaller than the expected minimum distance between 3D cell 363 
skeletons. To enable 3D segmentation under this limiting condition for heterogeneous morphologies, 364 
suppressed gradient descent is also essential. We next tested how different distance transforms impact 2D-365 
to-3D segmentation in whole datasets.  366 

 367 

u-Segment3D reconstructs the ideal 3D segmentation from ideal orthogonal 2D slice-by-slice 368 
instance segmentations  369 

We assembled 10 published 3D datasets with dense segmentation labels and 1 additional zebrafish 370 
macrophage dataset (Suppl. Table 1). This latter dataset was curated in-house by combining connected 371 
component analysis and u-Segment3D generated segmentations83. DeepVesselNet10 is a dataset of 372 
simulated binary vasculature networks. We applied connected component analysis to identify disconnected 373 
subnetworks as unique ‘cells’. The total number of cells across all datasets was 73,777. For each reference 374 
cell segmentation, we extracted 8 morphological features (Fig. 2a, Methods), chosen to assess cell size (total 375 
number of voxels), the extent of elongation (stretch factor) and the topological complexity (# of skeleton 376 
nodes). To visualize in 2D the morphological diversity and variation in cell numbers across datasets, we 377 
applied UMAP84 to the normalized features (Fig. 2b, Methods). Two plant datasets: Arabidopsis (CAM) 378 
(24,439) and Ovules (37,027) contribute the majority of the cells (83%) and dominates the UMAP. Random 379 
sampling 6 UMAP regions, the assembled datasets captures commonly found 3D morphological archetypes 380 
encountered in tissue including thin, complex vessel-like networks (Region 1), pseudo-spherical (Regions 2-381 
4), irregular (Region 5), and tubular or branched (Region 6). Using the per dataset median UMAP coordinate, 382 
and colored UMAP by stretch factor, # skeleton nodes and volume, we broadly group  the 11 datasets by the 383 
three super-morphological archetypes they best represent: complex networks (DeepVesselNet), 384 
irregular/branched (Zebrafish macrophages/Platynereis ISH nuclei/MedMNIST3D/Lateral Root Primordia), 385 
and convex (C. Elegans embryo/mouse organoid/mouse skull nuclei/Platynereis nuclei/Arabidopsis 386 
(CAM)/Ovules).  387 

For all images in each dataset, we reconstruct the reference 3D segmentation from their ideal 2D slice-by-388 
slice segmentations (Fig. 2c). Scanning the reference 3D segmentation in xy, xz, yz views slice-by-slice, we 389 
treat each 2D contiguous region in a 2D slice as a unique ‘cell’. For each 2D ‘cell’, the 2D gradients is 390 
computed and used to reconstruct the 3D gradients, to generate the reconstructed 3D segmentation using 391 
3D gradient descent and connected component analysis. Under this experiment setup, the foreground will 392 
always be correct. This allows us to unambiguously assess 3D reconstruction using 2D gradients. Three 393 
different 2D distance transforms were tested: Poisson diffusion centroid as example of an explicit transform 394 
and used in Cellpose6; Euclidean distance transform as example of an implicit transform and used within 395 
models like Omnipose7, StarDist3; and geodesic centroid as a second example of an implicit transform, but 396 
computed differently (Methods). For all datasets, total gradient descent iterations was fixed at 250, and 397 
reference segmentations were resized to be isotropic voxels with nearest-neighbor interpolation (Suppl. 398 
Table. 1). Drawing analogy to neural network optimization, we further incorporate momentum into suppressed 399 
gradient descent to expedite convergence (Methods). Temporal decay 𝜏 was the only parameter we adjusted 400 
for each transform and dataset (Suppl. Table 2). For all, postprocessing was only to remove cells < 15 voxels. 401 
Reconstructed 3D segmentations were evaluated using the average precision (AP) curve (Methods). The AP 402 
curve reports the average fraction of cells matched between reference and predicted segmentations as the 403 
overlap cutoff (IoU) for a valid match is increased from 0.5 to 1.0 (perfect overlap) (Methods). We use the 404 
notation AP0.5 to denote AP with IoU cutoff henceforth. For perfect reconstruction, AP=1 at all IoU. In practice, 405 
due to numerical accuracy, AP always drops to 0 above an IoU cutoff.  406 

We first analyzed the dataset from each of the three super-morphological archetypes, with the most number 407 
of cells: for convex (Ovules, Fig. 2d), for irregular (Lateral Root Primordia (LRP), Fig. 2e) and for networks 408 
(DeepVesselNet, Fig. 2f) (Suppl. Movie 5). AP curves are plotted by color for transform: magenta (geodesic), 409 
cyan (diffusion) and navy (EDT) and by marker for provided dataset split: circle (train), diamond (test) and 410 
square (validation). Impressively, we find near-perfect reconstruction across all distance transforms, 411 

morphotypes and data splits, qualitatively and quantitatively: Ovules, AP0.5 ≈ 1 , LRP, AP0.5 ≥ 0.8 , and 412 

DeepVesselNet, AP0.5 ≥ 0.8. As expected, increased 𝜏 was required for thinner, branching cells: using EDT, 413 

𝜏 =0.5 for Ovules, and LRP, 𝜏 =2.0 for DeepVesselNet. Findings were also reflected in the other 8 datasets 414 
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(Extended Data Fig. 8), with AP0.5 ≥ 0.75. Moreover IoU was high, with the curve decaying prominently at IoU 415 

≥ 0.85 and for many, IoU ≥ 0.95. IoU > 0.8 masks are near-indistinguishable from the reference by eye7,85. 416 
Gradient descent 2D-to-3D aggregation requires a spatial contiguous path in 3D. Consequently generated 417 
3D segmentations naturally enforce the ideal of a single spatial component per object. This was not checked 418 
and enforced in the reference segmentation. Since we fix the foreground, the performance gap from an ideal 419 
AP0.5 = 1  largely reflect inconsistent labeling in the reference 3D segmentation. For example, balanced 420 
dataset splits should exhibit the same performance. However, in LRP, the AP curve of all three transforms 421 
on the validation (val) split were notably worse. In 6/11 datasets (Ovule/Arabidopsis(CAM)/C.Elegans/mouse 422 
organoid/Platynereis nuclei/vesselMNIST3D), the best distance transform achieved perfect AP0.5 = 1.00. 423 
Notably these are largely convex-shaped datasets or empirically observed to have images with unambiguous 424 
cell edges and minimal background. The other datasets are noisier and more morphologically complex, and 425 
thus harder to annotate and proofread in 3D. LRP is known to contain spurious labels7,44. For zebrafish 426 
macrophages which had the lowest maximum reconstruction performance across all datasets for a transform 427 
(AP0.5 = 0.8 with Poisson), final segmentations were not rigorously proofread. Pretrained Cellpose and u-428 
Segment3D segmentations were replaced by connected component segmentations based on automated 429 
hard-coded rules83. Consequently there are small and multi-component ‘cells’. For DeepVesselNet, the errors 430 
are over-estimated quantitatively. The average number of subnetworks is 3, thus our results reflect on 431 
average 1 misidentified small subnetwork. Qualitatively, there is no noticeable difference in coverage (Fig. 432 
2f), thus errors are likely data resolution-related, for example joining two subnetworks separated by a small 433 
gap (Fig. 2f, white arrow), or size filtering removed a small subnetwork or a segment connecting two 434 
subnetworks is too small and therefore unsupported during gradient computation.  435 

Importantly we observed bias of different transforms for different morphotypes. There was minimal 436 
differences between the two explicit transforms with point-source attractors, Poisson and geodesic. However, 437 
both outperformed EDT on convex morphologies, most evidently in the LRP val (Fig. 2e), mouse skull nuclei 438 
test (Extended Data Fig 8d), Platynereis ISH nuclei test (Extended Data Fig. 8e) and zebrafish macrophages 439 
(Extended Data Fig 8h) datasets. This is primarily due to the increased stability of explicit transforms. EDT 440 
was superior for thin and complex vasculature networks (Fig. 2f, DeepVesselNet), by minimizing the distance 441 
all points needed to propagate. Overall the quantitative difference was small (<0.5 difference in AP0.5) and 442 
not as dramatic as suggested by Omnipose7. This is because under gradient descent the medial axis 3D 443 
skeleton is always an intermediate structure when converging towards a centroid attractor (Suppl. Movie 4). 444 
Qualitatively, we visualized both the diffusion and EDT reconstruction on exemplars from Ovules, LRP and 445 
DeepVesselNet. Despite similar F1 and IoU, only the EDT fully reconstructed all branching cells. Diffusion 446 
fragmented the cell with the longest branch (Fig. 2e, white arrows) into two ‘cells’. Importantly the fragments 447 
are standalone and not erroneously part of or included parts of neighbor cells.  448 

In summary, u-Segment3D empirically achieves near-perfect, consistent 3D segmentations from 2D slice-449 
by-slice segmentation from orthogonal views. In the best case, we have perfect reconstruction. In the worst 450 
case, a subset of branching cells will be decomposed into a few standalone segments to be subsequently 451 
stitched. At the expense of speed, our results show the optimal distance transform applicable for all 452 
morphotypes to be explicit transforms with the 2D object skeleton defined as the attractor. This is why we 453 
have additionally implemented these in u-Segment3D (Methods). Using the 3D reconstruction results as the 454 
best upper bound of segmentation performance we next assessed the application of u-Segment3D to 455 
pretrained 2D segmentation models on the same datasets.  456 

 457 

u-Segment3D generates consensus 3D segmentation from orthogonal 2D slice-by-slice instance 458 
segmentations of any 2D method 459 

2D segmentation models either (i) already predict a suitable distance transform or the 2D gradients directly 460 
as an output e.g. Cellpose6, or (ii) provides the 2D segmentation. u-Segment3D accounts for both cases  (Fig. 461 
3a). In the former, predicted 2D gradients can be used to directly generate the 3D segmentation (the direct 462 
method). In the latter, a chosen 2D distance transform is used to compute the 2D gradients from the 2D 463 
segmentations, (the indirect method). We demonstrate the pros and cons of both methods using pretrained 464 
Cellpose models.  Unlike with our ideal 2D segmentations, now the reconstructed 3D foreground binary plays 465 
an additional crucial factor in performance. If the foreground does not provide a contiguous path for gradient 466 
descent, the resulting segmentation will be fragmented, even with correct gradients. For pretained Cellpose 467 
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2D models we empirically found two model parameters to crucially determine performance: (i) the diameter, 468 
which determines what-sized objects are segmented and (ii) the cell probability threshold used to determine 469 
foreground.  470 

Cellpose 2D models already enable ‘optimal’ diameter prediction based on a pretrained regression model. 471 
However, this assumes one size fits all. An image can contain objects of different scales we wish to segment 472 
e.g. cell body vs cell nuclei, cells within an embryo vs the embryo shape. Moreover, a trained model is not 473 
guaranteed to generalize on out-of-sample datasets or be consistent across sequential 2D slices. When we 474 
examined Cellpose predicted cell probability and gradients on cross-sections LRP, we found seemingly 475 
similar results over a broad diameter range (Extended Data Fig.9a-c). To set diameter objectively without 476 
training, we developed an automatic tuning method based on examining the model’s self-confidence. Our 477 
method runs Cellpose over a test diameter range to compute a ‘contrast score’ per diameter using the 478 
predicted gradients and cell probability using local pixel variance (Extended Data Fig. 10a, Methods). The 479 
resulting function uncovers all salient object scales as local maxima. Our contrast function serves as a tuning 480 
guide. Cellpos models are trained using a mean diameter of 30 pixels and documented to perform best for 481 
diameter=15-45 pixels. Based on the peak of the contrast function images are resized accordingly prior to 482 
Cellpose input. In batch operation, u-Segment3D automatically selects the optimal diameter as that which 483 
has maximum contrast. If multiple peaks are present, we can bias the selected optimal parameter to favor 484 
other maxima by adjusting the size of the considered pixel neighborhood used to compute contrast score 485 
(Extended Data Fig. 10) or by constraining the diameter range. In 3D, the cross-sectional appearance of an 486 
object can have different aspect ratios and size, even if the image is resized to be isotropic voxels. Therefore 487 
we apply our tuning to set the optimal diameter in each of xy, xz, and yz views using a representative 2D 488 
slice (Methods). As validation, the Cellpose predicted diameter matches the predicted maxima of our method 489 
(Extended Data Fig. 9a-c). Moreover, the direct method 3D segmentation using our method (AP0.5=0.28) is 490 

comparable vs using Cellpose’s method (AP0.5=0.23), if not better (Extended Data Fig. 9d).  491 

For thresholding cell probability, Cellpose does not provide automated means. u-Segment3D uses multi-492 
threshold Otsu to statistically determine a finite number of thresholds (Methods). We can then use flooring to 493 
round thresholds to the nearest decimal point, or choose a lower threshold to strike a balance between 494 
segmentation accuracy and ensuring contiguous space for gradient descent. This works excellently for both 495 
2D Cellpose and for 3D reconstructed cell probabilities. Given the problems we found with Cellpose’s gradient 496 
descent (Extended Data Fig. 3), and spatial clustering (Extended Data Fig. 4), henceforth we always use u-497 
Segment3D’s equivalent to generate segmentations. Thus Cellpose 2D refers only to predicted gradients and 498 
cell probability outputs. Cellpose 2D segmentation refers to that after applying u-Segment3D’s statistical 499 
binary thresholding, suppressed gradient descent with momentum and connected component analysis to 500 
Cellpose 2D outputs.  501 

Using our tuning and parsing of Cellpose, with image preprocessing and segmentation postprocessing by 502 
size and gradient-consistency, we compared the direct and indirect method of u-Segment3D on 9/11 datasets 503 
(see Suppl. Table. 3 for parameter details). We excluded Zebrafish macrophages whose labels derive from 504 
u-Segment3D and VesselMNIST3D which only contains binary masks. We also considered two pretrained 505 
Cellpose models, ‘cyto’ and ‘cyto2’, both generalist models but have been trained on different datasets to 506 
assess if 2D performance translates to better 3D segmentation. To minimize data leakage, we applied models 507 
to only the validation or test splits when available.  508 

On Ovules val split (n=2,840 cells, m=2 images, Fig. 3b i), we found excellent performance with both models 509 
(cyto: magenta line, square marker, cyto2: purple line, diamond marker) using the direct method (Fig. 3b ii, 510 
AP50 ≈ 0.80 for both). This was expected as the cells are convex and image quality is good, with well-defined 511 
cell edges. This is also evidenced by good performance of running Cellpose 3D mode on the same 512 
preprocessed input. Cellpose 3D does not have automatic diameter tuning and allows only one diameter 513 
across all views. To attempt as fair a comparison as possible as an end-user, without modifying the source 514 
code, we considered the oversegmentation tendency of Cellpose 3D and used the maximum of u-Segment3D 515 
inferred diameters. We also ran Cellpose 3D twice, the first to obtain 3D cell probabilities to compute the 516 
equivalent Otsu thresholds and the second to obtain final segmentations (Methods). We also used the same 517 
postprocessing parameters. As expected from algorithm design, for the same model, u-Segment3D 518 
consistently outperforms Cellpose 3D (cyto: orange line, square marker, cyto2: brown line, diamond marker). 519 
Most impressively however is that u-Segment3D even boosted the ‘cyto’ model to be on par with ‘cyto2’ from 520 
𝐴𝑃0.5 = 0.7 to 𝐴𝑃0.5 = 0.8. The same was true for the test split (n=10,328 cells, m=7 images, Extended Data 521 
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Fig. 11). Again u-Segment3D boosted ‘cyto’ to be on par with ‘cyto2’ from 𝐴𝑃0.5 = 0.65  to 𝐴𝑃0.5 = 0.7 . 522 

Compared to the best 3D construction with ideal 2D segmentations (black line, circle marker, (AP50 = 1.0) 523 
however, there is a noticeable gap of 0.2. Interestingly, the indirect method with either the geodesic (magenta 524 
colored) or diffusion (cyan colored) distance transforms for both models was better quantitatively than the 525 
direct method (Fig. 3b iii, AP50 > 0.80). This is likely due to better cell boundary delineation from aggregating 526 
on the hard-thresholded 2D segmentations. As compromise however total number of cells predicted is 527 
decreased (reference=1686, direct=1697, indirect=1529). Lastly, we asked if the 2D slices of the direct 3D 528 
segmentation (black lines) still retain good 2D segmentation of the image, by comparing to the native 2D 529 
slice-by-slice segmentations in xy, xz, and yz views (magenta lines) aggregated by the indirect method (Fig. 530 
3b iv). We found that not only is the 2D segmentation preserved but also consistently improved in xy view for 531 
both models (AP0.5 = 0.45 to 0.55). This demonstrate u-Segment3D exploits complementary information from 532 
orthogonal predictions.  533 

LRP is much more challenging, containing not only a mixture of both compact and elongated/branching cells, 534 
but cell edges are also weakly-defined (Fig. 3c). Unsurprisingly, direct u-Segment3D segmentation with both 535 
models on the val split was substantially lower (AP50 ≈ 0.30 for both) than that from ideal 2D segmentations 536 

(AP50 ≈ 0.90). This time, u-Segment3D is significantly better than Cellpose 3D (AP50 ≈ 0.05 for both) in both 537 

the val and test split (Extended Data Fig. 11, improving Cellpose 3D cyto (AP50 = 0.18 to 0.37) and cyto2 538 

