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Abstract

Identifying the causal variants and mechanisms that drive complex traits and diseases

remains a core problem in human genetics. The majority of these variants have individually

weak effects and lie in non-coding gene-regulatory elements where we lack a complete

understanding of how single nucleotide alterations modulate transcriptional processes to affect

human phenotypes. To address this, we measured the activity of 221,412 trait-associated

variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay

(MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely

causal variants and controls, identifying 12,025 regulatory variants with high precision. Although

the effects of these variants largely agree with orthogonal measures of function, only 69% can

plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We

dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs

for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that

epistasis is prevalent for variants in close proximity and identify multiple functional variants on

the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study

provides a systematic functional characterization of likely causal common variants underlying

complex and molecular human traits, enabling new insights into the regulatory grammar

underlying disease risk.

Main

Genome-wide association studies (GWASs) have successfully linked tens of thousands

of loci to complex human traits and diseases1,2, providing a glimpse into the biological

underpinnings of these phenotypes and motivating the development of targeted therapeutics2–7.

Pinpointing the exact causal variant at each locus, a critical step for understanding how

individual variants and genes contribute to genetic risk8–11, has proven a more elusive task12,13.
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Unlike classical Mendelian disease genetics, the majority of loci associated with complex human

traits have individually small effect sizes14,15 and do not directly modify the sequences governing

the splicing of an mRNA transcript or the amino acid composition of a protein. Instead, most

trait-associated variant effects are localized to non-coding cis-regulatory elements (CREs), such

as promoters or enhancers16–18. Furthermore, within individual loci, causal variants segregate

with nearby polymorphisms, hindering our ability to identify specific causal alleles from linked

alleles19,20.

Genetic fine-mapping21–24 partially resolves these correlations, known as linkage

disequilibrium (LD), and has improved our ability to prioritize the variants driving these

associations. At current sample sizes (several hundred thousands), only ~10-20% of associated

loci can be resolved to a single variant25–27, and large-scale meta-analyses remain difficult to

fine-map accurately due to heterogeneity across cohorts28. Thus, most loci are not fully resolved

and contain credible sets (CSs) of variants, where the probability from the fine-mapping model

is distributed across a small set of variants. These CSs are smaller and more experimentally

tractable than LD windows25,26, but genotypic information alone is not sufficient to fully resolve

these loci, let alone understand their regulatory mechanisms.

While large-scale experimental catalogs of CREs29–31 and other genomic annotations32,33

can aid in causal variant identification34–37, most causal variants and their molecular impacts

remain largely unknown. Even at loci that can be fine-mapped to a single variant, less than one

third of these nucleotide substitutions alter specific units of known regulatory syntax25,38, such as

disrupting TF binding sites. Direct genome editing of elements containing these variants in vitro

can uncover impacted sequences and even identify nucleotide-specific effects39–41, but these

methods remain limited in scale, application, and sensitivity42,43. In contrast, high throughput

reporter assays can systematically profile allelic effects across an entire element with high
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sensitivity, at orders of magnitude more loci than endogenous approaches, by recreating

aspects of transcriptional regulation at CREs44–48.

Here, we test the ability of each allele at 221,412 fine-mapped variants from complex

and molecular traits to alter transcriptional output across 5 diverse cellular contexts using

massively parallel reporter assays (MPRAs)49–53. Using this assay, we identify a high precision

set of 12,025 variants in CREs with allelic effects in MPRA, representing 26% of the

trait-associated non-coding loci tested. We then extensively evaluate the effects of these

variants using experimental and predictive measures of function, nominate molecular

mechanisms for fine-mapped regulatory variants, and explore questions of regulatory epistasis

and multiple functional variant architectures. Finally, we generate experimental maps of

sequence-to-function at nucleotide-resolution for 136 fine-mapped variants in 128 CREs,

revealing the complex interplay between common regulatory variants and their sequence

contexts.

High-throughput identification of trait-associated regulatory variants

Previous studies have primarily focused on measuring the regulatory capacity of variants

associated with a single complex or molecular trait, typically selecting tens or hundreds of

variants in strong LD with each reported sentinel (i.e. most strongly associated) variant44,54–63.