(AP50 = 0.19 to 0.40)). Interestingly the AP50 we measured for u-Segment3D and pretrained Cellpose were 539 
on-par reported of a Cellpose 2D (plant-cp) and Omnipose 3D (plant-omni) model trained specifically on LRP 540 
by Omnipose7. We thus performed a like-for-like evaluation using their pretrained model weights (Methods). 541 
Unexpectedly, plant-cp with indirect u-Segment3D and any distance transform performed best for both val 542 
(AP0.5=0.50, Extended Data Fig. 11c) and test (AP0.5=0.50-0.56) splits. Amazingly, 3D trained plant-omni and 543 
plant-cp (Cellpose 3D mode) performed only on-par with pretrained cyto2 and direct u-Segment3D in both 544 
splits. Close inspection revealed whilst plant-omni looked excellent in 3D, in cross-sectional views, it can be 545 
seen its segmentation is not complete, with many missing internal pixels. We also find plant-omni 546 
oversegments despite our additional size filtering (Methods).  These results highlight the robustness of u-547 
Segment3D and verifies we can translate better 2D models into better 3D segmentations, on-par with natively 548 
3D trained models. Again, direct and indirect u-Segment3D segmentations were on-par in AP50, but indirect 549 
is better IoU-wise, with a slightly slower drop-off (Fig. 3c iii). Again, u-Segment3D demonstrates the ability to 550 
exploit complementary information from orthogonal views. Impressively, by minimally sacrificing yz IoU, it 551 
consistently increases both xy and xz performance for both models (Fig. 3c iv).   552 

DeepVesselNet, comprised of thin, complex vasculature networks represents the largest challenge for 2D-553 
to-3D segmentation, (Fig. 3d). During application we found both Cellpose models predict segmentations 554 
uniformly larger than the actual vessel radii in 2D slices. Hence we additionally uniformly eroded aggregated 555 
3D segmentations to obtain the final segmentation (Suppl. Table 3). Nevertheless there was a clear difference 556 
between the two models. Using direct segmentation, ‘cyto’ (AP0.5 = 0.5 , IoU drop-off≈0.75) noticeably 557 

outperforms ‘cyto2’ (AP0.5 = 0.5 , IoU drop-off≈0.75) (Fig. 3d ii). Without suppressed gradient descent, 558 

Cellpose 3D grossly oversegments (AP0.5 = 0). Again, direct and indirect u-Segment3D segmentations were 559 

on-par in AP50. However the indirect method is far superior in IoU, with drop-off extending to 0.95 with similar 560 

AP curves across all distance transforms (Fig. 3d iii). Again, comparing 2D segmentation performance, the 561 
direct 3D aggregated cyto outperforms individual 2D segmentations in AP0.5 but exhibits faster IoU drop-off 562 

(Fig. 3d iv). The direct aggregated cyto2 was significantly worse than its 2D counterpart. This is likely due to 563 
the 3D erosion postprocessing removing too many small 2D segmentations in slices. Since, the background 564 
appeared homogeneous in this dataset we additionally tested 2D binary Otsu thresholding. This yielded the 565 
highest AP0.5 2D segmentations in all orthogonal views (Fig. 3d iv, green lines). Applying u-Segment3D, we 566 

consequently also achieve the highest AP0.5 3D segmentation (Fig. 3d iii, green line).  567 

Altogether, these three datasets, representing the three super-morphotypes of convex, irregular/branched 568 
and vessel-like, demonstrate the robust implementation and applicability of u-Segment3D to real datasets. 569 
Moreover u-Segment3D can be applied to any 2D segmentation method using the direct or indirect methods 570 
with similar AP0.5 performance. Thus we applied only the direct method on remainder datasets (Extended 571 

Data Fig. 12). Except for Arabidopsis (CAM) (best AP0.5 = 0.4), whose image quality was similar to LRP and 572 

densely packed, all others had AP0.5 ≥ 0.6 . For mouse organoids, pretrained cyto2 with u-Segment3D 573 

(AP0.5=0.93) nearly matched the ideal 2D segmentation (AP0.5=1.0). 574 
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In summary, u-Segment3D reliable 3D segmentation from 2D. Crucially the results are consistent with 575 
theoretical expectations. The better the 2D segmentation, the better the resulting 3D segmentation. However 576 
the real potential of u-Segment3D lies in its flexibility to enable segmentation of diverse unseen and out-of-577 
distribution datasets, which do not have reference segmentations or when annotation may be ambiguous, or 578 
time-consuming to acquire.  579 

 580 

u-Segment3D reconstructs consensus 3D segmentation from 2D slice-by-slice instance 581 
segmentations from one orthogonal view for anisotropic 3D data  582 

Due to the microscope or culture conditions, 3D cell imaging cannot always be acquired isotropically or be 583 
interpolated to be near-isotropic later in analysis, such that image quality is similar in xy, xz, and yz. In these 584 
cases applying pretrained models like Cellpose, trained on the equivalent of in-focus ‘xy’ slices, to xz and yz 585 
views may yield worse segmentations. If segmenting a timelapse, we may wish to save time. In all cases, u-586 
Segment3D can be applied without all three views. For one view, this is conceptually similar to the stitching 587 
across xy slices. Looking top-to-bottom through an epidermal organoid culture86 (Methods), cells are initially 588 
spherical, becoming increasingly irregular and elongated (Fig. 4a). Even when interpolated to isotropic voxels, 589 
cells are still flat, and stretched in appearance (Fig. 4b). Consequently we applied Cellpose 2D to segment 590 
only xy slices, using the optimal predicted diameter of each slice. u-Segment3D then aggregated the 2D 591 
segmentations into 3D. We compared the 3D segmentation from Cellpose predicted optimal diameters (Fig. 592 
4c,d) and from our contrast score diameters (Fig. 4e,f). Qualitatively, both look similar. Without ground-truth, 593 
and ambiguity in manual labelling without a nuclear marker, we assessed the segmentation consistency 594 
between consecutive xy slices, slice 𝑖 and slice 𝑖 + 1 with AP0.5. This revealed AP0.5 variation is correlated 595 

with morphology. We find a systematic drop in AP0.5 as cell morphology changed from spherical to more 596 

elongated. Overall, our contrast score determination appears more stable, with a higher mean AP0.5 = 0.59. 597 
We plotted the predicted mean cell diameter per slice (green line) with the measured cell diameter of the 598 
resultant segmentation (black line) for each method (Fig. 4g,h). Whilst Cellpose better predicts the absolute 599 
diameter per slice, their correlation across xy slices was only moderate (Pearson’s R = 0.47). In contrast, u-600 
Segment3D’s contrast-score method exhibits strong correlation (Pearson’s R = 0.89). Tthis consistency likely 601 

translated to the improved slice-to-slice AP0.5.  602 

A second example is a video of MDA231 human breast carcinoma cells embedded in a collagen matrix from 603 
the single cell tracking challenge87 (Fig. 4j). These cells have small area and thin, protrusive morphologies 604 
imaged with a noisy background. The 3D image had only 30 z slices, each cell spanning <5 slices. Again, 605 
applying pretrained Cellpose with automatic contrast-score diameter determination on xy slices only, we 606 
successfully generated consistent 3D cell segmentation. Visual inspection confirm the same cell is 607 
consistently segmented across slices. Applying our strategy to every timepoint, we also observed consistent 608 
segmentation of cells across time (Suppl. Movie 6).  609 

Our last example is the segmentation of cells on the surface of a developing drosophila embryo from the 610 
single-cell tracking challenge87. Due to the curved surface, cell dynamics are better visualized using 611 
cartographic surface projections14. Using u-Segment3D we segmented the embryo surface (Methods) and 612 
applied u-Unwrap3D15 to extend the cartographic projection to mapping a surface proximal subvolume (Fig. 613 
4k). We then attempted to segment the 3D cells using xy slices only. Amazingly, despite the unequal pixel-614 
wise metric distortion due to unwrapping, u-Segment3D still produced consistent 3D cell segmentations. This 615 
enabled us to uniquely visualize the migration (black arrows) of cells toward the ventral midline from the side 616 
in relation to cells underneath the embryo surface (Fig. 4k, Suppl. Movie 7).  617 

 618 

u-Segment3D can refine 3D segmentations and recover subcellular detail not captured by 619 
pretrained models 620 

In 3D, cells demonstrate a rich spectrum of protrusive, subcellular surface morphologies. Biologically, these 621 
protrusions can be classified into recurring morphological motifs75 such as blebs, lamellipodia, filopodia, and 622 
villi. These motifs are integral to cell function. Microvilli are used by T-cells to efficiently scan target cells for 623 
antigen88. Blebs and lamellipodia are key for 3D migration89,90 but have also recently been found to drive 624 
proliferation and survival in cancer cells91,92. These protrusions are incompletely represented in existing 2D 625 
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cell training datasets. Importantly, neural networks exhibit spectral bias93, a phenomon of learning low-626 
frequency modes faster and more robustly than high-frequency modes. This means that they can learn strong 627 
shape priors to predict a complete shape from hollow, partial or noisy versions. However, the recovered 628 
shape lacks intricate details such as protrusions. Rectifying this bias requires revising the architecture and 629 
additional training on fine-grained higher quality masks94.  630 

Active contour55 refinement is slow, struggle with concavities95, and cannot handle multiple cells. Random 631 
walker approaches are faster96 but requires careful design of image forces, fine-tuning and iterations for 632 
convergence.  633 

u-Segment3D proposes a two-stage solution to be applied after filtering out implausible cells by size and 634 
gradient consistency (Fig. 5a, i-iii). The first stage (Fig. 5a, iv) is label diffusion based on semi-supervised 635 
learning97 to smooth and improve adherence to the cell boundaries within a guide image, whilst enforcing 636 
spatial connectivity. Each cell in the input segmentation are unique ‘sources’. Each voxel simultaneously 637 
diffuses their ‘source’ to neighbor voxels for 𝑇 iterations based on an affinity graph combining the local 638 
intensity differences in the guide image, and spatial proximity (Methods). The final segmentation is generated 639 
by assigning each voxel to the source with highest contribution (Methods). We can control the extent diffusion 640 
refines the input segmentation using a ‘clamping’ factor such that if ‘clamped’, diffusion can only modify voxels 641 
assigned to background only. We observe improved boundary matching for 𝑇<50 iterations. The guide image 642 
can be the intensity normalized raw image or any image enhancing the desired features to capture in the 643 
segmentation. The second stage uses a guide image to transfer all intricate details in the local spatial 644 
neighborhood around the diffusion-refined cell in one pass using linear-time guided filtering98 (Methods). 645 
Conceptually, this filter is analogous to an interpolation between the binary cell mask and the intensities in 646 
the corresponding spatial region of the guide image. The neighborhood size may be fixed for all cells or set 647 
as a proportion of cell diameter. For guided filtering segmentations, we find a good image is 𝐺 = 𝛼 ⋅ 𝐼𝑛𝑜𝑟𝑚 +648 
(1 − 𝛼)𝐼𝑟𝑖𝑑𝑔𝑒 , a weighted sum of the normalized input image, 𝐼𝑛𝑜𝑟𝑚 and its ridge filter-enhanced counterpart, 649 

𝐼𝑟𝑖𝑑𝑔𝑒, which exaggerates subcellular protrusions.  650 

Applying this workflow, we recovered the majority of missing surface protrusions for cell tightly packed as an 651 
aggregate whilst simultaneously retaining the benefits of the shape prior from Cellpose (Fig. 5a, Suppl. Movie 652 
8). This meant we should be able to segment individual cells imaged with high-resolution lightsheet 653 
microscopy even when membrane staining is inhomogeneous or sparse, situations which challenge 654 
thresholding-based techniques75. We tested this on single cells with different morphological motifs. Knowing 655 
there is only one cell, we directly threshold the 3D reconstructed cell probability (Fig. 5b-d i). The result 656 
captures well the global morphology but cell protrusions only approximately (ii). After guided filtering, all 657 
protrusions are recovered (iii), with comparable fidelity to that of binary thresholding (iv). However, the 658 
segmentation is now much better suited for surface analysis, as measured by the genus number, 𝑔 of the 659 

extracted surface mesh. The postrefined mesh has consistently lower genus than that of thresholding which 660 
were as high as 𝑔 = 91 for filopodia. We can further recover protrusive features on touching cells in a field-661 

of-view as shown for T-cells (Fig. 5e) and zebrafish macrophages (Fig. 5f). Lastly, as a non-cell 662 
demonstration, we tested the segmentation of zebrafish vasculature undergoing angiogenesis (Fig. 5g). The 663 
combination of using pretrained Cellpose 2D as prior and guided filtering recovered the extensive, thin 664 
sprouting vessels, despite the noisy background and inhomogeneous staining (Suppl. Table 4, Suppl. Movie 665 
9)).  666 

 667 

u-Segment3D can multiprocess to generate consensus 3D segmentations of tissue  668 

3D tissues readily contain 10,000’s of cells even for thin tissue of millimeter-width, sub-50 micrometer thick25. 669 
The time for gradient descent increases with iteration number and the number of foreground pixels (related 670 
to image size). Postprocessing increases with the number of segmented cells. To allow segmentations to be 671 
computed in a reasonable time, we also implemented a multiprocessing variant of 2D-to-3D segmentation in 672 
u-Segment3D to take advantage of the wide availability of CPU-based cluster computing (Methods). Fig. 6a 673 
illustrates the key steps, (i) the pretrained 2D model runs fast GPU inference6,99 on 2D slices from orthogonal 674 
views;  (ii, iii) gradient descent is applied in parallel to local spatially-overlapped subvolumes to generate 675 
global image coordinates. This critically ensures that border cells across subvolumes retain the same global 676 
attractor, avoiding the need to post-stitch; (iv) an existing parallelized connected component analysis 677 
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developed for large connectomics datasets is applied to generate the full image 3D segmentation; and (v) 678 
postprocessing of segmentations is applied in parallel to individual segmented cells. The segmentation of a 679 
metastatic melanoma CyCIF multiplexed tissue sample using fused nuclear and membrane signals, imaged 680 
with an equivalent isotropic voxel size 280 nm resolution (Methods), and size 194 x 5440 x 4792 pixels took 681 
≈ 2h for preprocessing and running Cellpose slice-by-slice in xy, xz, yz, ≈ 2h to generate the initial 3D 682 
segmentation from 250 gradient descent iterations and using subvolume sizes 128 x 256 x 256 with 25% 683 
spatial overlap, ≈ 1h for size filtering and gradient consistency checking, ≈ 2h for label diffusion refinement, 684 
a total of 7h to yield the final segmentation with 43,779 cells (Suppl. Movie 10), on a CPU cluster with 32 685 
physical cores, 72 threads, 1.5TB RAM and a single A100 GPU (40GB). Notably, the gradient descent alone 686 
would be > 20x slower. Importantly, we obtained segmentations with no stitching artifacts and agreed well 687 
with the fused cell nuclei and membrane markers when we visualize zoom-ins of the mid-slices from each of 688 
the three orthogonal views (Fig. 6a). Functionally, these segmentations enabled us to improve the accuracy 689 
of 3D cell phenotyping and to show mature and precursor T cells in metastatic melanoma engage in an 690 
unexpectedly diverse array of juxtracrine and membrane-membrane interactions25. Further, the extraction of 691 
3D cell morphological features such as sphericity (Fig. 6a, region 𝛼 ), enabled us to reveal looser 692 
“neighbourhood” associations100 whose morphologies reveal functional states.  693 

Axially-swept lightsheet microscopy101 can image thick cleared tissue volumes at subcellular resolution over 694 
thick sections up to 2mm. This enabled us to visualize single cells within micrometases in lung tissue. 695 
Unexpectedly, despite the weak fluorescence of the injected cancer cells and absence of membrane markers 696 
for cells, we could still segment all salient nuclei and micrometastases (Fig. 6c, Suppl. Movie 11). Indeed, 697 
our initial micrometastases 3D segmentation combining both channels contained many extraneous, spurious 698 
segmented cells, presumably because Cellpose attempts to also infer the shape of non-cancer cells 699 
(Extended Data Fig. 13a). Thanks to the consensus segmentation of u-Segment3D, we could nevertheless 700 
use the segmentations to measure the mean fluorescence intensity to identify well-segmented micrometases 701 
(Extended Data Fig. 13b).   702 

Our final application was to segment cellular structures in brain tissue acquired using a recently developed 703 
technique, CATS76 to label the extracellular compartment, and STED microscopy with tissue expansion. The 704 
result reproduces the detail within electron microscopy images whilst preserving the 3D tissue (Fig. 6d). 705 
However it is difficult to visualize any 3D structure. We applied Cellpose and u-Segment3D with the aim of 706 
an exploratory tool that ‘scans’ the volume to generate consensus 3D segmentations of the larger 707 
extracellular space. However these spaces are heterogeneous, different in size, and morphotype. This is 708 
challenging for Cellpose which is biased towards generating segmentations of the same scale. Applying u-709 
Segment3D as previously was observed to fragment the thick, dominant, branching dendrites (data not 710 
shown). It is only thanks to the ability to fine-tune every step of the 2D-to-3D segmentation process in u-711 
Segment3D that we could overwrite this bias and largely preserve the multiscale tissue architecture in the 712 
final segmentation, in 3D and in 2D cross-sections (Fig. 6d-f, Suppl. Movie 12). In particular, we fine-tuned 713 
the content-based averaging, the filtering 𝜎 to smooth 3D gradients and that used for connected component 714 

analysis. 715 

 716 

Discussion 717 

Here we have presented a formalism and general algorithm based on distance transforms and gradient 718 
descent to generate optimal, consensus 3D segmentations from 2D segmented volume stacks. Our 719 
formalism unifies existing works in 2D-to-3D segmentation and shows near-perfect segmentations are 720 
achievable. Conceptually our work reformulates the widespread ad hoc procedure of stitching discrete label 721 
segmentations into a continuous domain problem with controllable and easy fine-tuning. Meanwhile our work 722 
shows that the initial 2D-to-3D segmentation proposal of Cellpose, based on a point-source centroid distance 723 
transform is only a specific instance of a broader class of medial-axis distance transforms.  724 

This led us to develop a general toolbox, u-Segment3D to robustly implement 2D-to-3D segmentation in 725 
practice for any 2D segmentation method. Through extensive validation on public datasets, we showed u-726 
Segment3D consistently translates the performance of 2D models to 3D segmentation. The better the 2D 727 
model, the better the 3D segmentation. Moreover u-Segment3D provides fine-tuning and postprocessing 728 
method for further improving 3D segmentations. We also implemented multiprocessing to enable scalable 729 
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2D-to-3D segmentation on CPU clusters. Further speed improvements could be made such as implementing 730 
a multi-scale scheme to run u-Segment3D, which we leave for future work.  731 

With the successes of foundation models such as ChatGPT for natural language processing and Segment 732 
Anything model in segmentation, there is a prevalent notion that everything should be learnt from data, that 733 
more data is better and models should be ‘turnkey’, working directly out-of-the-box or if not, be ‘fine-tuned’. 734 
In the quest for generality we must not neglect the value of grounded formalism and robust design. Our 735 
analyses provide multiple cautionary tales. First, parsing the outputs of neural network models is just as 736 
important as training. By identifying and rectifying the spatial proximity clustering of Cellpose, we significantly 737 
reduced over-segmentation and boosted performance on noisy datasets. Second, considering extreme 738 
morphotypes and the simpler 1D-to-2D segmentation problem showed the critical importance of smoothing 739 
reconstructed gradients and the role of suppressed gradient descent to enable 2D-to-3D segmentation to be 740 
applied to branched and vasculature networks. Third, running Cellpose with optimal diameters in different 741 
views is necessary to capture general 3D shape, irrespective of voxel anisotropy. Because Cellpose was 742 
trained using a fixed size diameter, we could exploit Cellpose and its strong cell shape prior to ‘scan’ and 743 
infer all salient diameters of objects in the image. This in-turn enabled us to set optimal diameters in 744 
orthogonal views for 3D segmentation training-free. Lastly, by recognizing the spectral bias of neural 745 
networks and annotation bias, we developed simple label diffusion and guided filter postprocessing to recover 746 
intricate surface morphologies of 3D cells. This enabled us to extend neural network methods to segment 747 
high-resolution single cells where classical methods are still state-of-the-art.  748 

In sum, our experiments question the proposition value of directly training 3D segmentation models. Using 749 
only pretrained Cellpose models equipped with automated parameter tuning, here we demonstrate an 750 
unprecedented capacity to 3D segment cells from diverse microenvironments, from single cells through to 751 
entire tissues, in-vitro, in-vivo and in-situ, and acquired from different modalities and with different resolutions. 752 
With widespread availability of diverse generalist and specialized 2D segmentation models, u-Segment3D 753 
paves a way towards accessible 3D segmentation, translating time-consuming annotation and training 754 
towards more impactful time spent on analyzing the acquired 3D datasets to provide biological insights.  755 
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All data used in this study except for the imaging of COR-L23 ruffles, epithelial organoid, zebrafish vasculature, T cell 780 
coculture and HBEC cell aggregate are publically available from their original sources as documented in Suppl. Table 781 
1 and in the Dataset section of Methods. All others will be made available on request to the corresponding author.  782 

 783 

Code Availability 784 

u-Segment3D will be available at https://github.com/DanuserLab/u-Segment3D. This Python library will also include our 785 
code to automate parameter tuning of Cellpose models.  786 

 787 

 788 

 789 

 790 

 791 

792 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592249doi: bioRxiv preprint 

https://github.com/DanuserLab/u-Segment3D
https://doi.org/10.1101/2024.05.03.592249
http://creativecommons.org/licenses/by-nd/4.0/


Methods 793 

 794 

Datasets 795 

Validation Datasets 796 

10 independent public datasets with reference 3D segmentations and 1 dataset collected in-house with 3D 797 
segmentation constructed with the aid of u-Segment3D were used to evaluate the ability of u-Segment3D to 798 
reconstruct 3D segmentation its ideal slice-by-slice 2D segmentations (Fig. 2) from orthogonal xy, xz, yz 799 
views. 9 of the public datasets with both images and reference segmentations were used to assess the 800 
performance of u-Segment3D with pretrained Cellpose models (Fig. 3). Details of all datasets are given in 801 
Suppl. Table 1.  802 

 803 

Demonstration Datasets 804 

The following datasets were collected largely in-house and 3D segmented using either the pretrained 805 
Cellpose cyto, cyto2 or nuclei 2D segmentation models, whichever qualitatively appeared to perform best 806 
with u-Segment3D (if not stated otherwise). Parameter details are provided in Suppl. Table 4. 807 

 808 

3D epidermal organoid culture (Fig. 4a-i) 809 

Cell culture. Human keratinocyte Ker-CT cells (ATCC #CRL-4048) were a kind gift from Dr. Jerry Shay (UT 810 
Southwestern Medical Center). A keratinocyte cell line stably expressing mNeonGreen-tagged keratin 5 (K5) to label 811 
intermediate filaments was created as previously described86.  812 

Epidermal organoid culture. We adapted an epidermal organoid culture model from existing protocols86,101,102. 813 
Polycarbonate filters with 0.4μm pore size (0.47cm2 area, Nunc #140620) were placed in larger tissue culture dishes 814 
using sterile forceps. On day 0, a cell suspension of 5×105 keratinocytes expressing K5-mNeonGreen in 400μL of K-815 
SFM was added to each filter well, and additional K-SFM was added to the culture dish to reach the level of the filter. 816 
On day 10, culture medium was aspirated from above the filter to place the cultures at an air-liquid interface. At the 817 
same time, medium in the culture dish was changed from K-SFM to differentiation medium (see Cell Culture above). On 818 
day 13, an additional 0.5 mM calcium chloride was added to the differentiation medium in the culture dish. Mature 819 
epidermal organoids were processed for imaging on day 20, after 10 days of differentiation at the air-liquid interface. 820 
Throughout the procedure, culture media were refreshed every two to three days. 821 

Epidermal organoid imaging. Mature epidermal organoids were transferred to a clean dish, washed three times with 822 
PBS, then fixed in 4% paraformaldehyde (Electron Microscopy Sciences #15713) for 1 hour at room temperature. Filters 823 
with the organoids were cut out of the plastic housing using an 8 mm punch biopsy tool and inverted onto glass-bottom 824 
plates. Throughout imaging, PBS was added one drop at a time as needed to keep each organoid damp without flooding 825 
the dish. Organoids were imaged using a Zeiss LSM880 inverted laser scanning confocal microscope equipped with a 826 
tunable near-infrared laser for multiphoton excitation and a non-descanned detector optimized for deep tissue imaging. 827 
Images were acquired using an Achroplan 40×/0.8NA water-immersion objective resulting in an effective planar pixel 828 
size of 0.21 µm, and z-stack volumes with 1 µm step size. 829 

 830 

Single cell tracking challenge datasets87,103 (Fig. 4j,k) 831 

MDA231 human breast carcinoma cells (Fluo-C3DL-MDA231) (Fig. 4j). Cells infected with a pMSCV vector 832 
including the GFP sequence, embedded in a collagen matrix captured with an Olympus FluoView F1000 833 
microscope with Plan 20x/7 objective lens, sampling rate of 80 min and voxel size 6.0 x 1.242 x 1.242 μm. 834 

 835 

Drosophila Melanogaster embryo (Fluo-N3DL-DRO) (Fig. 4k). Developing embryo imaged on a SIMView 836 
light-sheet microscope104 with a sampling rate of 30s, 16x/0.8 (water) objective lens and voxel size 2.03 x 837 
0.406 x 0.406 μm. We used Cell01 from the test dataset containing 50 timepoints. We used the pretrained 838 
Cellpose cyto model and u-Segment3D to segment the surface for each timepoint (Suppl. Table 3). Using 839 
the binary segmentation, we unwrapped a proximal surface depth using u-Unwrap3D15.  840 
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 841 

Human bronchial epithelial (HBEC) cell aggregate (Fig. 5a) 842 

Transformed HBEC cells expressing eGFP-KrasV12 were cultured and imaged using meSPIM and 843 
published previously105. 844 

 845 

Single dendritic cell with lamellipodia (Fig. 5b) 846 

Conditionally immortalized hematopoietic precursors to dendritic cells expressing Lifeact-GFP were 847 
cultured, imaged and published previously75.  848 

 849 

Single HBEC cell with filopodia (Fig. 5c) 850 

HBEC immortalized with Cdk4 and hTERT expression and transformed with p53 knockdown, KrasV12 and 851 
cMyc expression cultured, imaged and published previously75. 852 

 853 

Single COR-L23 cell with ruffles (Fig.  5d) 854 

Culture. COR-L23 cells (Human Caucasian lung large cell carcinoma) were resuspended in 2mg/mL bovine 855 
collagen (Advanced BioMatrix 5005) and incubated for 48 hours in RPMI 1640 medium (Gibco 11875093) 856 
supplemented with 10% fetal bovine serum (PEAK SERUM PS-FB2)  and 1% antibiotic-antimycotic (Gibco 857 
14240062). Cells were incubated in a humidified incubator at 37oC and 5% carbon dioxide. 858 

Imaging. Images were acquired with our home-built microscope system that generates equivalents to 859 
dithered lattice light-sheet through field synthesis106. Briefly, the system employs a 25X NA 1.1 water 860 
immersion objective (Nikon, CFI75 Apo, MRD77220) for detection, and a 28.6X NA 0.7 water immersion 861 
(Special Optics 54-10-7) for illumination. With a 500 mm tube lens, the voxel size of the raw data is 0.104 µm 862 

× 0.104 µm × 0.300 µm. The volumetric imaging was performed by scanning the sample along the detection 863 
axis. We used a Gaussian light-sheet and optimized the light-sheet properties so the confocal length was 864 
enough to cover the cell size without sacrificing too much the axial resolution107. Typically, the light-sheets 865 
are about 20 µm long and 1 µm thick. In each acquisition, we optimized the laser power and the exposure 866 
time to achieve fast acquisition without introducing too much photo-bleaching. Usually, the time interval for 867 
our volumetric acquisition is chosen to be either 5 or 10 s.  868 

 869 

T-cell coculture (Fig. 5e) 870 

Blasted human CD8+ T cells, were produced by activating naïve T cells isolated from PBMCs using anti-871 
CD3/CD28 Dynabeads for 2 days, then rested for 5 days after removing the beads. Cells were frozen on day 872 
5 of resting and thawed 48 hours before use. T cells were grown in complete RPMI-1640 (10% FCS, 1% 873 
Pen/Strep, 1% Glutamine, 1% HEPES) + 50 U/ml of IL-2. For migration-based imaging of multiple T cells, 8-874 
well glass-bottom IBIDI chambers were coated with 1μg/ml of hICAM-1-6xHis linker and hCXCL11 875 
(Peprotech) for 1 h at room temperature, washed, then coated with 1% BSA. 0.5x106 blasted human CD8+ T 876 
cells were labelled with CellMask DeepRed diluted to a 1x working solution in imaging buffer (i.e., colourless 877 
RPMI with 1% added Pen/Strep, 1% glutamine, 1% HEPES) for 30 minutes at 370C. Cells and the glass 878 
slides were washed and resuspended in pre-warmed (37°C) imaging buffer. 0.1-0.2x106 Cells were gently 879 
added to the coated glass slides and left to settle for 30-minutes before imaging. Cells were imaged using 880 
the Lattice Lightsheet microscope 7 (LLSM7) from Zeiss using the 641nm laser at 4% power with 4ms of 881 
exposure. A large field of view was used for imaging multiple cells at once, with a complete volume taken 882 
every second. Deconvolution was performed using the Zeiss software.  883 

 884 

Zebrafish macrophages (Fig. 5f) 885 
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Zebrafish larvae with fluorescent macrophages, labelled with Tg(mpeg1:EGFP) were imaged as published 886 
previously83 (Suppl. Table 1).  887 

 888 

Zebrafish vasculature (Fig. 5g) 889 

Zebrafish (Danio rerio) embryos, larvae and adults were kept at 28.5°C and were handled according to 890 
established protocols108,109. All zebrafish experiments were performed at the larval stage and therefore the 891 
sex of the organism was not yet determined. To visualize the growing vasculature at around 34 h post 892 
fertilization (hpf), zebrafish larvae expressing the vascular marker Tg(kdrl:Hsa.HRAS-mCherry)110 in a casper 893 
background111 were used. To immobilize the zebrafish larvae for imaging, they were anesthetized with 200 894 
mg/l Tricaine (Sigma Aldrich, E10521)112 and mounted in 0.1% low melting agarose (Sigma Aldrich, A9414) 895 
inside fluorinated ethylene propylene (FEP) tubes (Pro Liquid GmbH, Art: 2001048_E; inner diameter 0.8 896 
mm; outer diameter 1.2 mm), coated with 3% methyl cellulose (Sigma Aldrich, M0387)113. The mounted 897 
zebrafish larvae were imaged on a custom multi-scale light-sheet microscope with axially-swept light-sheet 898 
microscopy83. 899 

 900 

Multiplexed CyCIF tissue  901 

A primary melanoma sample from the archives of the Department of Pathology at Brigham and Women’s 902 
Hospital was selected. The protocol was adapted from Nirmal et al.114. Briefly, a fresh 35-micron thick FFPE 903 
tissue section was obtained from the block and de-paraffinized using a Leica Bond. The region in Fig. 6b was 904 
selected and annotated from a serial H&E section by board-certified pathologists as a vertical growth phase. 905 
The 35 μm thick section underwent 18 rounds of cyclical immunofluorescence (CyCIF)115 over a region 906 
spanning 1.4 mm by 1.4 mm and sampled at 140 nm laterally and 280 nm axially. Image acquisition was 907 
conducted on a Zeiss LSM980 Airyscan 2 with a 40x/1.3NA oil immersion lens yielding a 53-plex 3D dataset25. 908 
A custom MATLAB script was used to register subsequent cycles to the first cycle, which was stitched in ZEN 909 
3.9 (Zeiss). The quality of image registration was assessed with Hoechst across multiple cycles in Imaris 910 
(Bitplane). For segmentation, multiple channel markers were combined to create fused nuclei and 911 
cytoplasmic channels. Hoechst and lamin B1 were combined for nuclei. MHC-II, CD31, and CD3E were 912 
combined as a cytoplasm marker to cover all cells including tumor, blood vessels, and T cells.  913 

 914 

Cleared tissue lung micrometastases 915 

Cancer growth. Lung tissue containing a metastatic tumor was provided by the Morrison lab at UT 916 
Southwestern Medical Center, USA. Mice were injected with Y1.7-GFP-luciferase cells116 and grown as 917 
previously described117. 918 

Lung tissue staining and clearing. Lung tissue was fixed in 4% PFA at 40C for less than 24 h and then washed 919 
three times with PBS with 0.02% sodium azide for 2 h per wash. The tissue was sliced into 2 mm thick 920 
sections. Tissue slices (~2mm) were permeabilized and blocked in blocking buffer (0.5% NP40, 10% DMSO, 921 
0.5% Triton X-100, 5% donkey serum, 1X PBS) overnight at room temperature (RT). Primary and secondary 922 
antibody stock solutions were prepared in the desired concentration. Antibodies were centrifuged (MyFuge 923 
mini centrifuge) for 2 s before aliquoting in blocking buffer. Antibodies stock solutions were homogenized for 924 
at least 1 h in a shaker at 4°C before staining. Tissues were incubated in anti-GFP (1:100) for 72 h at room 925 
temperature in a tube revolver rotator. After incubation, samples were washed with wash buffer (0.5% NP40, 926 
10% DMSO, 1X PBS) three times for 2 h each and then left rotating in wash buffer overnight. Tissues were 927 
immersed in the secondary antibody AF488 (1:250) solution for 72 h at RT.  Then, secondary antibody was 928 
removed with wash buffer for at least two days changing the solution: first day 3x every 2 h and on the second 929 
day refreshed just one time. Finally, tissues were stained for nuclei with TO-PRO-3 647 (2 drops/mL) in PBS 930 
for 24 h at room temperature.  Nuclear dye was washed out with wash buffer three times for 2 h each and 931 
then left rotating in wash buffer overnight. Samples were washed two times for 5 min each in PBS to remove 932 
the nuclear dye. Lung tissue was cleared using a modified iDISCO+ protocol. Lungs were dehydrated in a 933 
methanol gradient (25%/50%/75%/100%). Final clearing was achieved with repeated fresh Benzyl Alcohol 934 
and Benzyl Benzoate (BABB, 1:2) with 5g of activated aluminium oxide incubations. The samples were 935 
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washed with BABB 1:2 3x, then left standing in fresh BABB 1:2 for 15 min. Sample BABB 1:2 was refreshed 936 
and left overnight. The sample BABB 1:2 was refreshed again shortly before imaging. 937 