Here, we expand upon these prior works by measuring the allelic effects of variants from 95%

CSs, resulting in more efficient capture of the true causal variant(s) than LD windows64 (Fig. 1a).

Variants from selected CSs are associated with 48 complex human traits and diseases from

European (UKBB) and East Asian (BBJ) populations, or with changes in expression across

17,969 genes from 49 tissues in a diverse American population (GTEx v8)25,26,49,50,52. The

complete experiment contains 221,412 fine-mapped variants, including those from 89,387 CSs
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where over 80% of the total CS probability is tested and 39,868 unique high posterior inclusion

probability (PIP > 0.5) variants from the UKBB, BBJ, or GTEx. In addition, we included carefully

matched location (n = 32,534), genomic annotation (n = 39,708), and null controls (n = 14,170)

(Fig. 1b, Supplementary Fig. 1a, Supplementary Table 1, Methods).

A total of 608,556 unique sequences consisting of both alleles across test and control

variant sets were designed by centering each allele within 200 bp of its genomic sequence

(Supplementary Table 2). Sequence oligos were synthesized and cloned upstream of a

reporter gene with a minimal promoter and paired with a set of unique 20 bp barcodes in the 3’

UTR (median of 163 barcodes per sequence, Supplementary Fig. 1b, Methods). Libraries of

MPRA constructs were transfected into four diverse cell-types for each of UKBB/BBJ and GTEx,

representing five distinct cell-types overall: blood/myeloid (K562), liver (HepG2), brain

(SK-N-SH), and colon (HCT116) or lung epithelial (A549)44,65. Barcode sequencing counts

expressed from the transfected plasmids were compared to their background representation in

the plasmid libraries from at least 5 independent experiments to estimate both the element and

allele-specific transcriptional activity of each variant (Fig. 1c, Supplementary Fig. 1c,d,

Methods).

In total, we observed that 92,560 (30.4%) of all tested variants were active (fine-mapped

variants: 69,171, 31.2%; control variants: 24,531 28.5%), where at least one of the elements

containing an allele impacted transcriptional activity in one or more cell-types

(Bonferroni-adjusted P < 0.01 & |log2 fold-change [log2FC]| > 1), with the majority enhancing

rather than repressing transcription (96.6%), reflecting the design of our reporter assay

(Supplementary Table 3, Methods).44,66 Of the active variants, 37,284 (40.2%) modulated

expression in an allele-specific manner (fine-mapped variants: 28,289, 41.0%; control variants:

9,498, 38.7%, false discovery rate [FDR] < 0.1, Fig. 1d, Supplementary Fig. 1e-h,
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Supplementary Table 3, Methods) with predominantly modest effects (median |∆ log2 activity|

= 0.58). Null controls, location-matched controls, annotation-matched controls, and variants with

PIP < 0.01 for all traits had lower levels of element and allele-specific activity compared to

causal variants (PIP > 0.9 for at least one trait) which were 2.1- to 2.3-fold more likely to be

expression-modulating variants (emVars) than null controls (P = 4.7x10-17 and 6.2x10-50 for

complex traits and eQTLs, respectively, Fig. 1e, Supplementary Fig. 2a). Allele-specific emVar

effects were largely correlated across libraries (Pearson r = 0.82), but background emVar rates

varied across libraries and cell-types, reflecting both biological (e.g. trait composition of library)

and technical (e.g. transfection rate) biases (Supplementary Fig. 2b-c).

Variants with allele-specific regulatory effects in high-throughput assays have been

found to be highly enriched at well-studied regulatory genomic annotations, such as DNase I

hypersensitivity, histone modifications, and TF binding sites44,54,57,62. However, the sensitivity and

specificity of these assays at discriminating between causal and non-causal regulatory variants

have typically not been investigated55–61,63 or have been estimated in smaller studies with a

limited set of “gold standard” variants44,54,62. Here, we leverage our recent state-of-the-art

fine-mapping studies25,26 to select 15,911 unique likely causal variants with PIP > 0.9 for at least

one trait and an equal number of matched controls (Methods) on which to evaluate our assay.