Lung tissue imaging. Lung tissue slices were imaged on a ctASLMv2118 microscope chamber controlled by 938 
navigate119. Nuclei were imaged using the TO-PRO-3 647 via illumination with a LuxX 642 nm, 140 mW at 939 
100% laser power and a Semrock BLP01-647R-25 filter in the detection path. Cancer cells were imaged via 940 
illumination with a LuxX 488-150, 150 mW at 100% laser power and a Semrock FF01-515/30-32 bandpass 941 
filter in the detection path. Images were acquired with a Hamamatsu ORCA-Flash 4.0 v3 with 200 ms 942 
integration time in lightsheet readout mode. 943 

 944 

coCATS labelled volume  945 

We used a coCATS76 imaging volume recorded with z-STED at near-isotropic resolution in neuropil of an 946 
organotypic hippocampal brain slice published in Michalska et al.76 (c.f. Fig. 3). This volume was 947 
downloaded already denoised with Noise2Void.  948 

 949 

UMAP to map morphological diversity of different cell datasets 950 

Morphological features. Eight features were extracted for each cell based on their 3D reference 951 
segmentations.  952 

1. Volume - the total number of voxels occupied by the segmented volume, calculated by binary indexing.   953 
2. Convexity - the ratio of total volume to total volume occupied by the convex hull. Convex hull was 954 

computed with Python Scipy, scipy.spatial.ConvexHull on the 3D coordinates of the segmentatation 955 
volume.  956 

3. Major length - The longest axial length of an ellipse fitted to the cell. Computed with Python Scikit-957 
Image, skimage.measure.regionprops 958 

4. Minor length - computed from Python Scikit-Image, skimage.measure.regionprops 959 
5. 1 – minor length/major length - Measure of the extent of elongation with value 0-1. When spherical, 960 

minor length = major length and the measure is 0. When very elongated, minor length << major length 961 
and the measure is 1.   962 

6. # skeleton segments - Number of straight line segments the 3D binary skeleton is partitioned.   963 
7. # skeleton nodes - Number of branch point nodes, where a node is defined as at least three line 964 

segments meeting at a point. 965 
8. Mean skeleton segment length - Mean number of voxels in each straight line segment of the 3D binary 966 

skeleton. 967 

The 3D binary skeleton was computed using Python Scikit-Image, skimage.morphology.skeletonize. The 968 
decomposition of the skeleton into nodes and segments was computed using the Python sknw library 969 
(https://github.com/Image-Py/sknw). Non-dimensionless measurements such as volume were not converted 970 
to metric units as only the number of raw voxels is relevant for segmentation. 971 

 972 

UMAP parameters. The 8 features were power transformed to be more Gaussian-like using the Yeo-Johnson 973 
method120 (Python Scikit-learn, sklearn.preprocessing.power_transform). Then z-score normalization was 974 
applied to create normalized features. Uniform Manifold Approximation and Projection (UMAP) (using the 975 
Python umap-learn library) was used to project the 8 features after normalization to 2 dimensions for 976 
visualization (n_neighbors=15, random_state=0, spread=1, metric=’Euclidean’).  The median UMAP 977 
coordinate for each dataset was computed by taking the median of the 2D UMAP coordinates of individual 978 
cells comprising the respective dataset. The heatmap coloring of the UMAP uses the normalized feature 979 
value and the coolwarm colorscheme clipping values to be in the range [-2,2].   980 

 981 

u-Segment3D 982 
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u-Segment3D is a toolbox that aims to provide methods that require no further training to aggregate 2D slice-983 
by-slice segmentations into consensus 3D segmentations. It is provided as a Python library 984 
(https://github.com/DanuserLab/u-unwrap3D). The methods within are broadly categorized into modules 985 
based on their purpose; module 1: image preprocessing; module 2: general 2D-to-3D aggregation using 986 
suppressed gradient descent with choice of different 3D distance transforms; and module 3: postprocessing 987 
to improve the concordance of segmentation to that of a guide image. Postprocessing helps achieve a tighter 988 
segmentation and recover missing local high-frequency surface protrusions. 989 

 990 

Module 1: Preprocessing  991 

Described below are the image preprocessing functions included in u-Segment3D to combat the primary 992 
problems of intensity normalization, image feature enhancement and uneven illumination that can greatly 993 
affect pretrained segmentation models, like Cellpose. Generally, the order of operation or the 994 
inclusion/exclusion of a step is dependent on the input data. We have found the basic workflow of i) rescaling 995 
to isotropic voxels and resizing for the desired segmentation scale, ii) uneven illumination correction, adaptive 996 
histogram equalization or gamma correction, iii) deconvolution, and iv) intensity normalization applied to the 997 
3D raw image, to be a good starting point for Cellpose models. For Omnipose7 models we only use intensity 998 
normalization. Any other preprocessing led to worse performance. When nuclei and cytoplasm channels 999 
present, we find Cellpose cell segmentation was better if both channels are jointly used as input.  1000 

 1001 

Rescaling to isotropic voxels and resizing to the desired segmentation scale. Pretrained segmentation models 1002 
work best when input images contain objects types and object sizes reflective of the original training dataset. 1003 
If images are upscaled to be bigger, segmentation models may be biased towards segmenting physically 1004 
smaller objects. Correspondingly if images are downscaled to be smaller, larger objects become enhanced 1005 
and easier to segment as smaller objects become oversmoothed. Cellpose models are trained at a fixed 1006 
diameter of 30 pixels and with isotropic xy images. We find empirically, the u-Segment3D tuning performs 1007 
best for each orthoview if the input image volume is first rescaled to isotropic voxels and resized using linear 1008 
interpolation so the desired feature to segment such as cell / vessel results in a peak around 30 pixels (c.f. 1009 
Extended Data Fig. 9). The rescale and resize is implemented as one function using Python Scipy, 1010 
scipy.ndimage.zoom function with a Python Dask tiled accelerated variant for large volumes. 1011 

 1012 

Contrast enhancing intensity normalization. Image intensities are normalized such that 0 is set to the 𝑝𝑙𝑜𝑤𝑒𝑟 1013 
percentile and 1 is the 𝑝𝑢𝑝𝑝𝑒𝑟 percentile of the image intensity. By default, 𝑝𝑙𝑜𝑤𝑒𝑟 = 2 and 𝑝𝑢𝑝𝑝𝑒𝑟 = 99.8. This 1014 

contrast enhances the image by clipping out sporadic high intensities caused by camera shot noise and 1015 
zeroing small, but non-zero background intensities common to fluorescent microscopy. 1016 

 1017 

Image deconvolution. For 2D fluorescent microscopy images or anisotropic 3D images, we use blind 1018 
deconvolution with the unsupervised Wiener-Hunt approach121 (slice-by-slice for 3D) where the 1019 
hyperparameters are automatically estimated using a Gibbs sampler (implemented using Python Scikit-1020 
image, skimage.restoration.unsupervised_wiener). The initial point-spread function is specified as a 15x15 1021 
pixel sum normalized Gaussian (𝜎 = 1) squared kernel. For 3D lightsheet imaging we use Wiener-Hunt 1022 
deconvolution, with our previously published experimental PSF75 used as a synthetic PSF.   1023 

 1024 

Model-free uneven illumination correction. The raw image intensity of 2D or 3D images, 𝐼𝑟𝑎𝑤
𝑐ℎ  is corrected for 1025 

uneven illumination ratiometrically, 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑐ℎ = 𝐼𝑟𝑎𝑤

𝑐ℎ̅̅ ̅̅ ̅̅ 𝐼𝑟𝑎𝑤
𝑐ℎ

𝐼𝑏𝑔
𝑐ℎ  where 𝐼𝑟𝑎𝑤

𝑐ℎ̅̅ ̅̅ ̅̅  the mean image intensity of the input image 1026 

and 𝐼𝑏𝑔
𝑐ℎ is an estimate of the uneven background illumination. 𝐼𝑏𝑔

𝑐ℎ is estimated by downsampling the image 1027 

by a factor of 𝑑𝑠, isotropic Gaussian smoothing of 𝜎 then resizing back to the dimensions of the input image. 1028 

For 2D images, the downsampling factor does not need to be used and 𝜎 is specified as a fraction of the 1029 

image dimension, typically 1/4 or 1/8 is a good starting point. For 3D images a default 𝜎 = 5 is used, and a 1030 
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𝑑𝑠 = 8 or 16. If segmentation is worse, we decrease 𝑑𝑠 by factor of 2. If 𝑑𝑠 = 1, Gaussian smoothing is 1031 
applied at the original image resolution. The resultant enhanced image should have even illumination whilst 1032 
minimal artefactual enhancement of border background intensities. A more sophisticated background 1033 
correction is the N4 bias correction available in SimpleITK, originally developed for MRI image and has been 1034 
successfully applied to 3D cleared-tissue imaging29. 1035 

 1036 

Adaptive histogram equalization (AHE).  Contrast limited AHE or CLAHE (Python Scikit-image, 1037 
skimage.exposure.equalize_adapthist) can also be used as an alternative to our model-free uneven 1038 
correction. The image is divided into non-overlapping tiles and the pixel intensity is histogram equalized within 1039 
each tile. Whilst this obtains good results, we find the method is computationally more memory-intensive and 1040 
slower for large 3D volumes if the size of individual tiles is required to be small, thus increasing the overall 1041 
number of tiles.  But, there is less artefact for originally low-valued intensities compared to our fast ratiometric 1042 
method.  1043 

 1044 

Gamma correction. Transforms the input image, 𝐼𝑖𝑛 pixelwise, raising the intensity to a power 𝛾 (float between 1045 

0-1) according so that the output image, 𝐼out = 𝐼𝑖𝑛
𝛾

  after scaling the image pixel intensity linearly to the range 1046 

0 to 1. Used to nonlinearly amplify low-intensity pixels to create a more uniform illumination for segmentation 1047 
that is computationally inexpensive. 1048 

 1049 

Vessel-like feature enhancement: Neurites, tubes, vessels, edges of cell surface protrusions all represent 1050 
ridge-like structures that are both thin and long or exhibit high curvature and tortuous morphologies that are 1051 
often weakly stained or visualized by raw image intensities. Ridge image filters uses the eigenvalues of the 1052 
Hessian matrix of image intensities to enhance these ridge-like structures assuming the intensity changes 1053 
perpendicular to but not along the structure. Many ridge filters have been developed. u-Segment3D uses the 1054 
Meijering122 filter (Python Scikit-image, skimage.filters.meijering) which enhances ridge image features of by 1055 
pooling the filter responses over a list of multiple Gaussian 𝜎. We observe empirically good performance for 1056 

a diverse range of objects including vessels and cells, without requiring any other hyperparameter tuning 1057 
unlike Frangi filtering123.  1058 

 1059 

Semi-automated diameter tuning for pretrained Cellpose models. The tuning process is illustrated in 1060 
Extended Data Fig. 10a. Given a 2D image, the cellpose outputs, the non-normalized cell probability, 𝑝 and 1061 
predicted 2D gradients in x- (∇𝑥Φ ) and y- (∇𝑥Φ) directions are computed. 𝑝 is clipped to a range of [-88.72, 1062 

88.72] to avoid overflow for float32 and normalized to a value in the range [0,1], 𝑝 ←
1

1+𝑒−𝑝 . These ouputs 1063 

are used to compute the pixelwise contrast score, 𝑤 ⋅ {𝜎𝒩(∇𝑥Φ) +  𝜎𝒩(∇𝑦Φ)}. 𝑤 is a pixelwise weight. We 1064 

set 𝑤 = 𝑝 but observe no difference if 𝑝 = 1 for cellpose models. 𝜎(⋅) is the local standard deviation at each 1065 

pixel, computed over the local pixel neighborhood of width 𝑃 × 𝑃 pixels. The mean score over all pixels, 1066 
1

𝑁
∑ 𝑤 ⋅ {𝜎𝒩(∇𝑥Φ) +  𝜎𝒩(∇𝑦Φ)} is computed over a range of equisampled diameters e.g. 15 to 120 at 2.5 1067 

increments. A centered moving average of window using symmetric padding at edges, of default 5 is used 1068 
for smoothing. The result is a plot of score vs diameter. Prominent peaks in this plot highlight potential 1069 
segmentations at different size scales. The more possibilities, the more peaks. Users may use this in turn to 1070 
inform the diameter range to search. For automatic operation, the diameter that maximizes the contrast score 1071 
is used as the optimal diameter for Cellpose. The neighborhood size functions acts like an attention 1072 
mechanism (Extended Data Fig. 10c). The larger the size, the more the segmentation result corresponding 1073 
to larger objects is favored. If there is no larger salient segmentation, the optimal diameter selection will be 1074 
unchanged.  1075 

 1076 

Semi-automated cell probability thresholding for pretrained Cellpose models. We observe for out-of-1077 
distribution images and noisy input images, pretrained Cellpose 2D models can perform well using an 1078 
appropriate threshold for cell probability combined with u-Segment3D’s gradient descent and spatial 1079 
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connected component analysis to parse segmentations (Fig. 4j). The choice of threshold is particularly 1080 
important. If the threshold is too high, there is no continuous path for the gradient descent. This results in 1081 
over-segmentation. It is therefore better to veer on the side of caution and use a lower threshold to get a 1082 
more connected foreground binary. However if this threshold is too low, it will not be in concordance with the 1083 
predicted gradient field such that all voxels with predicted zero gradients will be extraneously and erroneously 1084 
segmented. To automate the threshold, u-Segment3D applies multi-class Otsu thresholding to the 1085 

normalized cell probability ( 𝑝 ∈ [0,1] ) output of Cellpose, 𝑝 ←
1

1+𝑒−𝑝 . u-Segment3D further performs 1086 

morphological closing to infill small holes. If only one object is known to be present, further morphological 1087 
operations such as extracting the largest connected component and binary infilling can be conducted. The 1088 
default Otsu thresholding is 2-class. If the segmentation partially captures the cells, we use 3-class Otsu and 1089 
the lower of the two thresholds. Vice versa, if too much area is segmented, we use 3-class Otsu and the 1090 
higher of the two thresholds. Optionally, we cast the threshold to the nearest decimal point, rounding down 1091 
(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← ⌊𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 10⌋/10 where ⌊⋅⌋ is the floor operator).   1092 

 1093 

Module 2: Gradient descent and distance transforms to assemble 2D slice-by-slice segmentation 1094 
stacks into a 3D consensus segmentation 1095 

Methods in this module are used to implement the core 2D-to-3D segmentation algorithm outlined in Fig. 1d. 1096 
If 2D segmentations are not provided in the form as a normalized cell probability (0-1) and 2D gradients in 1097 
the manner of Cellpose6, then a 2D distance transform must be used to generate the necessary 2D gradients 1098 
for consensus 3D segmentation.  1099 

 1100 

2D Distance transforms  1101 

u-Segment3D categorizes the distance transforms according to whether the limit or attractor of propagating 1102 
points using gradient descent over an infinite number of steps is implicitly or explicitly defined (Extended Data 1103 
Fig.1). Explicitly defined transforms are further categorized by the type of attractor: a single fixed point source 1104 
or comprises a set of points.  1105 

 1106 

u-Segment3D implements distance transforms, Φ that solve the Eikonal equation (‖∇Φ‖2 = 1, which gives 1107 

the shortest geodesic solution) or Poisson’s equation (∇2Φ = −1, which gives a smooth harmonic solution), 1108 
for the cell interior using numerically stable methods. The Eikonal equation finds the shortest time of 1109 
propagation for a point. Poisson’s equation can also be viewed as solving the shortest time of propagation 1110 
but with the additional constraint of minimizing curvature, yielding smoother solutions.  1111 

 1112 

Implicit attractor distance transforms 1113 

With only the boundary condition Φ = 0, the Eikonal and Poisson equation conceptually propagates a wave 1114 

inwards symmetrically from the cell boundaries. The limit solution is the definition of the medial axis skeleton, 1115 
the locus of the centers of all inscribed maximal spheres of the object where these spheres touch the 1116 
boundary at more than one point77,124,125.  1117 

Euclidean distance transform (EDT in text). Solves the Eikonal equation using fast image morphological 1118 
operations. u-Segment3D uses the memory and speed optimized implementation in the Python edt package 1119 
released by the Seung Lab (https://github.com/seung-lab/euclidean-distance-transform-3d).  1120 

Poisson distance transform. Solves the Poisson equation using LU decomposition (Python Scipy, 1121 
scipy.sparse.linalg.spsolve) for each cell in an image. It is solved in parallel in u-Segment3D using the Python 1122 
Dask library.  1123 

 1124 

Explicit attractor distance transforms  1125 
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The implicit attractor solves the equations everywhere in the cell interior. The explicit attractor variants 1126 
modifies the equations to have different source terms (right hand side of equation) in different parts of the 1127 
cell interior. For the Eikonal equation, Φ = 0 at the cell boundary and outside, non-source points obey 1128 