We find that element activity, allele-specific activity, and whether or not the variant lies within a

known endogenous CRE (defined as accessible chromatin with activating histone marks,

Methods) all increase precision compared to chance (0.62, 0.69, and 0.69 respectively) (Fig.

1f, Supplementary Fig. 3a,b, Supplementary Table 4-5). Importantly, variants in endogenous

CREs with allelic MPRA activity have a high precision (eQTLs = 0.82; complex traits = 0.83) and

maintain a recall of 0.15 for eQTLs and 0.20 for complex traits, while emVars outside of CREs

provide minimal additional information for this task (Supplementary Table 5). We note that the

exact precision and recall for a specific variant depends upon the underlying trait, assayed
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cell-types, and resolution of fine-mapping (Supplementary Fig. 3c-g, Supplementary Table 6).

Overall, we identify 12,025 distinct non-coding, trait-associated variants that significantly alter

the regulatory strength of an endogenous CRE sequence in our reporter assay, with 26% of

non-coding CSs having ≥1 emVar (Supplementary Table 7), including 2,847 with evidence of

association in an additional 512 human diseases (Supplementary Table 8). In comparison to

previous genome-wide approaches67, our targeted approach not only reproduced variant effects

but also provides improved trait-associated variant coverage, sensitivity, and recall

(Supplementary Fig. 4a-c).

Reporter assays recapitulate the native grammar of transcriptional regulation

We have established that coupling MPRAs with measures of endogenous regulatory

function can discriminate between causal and non-causal trait-associated regulatory variants

with high precision. However, a better understanding of exactly which facets of regulatory

grammar are captured by the assay is needed to contextualize any assay-derived mechanisms

of non-coding variants underlying complex traits. First, we observe that not only are

endogenous distal CREs and promoters more likely to exhibit activity in our assay (odds ratio

[OR] = 1.77 and 2.77, respectively, P < 10-300), but the magnitude of cell-type agnostic

transcriptional activation in our assay correlates well with quantitative measures (maximum) of

the chromatin accessibility of DNA across 438 cell-types (Fig. 2a, Methods).29 Of note, the

correlation with element activity is higher for variants originating from promoters than for distal

CREs (Pearson r = 0.62 vs 0.30). This likely reflects differences in the complexity and

composition of TFs binding at distal vs proximal elements68–71 as well as aspects of enhancer

function in the genome not captured by episomal assays like MPRA72. We observe that TFs are

more likely to occupy genomic elements containing emVars than those containing high PIP

variants alone (mean OR of 3.9 vs 2.1, Fig. 2b, Supplementary Table 9), with the exception of
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DMC173, which is involved in recombination, reflecting a type of genome function not measured

by our assay. We similarly observe a strong correlation between allele-specific transcriptional

activity in our assay and both allele-specific chromatin accessibility and TF occupancy within the

genome (Pearson r = 0.65 and 0.54, respectively, Fig. 2c, Supplementary Fig. 5a). These

findings support the conclusion that our assay is capable of detecting the small, single

nucleotide changes that impact transcriptional regulation, and effectively captures the

interactions between TF binding and transcriptional activation within the native chromatin

environment.

In previous studies, complex trait-associated non-coding variants have been localized

most strongly to CREs that are specific to the tissue and cellular programs relevant to their

underlying biology25,65,74, such as neuronal subsets for Schizophrenia75, hepatocytes for

circulating lipid levels25, and distinct hematopoietic compartments with terminal blood cell

production11. More recent studies have found important roles for cell-type agnostic elements,

such as promoters and multi-tissue enhancers76. We investigated whether the allelic effects of

non-coding regulatory variants are also primarily cell-type specific when tested by MPRA. First,

we observed that the activity of endogenous CREs in our assay is largely correlated across

cell-types (median Pearson r = 0.70), is more stable across promoters than across distal CREs

(median Pearson r = 0.82 vs 0.61), and is higher at cell-type-matched, cell-type-specific CREs

(Fig. 2d, Supplementary Fig. 5b, Methods). Consistent with these findings, TF binding site

contributions to activity are highly correlated between cell-types (r = 0.88-0.94), including both

activators (e.g. JUN/FOS) and repressors (e.g. SNAI, REST). Notably, well-known master

regulators, including GATA, KLF, and GFI1B factors in erythrocytes (K562s)77, HNF factors in

hepatocytes (HepG2s)78, and IRF factors in neurons (SK-N-SH)79, have cell-type specific effects

on activity (Fig. 2e, Methods). At the allelic level, we find that our assay detects cell-type

specific effects, with 25-31% of emVars found in a single cell-type, even after controlling for
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technical differences in power across cell-types (Supplementary Table 10, Methods).

However, upon closer inspection of annotated regulatory elements76, we observe that

trait-associated emVars localize not only to cell-type specific25,65 but also to cell-type agnostic

elements, such as promoters and multi-tissue enhancers (Fig. 2f, Supplementary Fig. 5c,

Supplementary Table 11)80. Ultimately, our results provide support for a model where trait

associated variants reside in CREs that can be either cell-type specific or cell-type agnostic, the

latter being an underappreciated mechanism of causal variants81.

Fine-mapped variants regulate transcription through canonical and non-canonical

mechanism

Having established a catalog of likely causal variants acting through gene regulation, we

sought to investigate how well existing genomic annotations can nominate the underlying

molecular mechanisms for fine-mapped variants. One well-established mechanism is through

alteration of the affinity of a transcription factor for a particular binding site by a variant

substantially changing the TF binding motif82. However, we find that, although 69% of high PIP

(> 0.9) CRE emVars disrupt one or more of 839 known TF motifs, 52% of low PIP (< 0.1) CRE

non-emVars also disrupt such motifs with seemingly little to no impact on assessed human

phenotype (Fig. 2g, Methods). This is consistent with prior work demonstrating the ubiquity of

seemingly non-functional TF motifs across the genome.83,84 Instead, we find that at elements

with biochemical evidence of TF occupancy, 43% of high PIP emVars disrupt the corresponding

known binding motif compared to only 10% of background CRE variants (P < 10-300,

Supplementary Table 12), a 1.03-fold higher enrichment than using overlap with consensus TF

footprints protected from cleavage by DNase I. For 685 / 1210 TFs with known binding motifs

(57%) and 479 / 614 TF binding motifs with TF occupancy (78%), our assay provides a

quantitative readout of the effects of TF binding on gene expression in at least one cell-type
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(FDR < 0.05, Fig. 2h, Supplementary Table 13). For example, predicted improvements in

PWMs for ETS1 (ρ = 0.86), CEBPG (ρ = 0.83), TP53 (ρ = 0.79), CTCF (ρ = 0.74), and GATA1

(ρ = 0.63) were positively associated with transcriptional activation, whereas changes in SNAI2

(ρ = -0.78), GFI (ρ = -0.83), and BCL6 (ρ = -0.84) were associated with repression. However, in

total, we find that no single TF mediates more than 2% of the effects of fine-mapped complex

and molecular trait regulatory variants85 (Supplementary Fig. 6a).

To begin exploring potential mechanisms underlying the remaining 57% of high PIP

emVars which do not disrupt an occupied canonical binding motif, we first observe residual

enrichment at the flanking regions of occupied TFs (+/-10 bps), suggesting that a subset of

trait-associated variants act outside canonical TF binding sites (Fig. 2g).25,38,54 We thus turned to

sequence-based predictions of TF occupancy and chromatin accessibility that can more flexibly

model the effects of genetic variation on regulatory element activity.72,76,86 Using Enformer87, a

transformer-based neural network, we created a combined score of variant effects on chromatin

accessibility and TF occupancy (Methods) and found that this score was the best at

distinguishing high PIP emVars from any other category (61% vs 7%, Fig. 2g). Of the high PIP

emVars not predicted to disrupt a TF motif, the sequence-based model identified 50% as

impacting regulatory function (16% of all high PIP emVars, P=7.1x10-277 compared to low PIP

non-emVars). We investigated which predicted TF occupancy alterations from Enformer best

separated high PIP emVars from low PIP non-emVars, finding 66 largely cell-type agnostic

factors that were over 4-fold enriched, including RNA Pol II, p300, YY1, ETS1, Jun, and CTCF

(Supplementary Fig. 6b). Since variant effects from Enformer were often correlated, each high

PIP variant is predicted to alter the occupancy of 177 TFs on average, obscuring the exact

molecular mechanisms without additional information. Taken together, not only do our results

nominate high confidence molecular mechanisms for thousands of fine-mapped regulatory

variants, but they provide a lens through which to view the effects of negative selection on
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trait-associated genetic variation88,89, revealing their diverse and often non-canonical regulatory

mechanisms38,54.