‖∇Φ‖2 = 1 and source points act as obstacles with vanishing speed, so that ‖∇Φ‖2 = 0. For the Poisson 1129 

equation, Φ = 0 at the cell boundary and outside, non-source points obey the Laplace equation, ∇2Φ = 0 and 1130 

source points obey ∇2Φ = −1. 1131 

 1132 

(i) Point sources. A single interior point is designated as a point source. u-Segment3D finds the interior point 1133 
with Euclidean distance transform value greater than the percentile threshold (default: 10th percentile) nearest 1134 
the median coordinate of all points.  1135 

Eikonal equation solution (Geodesic centroid distance). At the interior point, ‖∇Φ‖2 = 0 . The modified 1136 
equations are solved using the Fast Marching Method (FMM)80, with the constraint enforced using a masked 1137 
array by the Python scikit-fmm library. Central first order differences are used to compute the unit normalized 1138 
2D gradient. 1139 

 1140 

Poisson equation solution (Poisson or diffusion centroid distance). Only at the interior point, ∇2Φ = −1. The 1141 
modified equations are solved using LU decomposition as before. To apply power transformation with 1142 
exponent 𝑝 > 0, the minimum is first subtracted from Φ to ensure positivity, Φ𝑝 ≔ (Φ − Φmin)𝑝. Central first 1143 
order differences are used to compute the respective unit normalized 2D gradient.  1144 

 1145 

(ii) Point set sources. Any number of interior points are designated as point sources. u-Segment3D computes 1146 
the 2D medial axis skeleton as the point set. The binary skeleton is computed from the binary cell image by 1147 
iteratively removing border pixels over multiple image passes126 (Python Scikit-image, 1148 
skimage.morphology.skeletonize). This raw result can often produce skeletons that have extraneous 1149 
branches that may be too close to a neighboring, contacted cell. To improve the skeleton quality, the binary 1150 
image is Gaussian filtered with 𝜎 = 3 pixels, rebinarized by mean value thresholding and reskeletonized.  1151 

 1152 

Eikonal equation solution (Geodesic centroid distance). For all points part of the skeleton, ‖∇Φ‖2 = 0. The 1153 
modified equations are then solved using the Fast Marching Method (FMM)80 as above with central first order 1154 
differences for computing the unit normalized 2D gradient. The gradients for all points part of the skeleton is 1155 
set to zero to enforce the limiting behavior under gradient descent.  1156 

 1157 

Poisson equation solution (Poisson or diffusion centroid distance). For all points part of the skeleton, ∇2Φ =1158 
−1. The modified equations are solved using LU decomposition as above with central first order differences 1159 
for computing the unit normalized 2D gradient. The gradients for all points part of the skeleton is set to zero 1160 
to enforce the limiting behavior under gradient descent.  1161 

 1162 

Content-based averaging function, F 1163 

u-Segment fuses  3D volume images, 𝐼𝑖  from 𝑖 = 1, … , 𝑁 multiple views using a content-based average 1164 

function, 𝐹, with pixelwise weighting of the contribution from each view 𝑖 given by the inverse local-variance, 1165 

𝜎𝒩
𝑖  evaluated over an isotropic neighborhood, 𝒩 of width 𝑃 pixels   1166 

𝐼𝑓𝑢𝑠𝑒 =

∑
1

𝜎𝒩
𝑖 + 𝛼

 𝐼𝑖𝑁
𝑖=1

∑
1

𝜎𝒩
𝑖 + 𝛼

 𝑁
𝑖=1 + 𝜀

 1167 
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and α functions like a pseudo count. If α is small, σ𝒩
i  dominates. If 𝛼 is large, σ𝒩

i  has little effect and all views 1168 

are equally weighted. 𝐹 is equivalent to the simple mean as used by Cellpose6. 𝜀 is a small value (10−20) to 1169 
prevent infinity. If the neighborhood is of width 𝑃 = 1  pixels, 𝐹  is also equivalent to the simple mean 1170 

(Extended Data Fig. 2a). Compared to potentially more accurate approaches such as solving the multi-view 1171 
reconstruction problem82, entropy-based averaging127 or using Gaussian filters81, the above can be 1172 
implemented more efficiently with uniform filters. 1173 

 1174 

Fusing normalized 2D cell probabilities (0-1) from orthoviews and binary thresholding  1175 

Stacked normalized 2D cell probabilities (0-1) are fused using the content-based averaging function, 𝐹 above 1176 

with for neighborhood, 𝑃 = 1 (default) pixels in concordance with the fusion of the 2D gradients below. For 1177 

Cellpose models, the raw cell probability output, 𝑝 are first clipped to the range [-88.72, 88.72] to prevent 1178 

underflow/overflow in float32 and transformed, 𝑝 ←
1

1+𝑒−𝑝 . For methods yielding only 2D segmentations, 1179 

either i) fuse using the binary then apply appropriate Gaussian filter, ii) use the intermediate cell probability 1180 
image, which is always available for deep learning methods, or iii) generate a proxy cell probability image 1181 
e.g. using a rescaled Euclidean distance transform.  1182 

 1183 

Fusing 2D gradients from orthoviews  1184 

Stacked 2D gradients from xy, xz, yz are pre-filtered with an isotropic Gaussian of 𝜎𝑝𝑟𝑒 = 1. The fused 3D 1185 

gradients combines three separate fusion: fusing x-component from xy and xz views, y-component from xy 1186 
and yz views and z-component from xz and yz views. The 3D gradients is then post-filtered with 𝜎𝑝𝑜𝑠𝑡 = 1 1187 

(default) and unit length normalized. The greater 𝜎𝑝𝑜𝑠𝑡 is, the more the regularization effect, reducing the 1188 

number of attractors and preventing oversegmentation. This is helpful to segment larger and more branching 1189 
structure than represented by the majority of cells using pretrained Cellpose models. However it can also 1190 
merge smaller cells. For fusion, we use 𝛼 = 0.5 and in general 𝑃 = 1 to maximize segmentation recall and 1191 

perform postprocessing to remove erroneous segmentations. Larger 𝑃 improves segmentation precision but 1192 

may lose cells with lower contrast. These settings are generally not modified from the default. Preventing 1193 
oversegmentation can be more controllably carried out by adjusting the temporal decay parameter in the 1194 
gradient descent below first.    1195 

 1196 

Gradient descent 1197 

Given the reconstructed 3D gradients, ∇Φ, gradient descent is applied to the set of all foreground image 1198 

coordinates, {𝑥𝑛, 𝑦𝑛, 𝑧𝑛}. The iterative update equation for 3D gradient descent with momentum for iteration 1199 

number, 𝑡 = 0, … , 𝑇, where 𝑇 = 250 is the total number of iterations implemented by u-Segment3D is 1200 

(𝑥𝑛
𝑡 , 𝑦𝑛

𝑡 , 𝑧𝑛
𝑡 ) ← (𝑥𝑛

𝑡−1, 𝑦𝑛
𝑡−1, 𝑧𝑛

𝑡−1) − 𝜂
(𝛿 ⋅ ∇Φ(𝑥𝑛

𝑡−1, 𝑦𝑛
𝑡−1, 𝑧𝑛

𝑡−1) + 𝜇 ⋅ ∇Φ(𝑥𝑛
𝑡−2, 𝑦𝑛

𝑡−2, 𝑧𝑛
𝑡−2))

𝛿 + 𝜇
 1201 

Where ∇Φ is the gradient map, 𝜇 is the momentum parameter governing the extent the past gradient is 1202 

considered, ranging from 0-1 (default 𝜇 = 0.95), and 𝛿 > 𝜇 is the weighting of the current gradient and the 1203 

step-size. 𝜇 = 0 recovers the standard gradient descent. Nearest interpolation is used for efficiency so that 1204 

(𝑥𝑛
𝑡 , 𝑦𝑛

𝑡 , 𝑧𝑛
𝑡 ) is always integer valued. 𝜂 defines the step-size and is defined as a function of the iteration 1205 

number, 1206 

𝜂 =
𝛿

1 + 𝑡 ⋅ 𝜏
 1207 

𝜏 ∈ ℝ+ is a floating point number that controls the step-size decay7. The greater 𝜏 is, the less the points are 1208 

propagated. When 𝜏 = 0, the step-size is constant 𝜂 = 𝛿.   1209 

 1210 

Parallelized variant of gradient descent on subvolumes 1211 
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The volume was divided into subvolumes of (256, 512, 512) with 25% overlap. Within each subvolume we 1212 
run gradient descent with momentum for 250 iterations, momenta, 𝜇 = 0.98, step size 𝛿 = 1 to propagate the 1213 
position of foreground pixels towards its final attractor in the 3D gradient map. 1214 

 1215 

Image-based connected component analysis for identifying the unique number of cell centers for 1216 
instance segmentation 1217 

The method is depicted in Extended Data Fig. 4 for a 2D image and described here for a 3D image. Step (i), 1218 

the final (𝑡 = 𝑇) gradient descent advected foreground coordinate positions, {(𝑥𝑛
𝑡=𝑇 , 𝑦𝑛

𝑡=𝑇 , 𝑧𝑛
𝑡=𝑇)} is rasterized 1219 

onto the image grid by flooring, i.e. {(⌊𝑥𝑛
𝑡=𝑇⌋, ⌊𝑦𝑛

𝑡=𝑇⌋, ⌊𝑧𝑛
𝑡=𝑇⌋)} and clipping values to be within the bounds of the 1220 

𝐿 × 𝑀 × 𝑁  image volume i.e. 0 ≤ ⌊𝑥𝑛
𝑡=𝑇⌋ ≤ 𝐿 − 1 , 0 ≤ ⌊𝑦𝑛

𝑡=𝑇⌋ ≤ 𝑀 − 1 , 0 ≤ ⌊𝑧𝑛
𝑡=𝑇⌋ ≤ 𝑁 − 1 . Step (ii), the 1221 

number of points at each voxel position is tabulated, each point contributing +1 count. Step (iii), the counts 1222 
image is Gaussian filtered with 𝜎 = 1 as a fast approximation to the Gaussian kernel density estimate to 1223 
produce a density heatmap, 𝜌(𝑥, 𝑦) for 2D and 𝑝(𝑥, 𝑦, 𝑧) for 3D. This step functions to account for uncertainty 1224 

and spatially connect up points into a cluster in a soft manner assignment. The greater the Gaussian filter 𝜎 1225 

the more nearby points will be grouped into the same hotspot. This can be helpful when segmenting 1226 
branching structures. (iv) The density heatmap is sparse and therefore can be segmented using a mean 1227 
threshold with an optional tunable offset specified as a constant multiplicative factor, 𝑘  of the standard 1228 

deviation (std) of 𝜌, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛(𝜌) + 𝑘 ⋅ 𝑠𝑡𝑑(𝜌). For real images, we set 𝑘 = 0 and have never needed 1229 
to change this. Image connected component analysis is applied to the segmented binary to create the distinct 1230 

spatial cluster segmentation at 𝑡 = 𝑇, 𝐿𝑡=𝑇(𝑥, 𝑦) for 2D and 𝐿𝑡=𝑇(𝑥, 𝑦, 𝑧) for 3D. Each foreground coordinate 1231 

positions, {(𝑥𝑛
𝑡=𝑇 , 𝑦𝑛

𝑡=𝑇 , 𝑧𝑛
𝑡=𝑇)}  is then assigned the cell id by lookup and the final cell segmentation is 1232 

computed by generating the segmentation at their initial voxel positions, {(𝑥𝑛
𝑡=0, 𝑦𝑛

𝑡=0, 𝑧𝑛
𝑡=0)}. For connected 1233 

component u-Segment3D uses the optimized, parallel implementation developed by the Seung Lab 1234 
(https://github.com/seung-lab/connected-components-3d).  1235 

  1236 

Module 3: Postprocessing the 3D consensus segmentation  1237 

Described below are the implemented postprocessing methods that can be applied to the initial 3D 1238 
segmentation generated by gradient descent and connected component analysis (module 2). The 1239 
recommended sequential u-Segment3D workflow is: i) removal of implausible predicted cells involving ia) 1240 
removal of predicted cells below a user-specified size limit (in voxels), ib) the removal of cells which are 1241 
inconsistent with that implied by the predicted 3D gradients and ic) the removal of cells that are too statistically 1242 
large ( volume > mean(volumes) + 𝑘 ⋅ std(volumes)  where 𝑘  is a multiplicative factor, default 𝑘 =  5); ii) 1243 

labelspreading to smooth, enforce the spatial connectivity constraint of segmentation and propagate 1244 
segmentation to better adhere to the desired features given by a guide image; iii) guided filter refinement to 1245 
transfer missing local cellular structures to the segmentation.  1246 

The guided image does not need to the same as the raw. Generally it is a version of the raw whereby 1247 
desired cellular features are enhanced.  1248 

(i) Removal of implausible predicted cells.  1249 

(ia) Removal of predicted cells that are too small.  Volume of individual cells are computed as number of 1250 
voxels and the respective ids are removed by setting to 0 if volume less than the user-specified threshold 1251 
(default 200). Additionally each cell is checked whether they are comprise multiple spatially disconnected 1252 
components. If so, only the largest component is retained as each segmented cell should be spatially 1253 
contiguous.  1254 

(ib) Removal of predicted cells that are inconsistent with the predicted gradients. The reconstructed 3D 1255 
gradients, ∇Φ3𝐷 segmentation  are computed from xy, xz, yz views of the assembled consensus 3D 1256 

segmentation. The mean absolute error with the predicted 3D gradients is computed per cell, 𝑀𝐴𝐸𝑐𝑒𝑙𝑙 =1257 

𝑚𝑒𝑎𝑛(|∇Φ3𝐷 segmentation − ∇Φ3𝐷|)
𝑐𝑒𝑙𝑙

. If 𝑀𝐴𝐸𝑐𝑒𝑙𝑙 > user-defined threshold (default 0.8 for 𝜎𝑝𝑜𝑠𝑡 = 1).  If the 1258 

post Gaussian filter 𝜎𝑝𝑜𝑠𝑡 used when fusing gradients from orthoviews is >1, the threshold may need to be 1259 

relaxed i.e. threshold > 0.8.   1260 
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(ic) Removal of predicted cells that are statistically too large. Ratiometric uneven illumination correction may 1261 
over enhance background at the borders of the image, which may result in the segmentation of very large 1262 
regions. Also in dense tissue, when staining is inhomogeneous and weak, multiple closely packed cells may 1263 
be segmented as one in the initial 2D segmentation. Assuming cell volumes are approximately normally 1264 
distributed, we filter out improbably large cell segmentation we use mean and standard deviation (std) of all 1265 
cell volumes to set a cutoff retaining all cells with volume smaller than mean(volume) + 𝑘 ⋅ std(cell volumes), 1266 

where 𝑘 = 5 by default.  1267 

 1268 

(ii) Labelspreading to smooth and propagate cell segmentation with spatial connectivity constraint. 1269 
Labelspreading97 is a semi-supervised learning method developed to infer the label of objects in a dataset 1270 
given the labels to a partial subset of the objects by diffusing on a constructed affinity graph between objects. 1271 
u-Segment3D adapts this algorithm for cell segmentation. To be computationally scalable, for each cell 1272 
mask, 𝑀𝑖, a subvolume, 𝑉𝑖, is cropped with the size of its rectilinear bounding box padded isotropically by a 1273 
default 25 voxels. Every label in 𝑉𝑖 is one-hot encoded to form a label vector 𝐿 ∈ ℝ𝑁×𝑝 where 𝑁 is the total 1274 
number of voxels and 𝑝 the number of unique cell ids, including background. We then construct an affinity 1275 
matrix, 𝐴 between voxels as a weighted sum (𝛼 = 0.25) of an affinity matrix based on the intensity difference 1276 
in the guide image, 𝐼 between 8-connected voxel neighbors, 𝐴𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and one based on the connectivity 1277 

alone, 𝐴𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛:  1278 

𝐴 = 𝛼𝐴𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑦 + (1 − 𝛼)𝐴𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛  and 1279 

𝐴𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗) = {𝑒−𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
2  / (2𝜇(𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

2
)  𝑖 ≠ 𝑗

1                                          𝑖 = 𝑗
 1280 

𝐴𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑖, 𝑗) = {𝑒−𝐷𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛
2 /(2𝜇(𝐷𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛)

2
)   𝑖 ≠ 𝑗

1                                           𝑖 = 𝑗
 1281 

𝐷𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  is the pairwise absolute difference in intensity values between two neighboring voxels 𝑖 and 𝑗.  1282 

𝐷𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 is the graph Laplacian with a value of 1 if a voxel 𝑖 is a neighbor of voxel 𝑗, and 0 otherwise. 𝜇(𝐷) 1283 

denotes the mean value of the entries of the matrix 𝐷. The iterative labelspreading propagation is then 1284 
𝑧 ∈ ℝ𝑁×𝑝 1285 
𝑧𝑡=0 = 𝟎 1286 

𝑧𝑡+1 ← (1 − 𝛾)𝐴 𝑧𝑡 + (𝛾)𝐿 1287 
where 𝑡 is the interation number, 𝟎, the empty vector and 𝛾 is a ‘clamping’ factor that controls the extent the 1288 
original labeling is preserved. The final 𝑧 is normalized using the softmax operation, and argmax is used to 1289 

obtain the final cell ids. The refined cell mask, 𝑀𝑖
𝑟𝑒𝑓𝑖𝑛𝑒

 for cell id 𝑖 is all voxels where the final 𝑧 is assigned 1290 

to the same cell id 𝑖. Parallel multiprocessing is used to efficiently apply the refinement to all individual cells. 1291 
It is recommended to set the parameters per dataset, depending on the extent of correction required. We 1292 
typically start with a conservative 𝛼 = 0.25, 𝛾 = 0.75, and run the propagation for 25 iterations. The guide 1293 
image, 𝐼 is usually the normalized input image (after any preprocessing) to the 2D segmentation but can be 1294 
any processed image that enhances the desired cell features. For additional speed, particularly for tissue, 1295 
we also typically treat each cell mask, 𝑀𝑖 as binary instead of multi-label.  1296 
 1297 

(iii) Guided image filtering to recover missing high-frequency features and subcellular protrusions. 1298 
The guided filter98, a local linear filter that can be implemented in linear time, is used to efficiently transfer the 1299 

structures of a guidance image, 𝐼 to the input image to be filtered, 𝑃. Setting 𝐼 to be the ridge-filtered input 1300 

image to enhance high-frequency cellular protrusion and vessel features, and 𝑃 to be the binary mask of cell 1301 

𝑖, the resulting filtered output 𝑄 is a ‘feathered’ binary, being refined to appear an alpha matte near the object 1302 
boundaries. The radius of the boundary that is refined is controlled by a radius parameter, 𝑟 = 35 voxels (by 1303 

default), and the extent of structure transfer by a regularization parameter, 𝜖 = 1 × 10−4. We find the binary 1304 

mask can be rough. The stronger the features are enhanced in 𝐼 the more prominent the transferred structure. 1305 

𝑄  is then re-binarized using multi-threshold Otsu. Typically, we use the two-class binary Otsu. As for 1306 

labelspreading, guided filtering is applied to a cropped subvolume, 𝑉𝑖, with the size of its rectilinear bounding 1307 

box padded isotropically by a default 25 voxels. For computational efficiency, for touching cells, we perform 1308 
the guided filter segmentation independently for each cell and mask out spatial regions occupied by another 1309 
cell id. More accurately, we can obtain the guided filter response for all cell ids in the subvolume to define the 1310 
valid region. Parallel multiprocessing is used to perform the guided filter refinement to all individual cells. 1311 

Long protrusions with a length longer than 𝑟 cannot be recovered using guided filtering however, the guided 1312 
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filter result may assist the application of subsequent matching algorithms or serve as a improved seed image 1313 
for watershed algorithms.  1314 

 1315 

Semi-automatic tuning of diameter parameter in Cellpose models 1316 

The process is illustrated in Extended Data Fig. 10a. for 3D and described below.  1317 

Determining the optimal diameter for 2D image. Given a pixel neighborhood size with isotropic width, 𝑃 pixels, 1318 

we conduct a parameter screen of diameter = [𝑑𝑙𝑜𝑤 ,𝑑ℎ𝑖𝑔ℎ ] (typically 𝑑𝑙𝑜𝑤 = 10,  𝑑ℎ𝑖𝑔ℎ = 120) at equal 1319 

increments of 2.5 or 5. For each diameter, a contrast score is computed  taking into account the ‘sharpness’ 1320 
of the Cellpose model predicted 2D x- and y- gradients (∇𝑥Φ and ∇𝑦Φ respectively) and optionally the 1321 

normalized cell probability map, 𝑝 (0-1).  1322 

Contrast score(𝑑) =
1

𝑁
∑ 𝑤 ⋅ {𝜎𝒩(∇𝑥Φ) + 𝜎𝒩(∇𝑦Φ)} 1323 

Where 𝑁 is the total number of image pixels, 𝑤 is a pixelwise weighting set to be 𝑝 and 𝜎𝒩(𝐼) is the pixelwise 1324 

local standard deviation of the image 𝐼 evaluated over the isotropic local neighborhood of width 𝑃 pixels. 𝑝 is 1325 
computed from the unnormalized raw cell probabilities after clipping to range [-88.72, 88.72] (to prevent 1326 

overflow or underflow in float32) by applying the transformation, 𝑝 ←
1

1+𝑒−𝑝. The result is a contrast score 1327 

function of 𝑑. A centralized moving average of 5 (if diameter increment is 2.5) or 3 (if diameter increment is 1328 

5) is applied to smooth the contrast score function. The diameter 𝑑 that maximizes the contrast score is used 1329 
as the optimal diameter, 𝑑𝑜𝑝𝑡 in the Cellpose model. We generally observe no difference in 𝑑𝑜𝑝𝑡 between 1330 

𝑤 = 1 or 𝑤 = 𝑝 for Cellpose models.  1331 

 1332 

Determining the optimal diameter for 3D volume. If cell size varies slice-by-slice, the optimal diameter 1333 
determination for 2D is applied slice-by-slice (Fig. 4). This becomes computationally limiting as the number 1334 
of slices increase. Instead, we find good performance, if we set the optimal diameter for a representative 2D 1335 
slice in each orthoview. This representative 2D slice can be set automatically to (i) the most in-focus slice as 1336 
determined by the highest mean sobel magnitude, (ii) the slice with highest mean intensity, (iii) the mid-slice, 1337 
or (iv) be user-defined. 1338 

 1339 

Other tested segmentation methods 1340 

Cellpose 3D mode with pretrained models. We ran pretrained cellpose models in 3D mode by setting 1341 
do_3D = True. Since this mode is prone to oversegmentation and Cellpose 3D only allows to have one 1342 
diameter, we used the largest diameter inferred by our contrast score function. Models are run twice. The 1343 
first time is to obtain the raw, unnormalized cell probability image, which was then used to determine the 1344 
binarization threshold. We then ran a second time using the determined threshold to generate a 3D 1345 
segmentation. We had to additionally remove all cells with volume < 2500 voxels to get the maximum average 1346 
AP.   1347 

 1348 

Omnipose 3D. We ran the pretrained plant_omni model following the example in the documentation 1349 
(https://omnipose.readthedocs.io/examples/mono_channel_3D.html). This model operates on the raw image 1350 
downsampled by a factor 1/3 in all dimensions and does not reinterpolate the raw image to isotropic resolution. 1351 
No other preprocessing was used. We found the raw output to predict many small objects leading to an 1352 
artificially low computed AP relative to qualitative assessment. Therefore we additionally removed all objects 1353 
with volume < 2500 voxels to get the maximum average AP. If volumes > 2500 voxels were removed, this 1354 
affected the AP computed for lateral primordial images containing smaller cells. 1355 

 1356 
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Cellpose 3D mode with Omnipose trained ‘plant_cp’ model. We ran the 2D pretrained Cellpose plant_cp 1357 
model using the same function call as the example in the Omnipose documentation for plant_omni but with 1358 
omni=False and do_3D=True. As for Omnipose3D we found many small predicted object and additionally 1359 
postprocessed the output segmentation by removing all objects with volume < 2500 voxels. 1360 

 1361 

Evaluation of segmentation quality 1362 

Segmentation quality in single images 1363 

For single 2D and 3D images, we find the optimal matching between predicted and reference cell 1364 
segmentations. Given a total number of 𝑀 predicted cells, and 𝑁 reference cells, we iterate and find for each 1365 

predicted cell 𝑖, its K-nearest reference cells according to the distance between their centroids. For each of 1366 
the K-nearest reference cells, we compute the intersection-over-union (IoU) metric (0-1) (see below). This 1367 

produces a 𝐼𝑜𝑈(𝑖, 𝑗) ∈ ℝ𝑀×𝐾  matrix. We convert this to a distance cost matrix, 𝑑𝑖𝑠𝑡(𝑖, 𝑗) = 1 − 𝐼𝑜𝑈(𝑖, 𝑗) ∈1368 

ℝ𝑀×𝐾. The optimal matching between predicted and reference cells is then found by solving the linear sum 1369 
assignment using a modified Jonker-Volgenant algorithm with no initialization128 (Python Scipy, 1370 
scipy.optimize.linear_sum_assignment) and retaining only the pairings that spatially overlap (𝐼𝑜𝑈(𝑖, 𝑗) > 0). 1371 

The segmentation quality for an image is then assessed by (i) the mean IoU, to measure the spatial overlap 1372 
of matched predicted and reference cells and (ii) the F1 score (see below), the harmonic mean of precision 1373 
and recall to measure how accurately the segmentation detects the correct number of reference cells.  1374 

 1375 

Intersection-over-union (IoU). Also called the Jaccard index, is defined as the total number of pixels in 1376 
the intersection divided by the total number of pixels in the union of two binary segmentation masks 𝐴 and 1377 

𝐵,  𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
. 1378 

F1 score. Predicted cells that are validly matched to a reference cell (IoU>0) define the true positives, TP. 1379 
Predicted cells that are not matched are false positives, FP, and the reference cells with no valid matches 1380 
are false negatives, FN. The precision is the number of matched cells divided by the total number of 1381 

predicted cells, precision =
TP

TP+FP
.The recall is the number of matched cells divided by the total number of 1382 

reference cells, recall =
TP

TP+FN
. F1 score is the harmonic mean of precision and recall, F1 = 2

precision×recall

precision+recall
 . 1383 

 1384 

Average precision curve 1385 

We evaluate the quality of cell segmentation using average precision consistent with popular segmentation 1386 
models such as StarDist3, Cellpose6 and Omnipose7. Each predicted cell label mask is matched to the 1387 
reference cell label mask that is most similar, as defined by IoU. The predictions in an image are evaluated 1388 
at various levels of IoU. At a lower IoU, fewer pixels in a predicted cell have to match a corresponding 1389 
reference cell for a valid match. The valid matches define the true positives, TP, the cells with no valid 1390 
matches are false positives, FP, and the reference cells with no valid matches are false negatives, FN at that 1391 
IoU threshold. Using these values, the standard average precision metric (AP) for each image is: 1392 

AP =
TP

TP + FP + FN
 1393 

The average precision (AP) curve is reported for a dataset by averaging over the average precision metric 1394 
for each image in the dataset. Optimal matching of predicted and reference cells is too computationally 1395 
demanding in 3D even when restricting the search to nearest neighbors. We use the same approximate 1396 
matching implementation in Cellpose which is derived from the fast matching functions in StarDist. It is 1397 
important to note this matching is not invariant to cell id permutation. To compute the correct AP, we first 1398 
relabel all cells sequentially after performing an indirect stable sort based on their (𝑥, 𝑦, 𝑧) centroid for both 1399 

reference and predicted cell segmentation independently. In line with Cellpose, the AP curve is reported for 1400 
11 IoU thresholds equisampling the range [0.5,1.0]. Many datasets e.g. Ovules do not rigorously label every 1401 
cell in the image but only the cells of the primary, single connected component object in the field of view. 1402 
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However pretrained Cellpose models would predict all cells in the field-of-view. For fair evaluation, for these 1403 
datasets (all except for Embedseg skull nuclei, Platynereis nuclei and Platynereis ISH nuclei), we use the 1404 
reference segmentation to define the foreground connected component cluster to evaluate AP and include 1405 
all predicted cells within spatial connected components that have at least 25% overlap with a reference 1406 
connected component cluster. For DeepVesselNet, this is at least 1% overlap due to the thinness.  1407 

 1408 

Visualization 1409 

We use the Fiji ImageJ129 3D viewer plugin to render 3D intensity and segmentation image volumes. For 1410 
visualization of intensity in Fig. 5, we acquired a snapshot of the rendering and applied an inverse lookup 1411 
table. Surface meshes in Fig. 5 were extracted using u-Unwrap3D15 and visualized using MeshLab130. 1412 
Rotating surface mesh movies were created using ChimeraX131.    1413 
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Figures 1415 

 1416 

Figure 1. u-Segment3D is a toolbox for generating consensus instance 3D segmentation from 2D 1417 
segmentation methods. a) Computational representation of the 2D segmentation of densely packed cells 1418 
as two images, a foreground binary mask and a labelled image where each unique cell is assigned a unique 1419 
integer id. b) Equivalent representation of the eroded segmentation such that individual cells are now spatially 1420 
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separated using a single foreground binary mask which can be parsed using connected component analysis 1421 
to recover individual cell ids. c) Schematic of the factorization of 2D instance cell segmentation to orthogonal 1422 
1D slices in x- or y- directions and subsequent perfect reconstruction from 1d instance segmentation by 1423 
stacking and 2D spatial proximal grouping. d) Schematic of the minimal set of algorithmic steps to 1424 
operationalize the conceptual framework in c) for 2D to generate the consensus 3D segmentation when cells 1425 
may be densely packed. e) u-Segment3D is a toolbox to enable the application of the algorithmic steps in d) 1426 
to real datasets with additional preprocessing methods to adapt any pretrained 2D segmentation model or 1427 
2D method and postprocessing methods to improve and recover missing local features in the reconstructed 1428 
3D segmentation such as subcellular protrusions. 1429 

 1430 
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 1432 

Figure 2. u-Segment3D reconstructs optimal 3D segmentation from synthetic ideal 2D segmentation 1433 
labels from orthogonal x-y, x-z, y-z views. a) Illustration of the 8 computed geometrical and topological 1434 
features to describe shape complexity. b) UMAP embedding of individual cells from 11 real datasets which 1435 
together represent the spectrum of morphological complexity from convex-spherical, branching to networks. 1436 
The zebrafish macrophages dataset was internally curated with the aid of u-Segment3D. All others are public 1437 
(Methods). Left: colormap of individual dataset and total number of uniquely labelled cells in each dataset. 1438 
Middle: UMAP, each point is a cell, color-coded by their origin dataset. Right: Median UMAP coordinate of 1439 
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each dataset (top left) and heatmap of three features representing the extent of branching (total number of 1440 
skeleton nodes, top right), the extent of elongation (stretch factor = 1 – minor length/major length) and their 1441 
image size (total number of voxels). c) Illustration of the experimental workflow to compute 2D slice-by-slice 1442 
distance transforms in orthogonal directions given the reference 3D cell segmentation labels and then 1443 
applying u-Segment3D to reconstruct the 3D segmentation from 2D stacks for the 11 real datasets in b). d) 1444 
Reconstruction performance measured by the average precision curve (Methods) for the Ovules dataset 1445 
using three different 2D distance transforms. From top to bottom: average precision vs intersection over union 1446 
(IoU) curve; 3D rendering of reference, point-based diffusion distance transform reconstructed vs skeleton-1447 
based Euclidean distance transform reconstructed 3D cell segmentation and their respective midslices in the 1448 
three orthogonal views. e), f) Same as d) for the Lateral Root Primordia dataset containing examples of 1449 
branching morphology and DeepVesselNet representing entire complex, thin network morphologies. 1450 
Individual cells are uniquely colored but are not color matched with respect to the reference segmentation. 1451 
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 1453 

Figure 3. u-Segment3D segmentation of 3D real datasets using pretrained cellpose2D applied to 1454 
orthogonal x-y, x-z, y-z views. a) Illustration of the two workflows that can be implemented by u-Segment3D 1455 

to generate 3D cell segmentation. The direct method (steps 1,3,4) performs the generation utilising the 2D 1456 
segmentation method’s predicted distance transform or spatial gradients and cell probability maps from 1457 
orthogonal views. The indirect method (steps 2a, 2b, 3, 4) first converts the stack of 2D cell segmentation 1458 
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labelled images from orthogonal views using a chosen 2D distance transform to generate the necessary 1459 
spatial gradients, as in Fig. 2c. b) 3D cell segmentation performance of the Ovules dataset (validation (val) 1460 
split, n=2840 cells, m=2 volumes) using pretrained cellpose 2D with u-Segment3D. (i) 3D rendering of raw 1461 
image (top) and reference 3D labels (bottom). (ii) Average precision (AP) curve for the direct method using 1462 
pretrained Cellpose 2D cyto or cyto2 models relative to the AP curve of the best reconstruction from synthetic 1463 
2D segmentation in Fig. 2d (top). 3D rendering of the segmentation using the best cellpose model for the 1464 
direct method (bottom). (iii) Average precision (AP) curve for the indirect method using the 2D segmentation 1465 
of pretrained Cellpose 2D cyto or cyto2 models and different 2D distance transforms relative to the AP curve 1466 
of the corresponding direct method constructed 3D segmentation (top). 3D rendering of the segmentation 1467 
using the best cellpose model for the indirect method (bottom). (iv) Average precision (AP) curve of the 2D 1468 
segmentation accuracy averaged across all 2D slices for each Cellpose 2D model (magenta lines) in each 1469 
orthogonal view, x-y, x-z, y-z from left-to-right relative to the 2D segmentation accuracy of the corresponding 1470 
direct method 3D segmentation (black lines). c), d) Same as b) for the Lateral Root Primordia (validation (val) 1471 
split, n=130 cells, m=2 volumes) and DeepVesselNet (n=410 network components, m=135 images) dataset 1472 
containing examples of branching morphology and DeepVesselNet representing entire complex, thin network 1473 
morphologies. For d) we additionally evaluated the performance of binary Otsu thresholding as a baseline 1474 
2D segmentation method (green line). 1475 
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  1478 

Figure 4. u-Segment3D segmentation of anisotropic 3D volumes using only x-y 2D stacks. a) Four 1479 
equi-sampled x-y image slices from top-to-bottom of the air-liquid interface keratinocyte culture. b) 3D render 1480 

of the air-liquid interface keratinocyte culture with axial interpolation to isotropic voxel resolution (left) and 1481 
corresponding mid-section orthoslices (right). c) Cellpose 2D cell segmentations using the ‘cyto’ model and 1482 

diameter automatically determined per-slice by cellpose. Cells are individually colored and overlaid onto the 1483 
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four x-y image slices in a). White boundaries delineate individual cell boundaries within a slice. d) 3D render 1484 
of the u-Segment3D consensus segmentation of the x-y 2D segmentation stacks in c) (left) and 1485 
corresponding mid-section orthoslices (right). e) Cellpose 2D cell segmentations using the ‘cyto’ model and 1486 
diameter automatically determined per-slice by u-Segment3D contrast score. Cells are individually colored 1487 
and overlaid onto the four x-y image slices in a). White boundaries delineate individual cell boundaries within 1488 
a slice. f) 3D render of the u-Segment3D consensus segmentation of the x-y 2D segmentation stacks in e) 1489 
(left) and corresponding mid-section orthoslices (right). g) 2D cell segmentation consistency measured by 1490 
the average precision at IoU cutoff = 0.5 between success z-slices as a function of z-slice id for per-slice 1491 
Cellpose model diameter auto-determined by Cellpose (green line) or u-Segment3D contrast score (magenta 1492 
line). h) Mean cell diameter inferred by Cellpose (green line) and measured after obtaining the corresponding 1493 
2D cell segmentation (black line) for each xy-slice. i) Mean cell diameter inferred by peak position in the u-1494 
Segment3D contrast score (green line) and measured after obtaining the corresponding 2D cell segmentation 1495 
(black line) for each xy-slice. j) Segmentation of MDA231 human breast carcinoma cells from the 3D Cell 1496 
Tracking Challenge using u-Segment3D to aggregate Cellpose 2D xy-slice segmentations with optimal 1497 
diameter selection by contrast score. 3D render of raw and 3D cell segmentation (top) and in consecutive 2D 1498 
xy-slices (bottom). k). u-Segment3D per-frame segmentation of unwrapped proximal surface topography 1499 

volumes of drosophila. i) Unwrapping of the proximal surface using u-Unwrap3D. ii) Cellpose 2D and u-1500 
Segment3D contrast score diameter segmentation of the surface x-y slice at timepoint (TP) 25. iii) Mid y-z 1501 
cross-section snapshots of the raw (top) and segmented (bottom) topography volumes for 6 equi-spaced 1502 
timepoints. R denotes the Pearson’s R in panels g)-i). 1503 
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 1506 

Figure 5. u-Segment3D postprocessing recovers missing high-frequency, high-curvature subcellular 1507 
features. a) General u-Segment3D workflow with postprocessing to segment individual cells and recover 1508 
subcellular features of each cell. 3D render (top) and x-y midslice (bottom) of the output at each step. b) 1509 
Binary segmentation and recovery of lamellipodial features on a dendritic cell using u-Segment3d 1510 
postprocessing. 3D rendering of the (i) deconvolved input, (ii) initial 3D segmentation from aggregated 1511 
cellpose 2D cell probability map (after step ii of a)), (iii) final postprocessed 3D segmentation (after step iv of 1512 
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a)) and comparison with the segmentation from binary Otsu thresholding on the 3D image intensity. g = genus 1513 
of extracted surface mesh. c), d) Binary segmentation and recovery of filopodial and ruffle features on a 1514 
HBEC and COR-L23 cell using u-Segment3d postprocessing. e) Single cell 3D segmentation of T-cells using 1515 
cellpose 2D with u-Segment3D postprocessing. 3D render of deconvolved image volume (top), initial 3D 1516 
segmentation from aggregated cellpose 2D (middle) and final 3D segmentation with recovered subcellular 1517 
protrusions (bottom). f) Single cell 3D segmentation of zebrafish macrophages using cellpose 2D with u-1518 
Segment3D postprocessing. 3D render of deconvolved image volume (top), initial 3D segmentation from 1519 
aggregated cellpose 2D (middle) and final 3D segmentation with recovered subcellular protrusions (bottom). 1520 
g) Binary 3D segmentation of developing zebrafish vasculture using cellpose 2D with u-Segment3D 1521 
postprocessing. 3D render of raw image volume (top), initial 3D segmentation from aggregated cellpose 2D 1522 
cell probability maps (middle) and final 3D segmentation with recovered sprouting vessels (bottom). 1523 
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 1526 

Figure 6. u-Segment3D uses parallel computing for tissue-scale segmentation. a) Schematic of the 1527 

parallelized gradient descent tracking in overlapped subvolume tiles used by u-Segment3D to facilitate single 1528 
cell 3D segmentation in tissue. b) x-y, x-z, y-z midslice cross-sections of the fused nuclear (red) and 1529 
membrane (green) signal channels from multiple biomarkers (Methods) for a CyCIF multiplexed patient 1530 
biopsy of metastatic melanoma with white boundaries to delineate the individual cells in each view (left). 1531 
Zoom-ins of 3 subregions in x-y (black box, regions 1-3), x-z (cyan box, regions 4-6), y-z (magenta box, 7-9) 1532 
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cross-sections (top right). Zoom-in of the extracted 3D cell meshes within the blue rectangle (subregion 𝛼) of 1533 
xy view, heatmap colored by sphericity (sphere = 1). c) 3D Segmentation of individual lung nuclei (green) 1534 
and cancer micrometases (magenta) in cleared tissue. Left-to-right: merged input volume image, individual 1535 
segmented nuclei from nuclei channel, micrometastases only image showing weak, non-specific staining 1536 
(white arrow) compared to specific positive staining (green arrow), and final u-Segment3D micrometastases 1537 
3D segmentation post-filtered by mean cell intensity. d) 3D render of the input coCATs volume (left) and u-1538 
Segment3D aggregated cellpose2D 3D segmentation of salient tissue architecture (right). e) Mid-slice cross-1539 
sections in x-y, x-z, y-z with individual segmentation boundaries outlined in green and its area individual color 1540 
overlayed with the input image. f) Mid ± 10 z-slice x-y cross-section with individual segmentation boundaries 1541 

outlined in green and its area individual color overlayed with the input image. 1542 
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Supplementary Figures 1545 

 1546 

Extended Data Figure 1. 2D distance transforms for 2D-to-3D segmentation in u-Segment3D. a) 1547 
Schematic illustration of the necessary property of 2D distance transforms for 3D segmentation should have 1548 
maxima that sample the 2D medial skeleton of individual shapes. b) Example of the first- (geodesic, left) and 1549 
second-order (diffusion, right) shortest distance ‘explicit’ attractors distance transforms implemented in u-1550 
Segment3D where the limit of performing gradient descent is explicitly specified as either (i) a single point-1551 
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source on the 2D medial skeleton or (ii) a set of points as the source along the 2D medial skeleton. c) Example 1552 
of the first- (geodesic, left) and second-order (diffusion, right) shortest distance ‘implicit’ skeletal-based 1553 
attractor distance transforms implemented in u-Segment3D where performing gradient descent may not 1554 
necessarily converge stably to the limit. For each example in b), c), distance transform is represented as a 1555 
relative 3D height map, colored blue (lowest) to red (highest) (top) and trajectory (magenta) of equi-sampled 1556 
boundary points under gradient descent (bottom). Black point = closest internal shape point to the median 1557 
shape coordinate. d) Illustration of using percentile-based thresholding of the Euclidean distance transform 1558 
of individual cells as a soft constraint to find the medial centroid 2D coordinate for convex and concave 1559 
shapes used in computing the 2D point-source distance transforms in c). e) The computed unit-normalized 1560 
2D gradients for (i) circle in doughnut synthetic shape and (ii) elongated touching bacterial shapes using the 1561 
iterative simulated diffusion in Cellpose compared to the exact diffusion with boundary conditions solution 1562 
obtained by LU factorization (Methods) in u-Segment3D. 2D gradients are colored according to direction. The 1563 
number of simulated diffusion steps in Cellpose equals the factor multiplied by the number of pixels occupied 1564 
per shape. 1565 
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 1568 
Extended Data Figure 2. Content-based average function for combining data from multiple views for 1569 
2D-to-3D segmentation. a) Mathematical definition of the content-based average function as the inverse 1570 
local variance weighted mean of input image values in an isotropic neighborhood of width P pixels. b) 1571 
Example of applying the average function defined by a) to fuse the stacked 2D distance transforms after 2D 1572 
slice-by-slice segmentation of a volume of spherical cells from xy, xz and yz views. 1st row: Left-to-right, the 1573 
Euclidean distance transform colored blue (low) to red (high) from the three orthoviews and fused distance 1574 
transform from pixelwise mean. 2nd row: Left-to-right, the per-pixel local variance weight image 𝜎 for each 1575 
orthoview for a neighborhood of width P = 1 pixel and resultant fused distance transform using the content-1576 
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based averaging. 3rd row: Left-to-right, the per-pixel local variance weight image 𝜎 for each orthoview for a 1577 
neighborhood of width P = 3 pixel and resultant fused distance transform using the content-based averaging. 1578 
4th row: Left-to-right, the per-pixel local variance weight image 𝜎 for each orthoview for a neighborhood of 1579 
width P = 5 pixel and resultant fused distance transform using the content-based averaging. c) Result of 1580 
applying binary Otsu thresholding on the fused distance transform based on pixelwise mean, and content-1581 
based averaging using neighborhood of width P = 1, 3, 5 pixels from left-to-right.  1582 
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 1585 
Extended Data Figure 3. Illustration of 2D Gradient descent for reversible 2D shape erosion. a) 1586 
Cellpose computed 2D gradients for a synthetic shape of a doughnut (labelled 1) surrounding a circle 1587 
(labelled 2) (left) with the 2D gradients visualized as red arrows (right) and zoomed in at three regions with 1588 
different types of flow behavior. The number of simulated steps equals the factor = 5 multiplied by the number 1589 
of pixels occupied per shape. b) Schematic of the expected behavior when gradient descent is iteratively 1590 

applied to propagate the initial foreground (x,y) coordinates with the 2D gradients with the limit being 1591 
convergence to 2 black centroids. c) Observed point trajectories (magnenta lines) and snapshots of 1592 

coordinate positions (red points in images) running gradient descent in cellpose (left) vs u-Segment3D (right) 1593 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.03.592249doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.592249
http://creativecommons.org/licenses/by-nd/4.0/


for 100 iterations. d) Recovered cell shapes based on applying Cellpose (top) or u-Segment3D (bottom) 1594 
spatial proximity clustering on the final coordinate positions after 100 iterations of Cellpose (left) or u-1595 
Segment3D (right) gradient descent.  1596 
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 1599 
Extended Data Figure 4. Using image-based spatial connected components to robustly identify 1600 
distinct spatially compact point sets. a) 2D Illustration of the image-based connected components spatial 1601 
clustering approach in u-Segment3D involving left-to-right, rasterization of floating-point coordinates onto a 1602 
discrete image pixel grid, building a count of the number of points in each pixel, approximate Gaussian kernel 1603 

density estimation using a Gaussian filter of 𝜎, binary thresholding on the mean density and subsequent 1604 
connected component analysis to identify distinct spatial clusters. b) Verification of stable algorithm behavior 1605 
by application to foreground (x,y) coordinates after propagation of XXX iterations with gradient descent. 2D 1606 
gradients are computed using the 2D geodesic centroidal point distance transform. (i) Schematic of the 1607 
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experiment setup for an example 2D cell segmentation with densely touching cells (top panel). (ii) The point 1608 
density, connected component labelling at current (x,y) coordinates and labeling mapped back to initial (x,y) 1609 
coordinates (top-to-bottom) after t=0, 10, 20, 30, 40, 50 iterations of gradient descent (left-to-right). (iii) Plot 1610 
of number (#) of distinct predicted cells (left, black-colored y-axis and line) and # of matched cells with 1611 
reference cell segmentation (right, green-colored y-axis and line) with iteration #, t (top). Dashed black 1612 
horizontal line indicates the true cell number. Plot of F1 score of matching with reference cells (left, black-1613 
colored y-axis and line) and the mean intersection-of-union (IoU) of matched cells with reference (right, green-1614 
colored y-axis and line) with iteration #, t (bottom). c) Reference 2D cell segmentation of elongated touching 1615 
bacteria (left), identified unique cells by spatial connected component at gradient descent propagated 1616 
coordinates after t = 0, 5, 10, 15, 20 iterations (middle), and Plot of F1 score of matching with reference cells 1617 
(left, black-colored y-axis and line) and the mean intersection-of-union (IoU) of matched cells with reference 1618 
(right, green-colored y-axis and line) with iteration #, t. d) Image-based connected component applied to 1619 
recover a doughnut (region 1) surrounding a circle (region 2) after 50 iterations of gradient descent. e) 1620 
Comparison of using image-based connected component to construct robust segmentations from Cellpose 1621 
3D mode outputs for an isolated noisy single cell from the 3D cell tracking challenge. Left-to-right: 3D render 1622 
of raw volume, Cellpose 3D mode segmentation with diameter=50 and cellprob_threshold=0, reparsed 3D 1623 
segmentation using u-Segment3D gradient descent and connected component analysis (top row) and 1624 
corresponding mid x-y slice (bottom row). f) Comparison of using image-based connected component to 1625 
construct robust segmentations from Cellpose 3D mode outputs for a noisy image of multiple cells of 1626 
elongated morphologies from the 3D cell tracking challenge. Left-to-right: 3D render of raw volume, Cellpose 1627 
3D mode segmentation with diameter=15 and cellprob_threshold=-1.2, reparsed 3D segmentation using u-1628 
Segment3D gradient descent and connected component analysis (top row) and corresponding mid x-y slice 1629 
(bottom row). Black arrowheads highlight examples of fractured single cells due to unstable spatial clustering 1630 
in Cellpose.   1631 
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 1634 
Extended Data Figure 5. 1D-to-2D segmentation for single cells from synthetic ideal 1D segmentation 1635 
stacks. a) Schematic of the workflow to investigate 1D-to-2D segmentation. Reference cell segmentation 1636 

and ideal 2D geodesic distance transform to reconstruct (left). Reconstruction of 2D gradient field from 1637 
computed 1D gradients (right). Left-to-right: Determination of the y-direction and x-direction gradient by 1638 
computing the distance transform of each pixel in 1D slices to the respective slice centroid and taking the 1639 

gradient; combining the x- and y- gradient into a 2D gradient field and smoothing with a Gaussian 𝜎 ; 1640 
performing gradient descent on the smoothened 2D gradients to propagate all interior points to a unique 1641 
centroid (magenta line trajectories). b) Gradient descent behavior using Gaussian filter of increasing 𝜎 on the 1642 
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initial reconstructed 2D gradients for individual cell examples representing the diversity of morphologies. 1643 
Example of approximately star-convex shapes: (i) Montage of 4 images depicting reference cell shape and 1644 
its convex hull image with green point representing their centroid coordinate and the cell’s exact 2D geodesic 1645 
centroid distance transform with associated gradient descent trajectory to reconstruct (left panels). Observed 1646 
gradient descent trajectory (magenta line) when reconstructed 2D gradients is isotropically smoothed with 1647 
Gaussian filter of increasing 𝜎 (middle panels). Comparison of the gradient descent trajectory with the implicit 1648 
medial skeleton specified by the 2D Euclidean distance transform and explicit medial skeleton from 1649 
morphological operations (right panels). (ii), (iii) are further examples of approximate star-convex shapes as 1650 
in (i). (iv) represents a branching shape whose branch lengths are comparable to the cell body, (v) a convex 1651 
shape, and (vi) a thin vessel-like shape with panels depicted as for (i).   1652 
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1655 
 Extended Data Figure 6. 1D-to-2D segmentation for dense clustered cells from synthetic ideal 1D 1656 
segmentation stacks. a) Representative example of a dense 2D cell culture with diverse morphologies with 1657 
(i) reference cell boundaries overlaid and delineated in white (top) and uniquely colored segmented masks 1658 
(bottom). (ii) Exact unit-normalized 2D gradients geodesic centroid distance transform colored by direction 1659 
(top) and the recovered cell masks using connected component analysis after 100 iterations of gradient 1660 
descent with step-size one pixel. (iii) Reconstructed 2D gradient from 1D after Gaussian filtering with 1661 
increasing 𝜎 left-to-right (top) and corresponding recovered cell masks using connected component analysis 1662 
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after 100 iterations of gradient descent. (iv) Recovery performance of the 1D-to-2D segmentation with 1663 
increasing 𝜎.  Plot of F1 score of matching with reference cells (left, black-colored y-axis and line) and the 1664 
mean intersection-of-union (IoU) of matched cells with reference (right, green-colored y-axis and line) (top). 1665 
Plot of the number (#) of distinct predicted cells (left, black-colored y-axis and line) and # of those that could 1666 
be matched with reference cells (right, green-colored y-axis and line) (bottom). Dashed black horizontal line 1667 
indicates the true cell number. Evaluation was performed after 100 iterations of gradient descent. b) 1668 
Representative example of a dense 2D cell culture where each cell has highly elongated, vessel-like 1669 
morphology. Panels (i)-(iv) as in a). c) Same example image and panels (i)-(iv) as in b) but using suppressed 1670 

gradient descent where the step-size 𝜂 =
1

1+𝜏⋅𝑡
, is attenuated with gradient descent iteration number, 𝑡 and 1671 

𝜏 = 1 (Methods). 1672 
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 1675 
Extended Data Figure 7. 2D-to-3D segmentation reconstruction for single cells from synthetic ideal 1676 
2D segmentation stacks. a) Illustration of the reconstruction experiment given a single 3D cell segmentation 1677 

(left), by generating 2D gradients slice-by-slice in xy, xz, yz views, treating each disconnected spatial 1678 
component as a unique 2D cell (middle) and performing gradient descent on the reconstructed 3D xyz 1679 
gradient followed by connected component analysis on the final advected 3D coordinates (right). b) 1680 

Reconstruction examples for cells with blebs (1st row), lamellipodia (2nd, 3rd rows) and filopodia (4th row). In 1681 
each row, left-to-right: reference binary 3D cell segmentation, the 3D gradient descent trajectory (left) and 1682 
reconstructed 3D segmentation (right) for Gaussian filtering of the 3D reconstructed gradients with 𝜎 = 1,5,15, 1683 
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using suppressed gradient descent (𝜏 = 0.1) with momentum (0.95). c). Reconstruction example of the same 1684 

cells with filopodia in b) for post- Gaussian filtering with 𝜎 = 1,5,15 (left-to-right), using suppressed gradient 1685 

descent with greater decay (𝜏 = 0.5) with momentum (0.95). 1686 
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1689 
 Extended Data Figure 8. Reconstruction performance of 3D cell segmentation from synthetic ideal 1690 
2D segmentation stacks for real datasets. Reconstruction performance measured by the mean average 1691 
precision curve (Methods) using three different 2D distance transforms for all datasets not included in Fig. 1692 
2d-f. a) Arabidopsis-CAM, b) mouse organoid, c) C.Elegans, d) mouse skull nuclei, e) Platynereis ISH nuclei, 1693 
f) Platynereis nuclei, g) vesselMNIST3D and h) zebrafish macrophages. For each dataset, top row, left-to-1694 
right: average precision vs intersection over union (IoU) curve; 3D rendering of reference segmentation, point-1695 
based centroid diffusion distance transform reconstructed 3D cell segmentation. Bottom row, left-to-right, the 1696 
respective midplane orthoslices in the three orthogonal views. All available data splits is used for each dataset 1697 
except VesselMNIST3D which we use only the validation split (Methods). See Suppl. Table 1 for number of 1698 
objects and images in each split. 1699 
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 1702 
Extended Data Figure 9. The diameter parameter in pretrained Cellpose models should be individually 1703 
set in orthogonal views. a) Cellpose ‘cyto2’ model outputs and per-pixel u-Segment3D contrast score on 1704 
the most in-focus (Methods) 2D xy-slice of a Lateral Primordia as diameter (diam) is increased. (i) Raw input 1705 
image slice, the same for all values of diameter. (ii) Normalized (0-1) Cellpose 2D pixel probability map 1706 
colored black=0 to yellow=1. (iii) Unit-normalized Cellpose 2D predicted gradients colored by direction. (iv) 1707 
Contrast score of predicted cellpose 2D gradient (Methods, Extended Data Figure 10a). (v) Corresponding 1708 
reference cell segmentation for the raw 2D input. (vi) Mean contrast score averaged over the image for each 1709 
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value of diam. The diameter with maximum contrast score is taken by u-Segment3D as the optimal diameter. 1710 
b) Same as in a) for the most in-focus 2D xz-slice and c) the most in-focus 2D yz-slice. d) From left-to-right, 1711 
3D render of the raw 3D volume, reference 3D segmentation, u-Segment3D consensus 3D segmentation 1712 
using the direct method and diameter in each orthoview set by contrast score or by the Cellpose ‘cyto2’ model 1713 
(top), and corresponding mid-plane orthoslices in all three views (below). 1714 
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 1717 
Extended Data Figure 10. Semi-automatic determination of the diameter parameter in pretrained 1718 
Cellpose models using local variance. a) Schematic illustration of the computation and definition of a 1719 

contrast score function, evaluated based on a user-specified local neighborhood of width 𝑃 pixels to evaluate 1720 
Cellpose outputs for a 2D image when the diameter parameter is set to 𝑑. b) (i) Raw input image slice, (ii) 1721 

normalized (0-1) Cellpose 2D pixel probability map colored black=0 to yellow=1, and (iii) unit-normalized 1722 

Cellpose 2D predicted gradients colored by direction for 9 equisampled diameters in the range 𝑑 = [20, 120]. 1723 
c) Contrast score maps (colored blue-to-red for low-to-high values) for the same 𝑑 as in b) (left) and resulting 1724 

contrast score function and optimal diameter inferred (right), given a specified neighbourhood of width 𝑃 =1725 

21, 61, 101 pixels (top-to-bottom).  1726 
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 1727 

Extended Data Figure 11. Performance of u-Segment3D using pretrained vs specialized plant 1728 
Cellpose segmentation models. a) Performance of pretrained Cellpose models with u-Segment3D vs 1729 
Cellpose 3D mode on test split of Ovules. (i) example volume and corresponding reference segmentation; (ii) 1730 
AP curves of all models, with best 3D segmentation reconstructed from ideal 2D slices (black line) (top) and 1731 
segmentation of best pretrained model with u-Segment3D (bottom); (iii) Cellpose 3D mode segmentations 1732 
using cyto (top) or cyto2 (bottom) models. b) Performance of pretrained Cellpose models with u-Segment3D 1733 
vs Cellpose 3D mode on test split of Lateral Root Primordia (LRP) dataset. (i)-(iii) similar to a). c) Performance 1734 
on val split using pretrained Cellpose models with u-Segment3D or Cellpose 3D mode, plant-cp: a specialized 1735 
Cellpose 2D model trained on LRP with u-Segment3D or Cellpose 3D mode, and plant-omni: a specialized 1736 
Omnipose 3D model trained on LRP natively in 3D. (i)-(ii) similar to a). (iii) Native 3D segmentation using 1737 
plant-omni (top) or 2D-to-3D segmentation using Cellpose 3D mode with plant-cp (bottom). (iv) mid xy slice  1738 
of the reference, u-Segment3D diffusion centroid transform aggregated plant-cp and 3D plant-omni 1739 
segmentation (left-to-right). d) Same as c) for the test split of LRP.  1740 
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 1744 
Extended Data Figure 12. Performance of 2D-to-3D segmentation for real datasets using u-1745 
Segment3D and pretrained cellpose2D model outputs. a) 3D cell segmentation performance of the mouse 1746 
organoid (in the Embedseg paper) for the train data split, n=740 cells, m=108 volumes) using pretrained 1747 
Cellpose 2D models with u-Segment3D and the direct method illustrated in Fig.3a. Left-to-right: 3D rendering 1748 
of the raw volume, reference 3D segmentation, generated 3D segmentations for each Cellpose 2D model 1749 
and the combined average precision (AP) curve coplotted with the AP curve of the best reconstruction with 1750 
synthetic reference 2D segmentations in the three orthoviews (black line with circles). The same as a) for b) 1751 
C. Elegans embryo (test data split, n =1,081 cells, m = 21 images), c)  mouse skull nuclei (test data split, 1752 
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n=38 cells, m=1 image), d) Arabidopsis (CAM) (test data split, n=12,424 cells, m=10 images), e) Platynereis 1753 
nuclei (train data split, n=1,832 cells, m=9 images), f) Platynereis ISH nuclei (test data split, n=163 cells, m=1 1754 
image). For the Platynereis nuclei which are approximately spherical, we additionally evaluated the 1755 
performance of the Cellpose ‘nuclei’ 2D model (light purple line with triangles). 1756 
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 1759 

Extended Data Figure 13: u-Segment3d generated consensus 3D segmentations can be filtered with 1760 
image statistics to improve specificity for weakly labeled cells. a) Schematic of the workflow and 3D 1761 

rendering of the resulting segmentation using the nuclei only stained channel (green) to segment all lung 1762 
nuclei and using both nuclei (green) and micrometastases stain (magenta) channels to segment 1763 
micrometastases with Cellpose and u-Segment3D.  b) Schematic of the procedure to leverage the 1764 
micrometastases stain to post-filter out mis-segmented micrometases (left) by measuring the mean intensity 1765 
in each segmented cell (middle) and performing a global statistically determined cutoff, keeping the subset 1766 
of cell segmentations with mean intensity above the cutoff (right).  1767 
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Supplementary Tables 1769 

Supplementary Table 1. Summary of datasets used for validation of u-Segment3D. Unless otherwise 1770 
noted, all images were first resampled to isotropic voxel resolution by appropriate downsampling of xy slices 1771 
and then resized isotropically by the indicated rescaling factor.  1772 

 1773 

Plants 1774 

Name Description Pixel 
Size 
(Z,Y,X) 

[𝝁𝒎𝟑] 

Used 
Microscope 

Isotropic 
Rescalin
g factor 

Total #images 
(Train/Test/Val
) 

Total 
#cells 

Lateral 
Primordia8 

Arabidopsis 
thaliana 
lateral root 
of the line 
sC111 were 
used at 5 
day post 
germination 

(0.25, 
0.1625,0.
1625) 
 

Multi-view 
Selective Plane 
Illumination 
Microscopy 

0.5 21 / 4 / 2 2,068 
/ 429 / 
130  

Ovules8,132 Arabidopsis 
thaliana 
ovules 
stained with 
SR2200 and 
TO-PRO-3 
iodide 

(0.235, 
0.075, 
0.075) *  

Confocal laser 
scanning 
microscopy 

1 22 / 7 / 2 23,86
0 / 
10,32
8 / 
2,839  

* We find (0.235, 0.15, 0.15) to be more isotropic and expected appearance.  1775 

Lateral primordia was downloaded from https://osf.io/2rszy/ 1776 

Ovules was downloaded from https://osf.io/w38uf/ 1777 

 1778 

Embedseg 1779 

Name Description Pixel Size 

(Z,Y,X) [𝝁𝒎𝟑] 
Used 
Microscope 

Isotropic 
Rescaling 
factor 

# images 
(Train/Test/Val) 

Total # 
cells 

Arabidopsis-
Cells-CAM-
small133,134 

Arabidopsis Thaliana 
YFP membrane 
labelled and imaged 
between 24 and 28 
days after 
germination 

(0.26, 0.22, 
0.22)  

Confocal 
Microscopy 

1 11 / 10 / - 12,016 / 
12,423 / 
- 

C.elegans-
Cells-HK56 

C.elegans embryos 
membrane labeled.  

(0.25,0.25,0.25) Confocal 
Microscopy 

1 54 / 21 / - 3,479 / 
1,081 / - 

Mouse-
Organoid-
Cells-CBG17 

Mouse Embryonic 
Stem Cells, R1 cell 
line, labeled 
membrane 

(1.0, 0.1733, 
0.1733)  

Selective 
Plane 
Illumination 
Microscopy 

0.5 108 / - / - 750 / - / - 

Mouse-
Skull-Nuclei-
CBG17 

Nuclei of the skull 
region of developing 
mouse embryos, 
labeled with DAPI 

(0.200, 0.073, 
0.073) * 

Inverted 
Zeiss LSM 
880 
Microscope 

0.5 2 / 1 / - 150 / 38 
/ - 

Platyneris-
Nuclei-
CBG17 

Nuclei of whole-
mount Platynereis 
dumerilli specimens 
at stages between 0 
to 16 hours post 
fertilization, injected 
with a fluorescent 
nuclear tracer 

(2.031, 0.406, 
0.406) 

Simultaneous 
Multi-view 
Light-Sheet 
Microscopy 

1 9 / - / - 1832 / -/ 
- 
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Platyneris-
ISH-Nuclei-
CBG17 

Nuclei of whole-
mount Platynereis 
dumerilli specimens 
at stage of 16 hours 
post fertilization, 
labeled with DAPI 

(0.45, 
0.45,0.45) 

Laser 
Scanning 
Confocal 
Microscopy 

1 2 / 1 / - 486 / 
159 / - 

* For Mouse-Skull-Nuclei-CBG we found that pretrained Cellpose 2D models and u-Segment3D performed better 1780 
without resizing to isotropic voxels and applying isotropic rescaling factor.  1781 

 1782 

All of these 3D datasets were downloaded from   https://github.com/juglab/EmbedSeg/releases/tag/v0.1.0 1783 

 1784 

VesselMNIST3D 1785 

Name Description Pixel Size 
(Z,Y,X) 

Used 
Microscope 

Isotropic 
Rescaling 
factor 

# images 
(Train/Test/Val) 

Total # 
cells 

VesselMNIST3D135,136 Derived from 
the IntrA 
dataset. 
Vessel 
segments 
were 
generated 
from 103 3D 
meshes of 
entire brain 
vessels. 
 

(1,1,1) Time-of-
Flight 
Magnetic 
Resonance 
Angiography 
(TOF-MRA) 

9.14 1,335/382/192 
(*191) 

1,335 / 
382 / 191^ 

^ We only used the val split as all images were single-component and morphological properties similar across data 1786 
splits.  1787 

* 1 of the images in the val split was found to be blank.  1788 

The dataset was downloaded as .npz from https://zenodo.org/records/10519652. 1789 

 1790 

DeepVesselNet 1791 

Name Description Pixel Size 
(Z,Y,X) 

Used 
Microscope 

Isotropic 
Rescaling 
factor 

# images 
(Train/Test/Val) 

Total # 
cells 

DeepVesselNet10,137,138 Synthetic 
generated 
dataset with 
images of 
325 x 304 x 
600. Vessel 
intensities 
were 
randomly 
chosen in the 
interval [128, 
255] and 
non-vessel 
intensities 
from the 
interval [0 − 
100]. 
Gaussian 
noise was 
then 
randomly 
applied.  

(1,1,1) - 1 136 (135*) / - / -   410* / - / -  
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* We could not download and unzip 1 of the raw images in the archive. 1792 

The dataset was downloaded from https://github.com/giesekow/deepvesselnet/wiki/Datasets 1793 

 1794 

Zebrafish macrophages  1795 

Name Description Pixel 
Size 
(Z,Y,X) 

[𝝁𝒎𝟑] 

Used 
Microscope 

Isotropic 
Rescaling 
factor 

# images 
(Train/Test/Val) 

Total 
# 
cells 

Zebrafish-
macrophages83 

Human U-2 OS 
osteosarcoma 
cancer cells, 
labelled with 
pVimentin-
PsmOrange, were 
injected into 
zebrafish larvae 
with fluorescent 
macrophages, 
labelled with 
Tg(mpeg1:EGFP). 
Zebrafish were 
selected for 
imaging two hours 
after injection. 

(0.4, 
0.117, 
0.117) 

Light-Sheet 
microscopy 

1 50 / - / - 1,108 
/ - / - 

This dataset was curated in-house with the assistance of Cellpose ‘cyto2’ 2D model and u-Segment3D. 1796 

 1797 

Supplementary Table 2. u-Segment3D settings and parameters for testing the reconstruction of 3D 1798 
segmentation from ideal 2D segmentations with public datasets.  1799 

 1800 

Supplementary Table 3. u-Segment3D settings and parameters for consensus 3D segmentation from 1801 
the output of pretrained Cellpose 2D predictions with public datasets. 1802 

 1803 

Supplementary Table 4. Cellpose2D and u-Segment3D settings and parameters for consensus 3D 1804 
segmentation on additional demonstration datasets. 1805 

  1806 
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Supplementary Movies  1807 

Supplementary Movie 1. u-Segment3D enables consensus 3D segmentation from 2D segmented 1808 
stacks 1809 

Supplementary Movie 2. Gradient descent dynamics of foreground cell coordinates using different 1810 
2D transforms.  1811 

Supplementary Movie 3. Comparison of the spatial proximity clustering used by Cellpose 3D mode 1812 
and u-Segment3D’s image-based connected component analysis on noisy cell tracking challenge 1813 
datasets.  1814 

Supplementary Movie 4. Gradient descent dynamics of foreground cell coordinates of 3D single cells 1815 
under 2D reconstructed 3D gradients. 1816 

Supplementary Movie 5. Gradient descent dynamics during 3D reconstruction of ovules, lateral root 1817 
primordial and vasculature from ideal 2D segmented stacks. 1818 

Supplementary Movie 6. Segmentation of a movie of thin MDA231 human breast carcinoma cells embedded 1819 
in collagen from the 3D cell tracking challenge using u-Segment3D to aggregate only 2D xy segmentations only. 1820 

Supplementary Movie 7. Segmentation of unwrapped surface cells of a Drosophila embryo over time using 1821 
u-Segment3D to aggregate only 2D xy segmentations only. 1822 

Supplementary Movie 8. u-Segment3D postprocessing enables recovery of missing surface protrusions in 1823 
the 3D segmentation of a HBEC cell aggregate. 1824 

Supplementary Movie 9. u-Segment3D postprocessing enables the segmentation of vessel sprouting in 1825 
zebrafish.  1826 

Supplementary Movie 10. u-Segment3D segmentation of all cells in a ≈ 𝟑𝟓𝛍m x 1.5𝐦𝐦 x 1.5𝐦𝐦 1827 
CYCIF multiplexed tissue section of metastatic melanoma.  1828 

Supplementary Movie 11. u-Segment3D segmentation enabled detection of weakly fluorescent lung 1829 
micrometastases in cleared tissues. 1830 

Supplementary Movie 12. u-Segment3D segmentation of heterogeneous cell structures in brain 1831 
tissue labelled using coCATs. 1832 

 1833 

 1834 

 1835 

 1836 

 1837 

 1838 

 1839 

 1840 

 1841 

  1842 
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