Proximity between variants increases epistatic effects

After investigating the mechanisms of variants demonstrating allelic effects individually,

we next asked how pairs of variants in close proximity may act. The presence of allelic

heterogeneity, where multiple independent (different CS) but proximal (same locus) variants are

associated with a trait, has been widely established for loci underlying both complex and

molecular traits52,90. Several studies in other species91,92 and recent studies in humans57,93 have

proposed that multiple causal variants can underlie a single association (single CS), suggesting

that there may also be multiple functional variants in tight LD. To directly evaluate such potential

genetic architectures in the context of gene regulation, we assayed the regulatory activity for

2,522 pairs of fine-mapped variants residing within endogenous CREs at all 4 possible

diplotypes and across 6 different windows (Fig. 3a, Supplementary Fig. 7a-f, Supplementary

Tables 14-15, Methods), including both independent associations (930) and pairs of variants

residing in the same CS (1,346). We found that both variants had allele-specific regulatory

activity in 46% of pairs, reflecting our prioritization of variant pairs in CREs (Methods). Of note,

this set contains 210 independent pairs (different CSs) with two functional variants (emVars),

suggesting that allelic heterogeneity not only occurs within the same locus but in the same

regulatory element.

GWASs typically investigate only marginal, additive effects, primarily due to their limited

power to detect non-additive or epistatic effects94,95. Here, we test whether epistatic effects are

present at the regulatory level by adding an interaction effect to the emVar model to compare

transcriptional activity across diplotypes (Methods), finding that 11% of pairs (180) in a CRE
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with at least one emVar have non-additive effects (FDR < 0.1, Fig. 3b, Supplementary Fig.

7g,h, Supplementary Tables 16-17, Methods). We observe that epistasis is driven in part by

proximity (mean of 26 bp between non-additive variants vs 44 bp for those showing additive

effects, P = 10-10, Fig. 3c) and that most pairs exhibit dampening effects (139/180, Binomial P =

10-13), where the element with both activity-increasing alleles has a smaller effect than the sum

of individual allele effects (Fig. 3b,d, Supplementary Fig. 7i). If the relative ratio of dampening

to amplifying effects observed here is representative of complex traits as a whole, our results

provide evidence for linkage masking96,97, where variants escape negative selection by having

opposing effects.

We highlight an amplifying epistatic pair example in Fig. 3e. rs1936950 and rs1936951

are in near perfect LD, and both are fine-mapped (PIP = 0.64 and 0.36, respectively, and in the

same 95% CS) for changes in expression of the ESS2 gene in the cerebral hemisphere. ESS2

encodes for DGCR14, in which mutations cause developmental disorders such as DiGeorge

Syndrome98,99. Each variant’s activating allele significantly increases transcription over baseline

(Δ log2 activity of 0.51 and 1.41, respectively), but the combined element’s effect is larger than

the additive contributions of the alleles (Δ log2 activity of 2.54 vs 1.92, FDR = 5.5x10-4). The

activating alleles of each variant increase sequence similarity to the CTCF PWM, and together

they create a near-consensus motif, suggesting that both variants are in fact causal for a single

genetic association and, more generally, that TF-driven transcriptional activation is a nonlinear

function of TF binding.

Another example of amplifying variants within the same CS is at the THBS2 locus, a

gene with proposed roles in cardiovascular disease and essential hypertension100,101. The top

two fine-mapped variants, rs9294987 (PIP = 0.48) and rs9294988 (PIP = 0.39), are 2 bps apart

and associated with systolic blood pressure in the UKBB. Neither variant is an emVar on its
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own, with each activating allele only minimally increasing transcription (Δ log2 activity of 0.09

and 0.20 respectively). Together, the activating alleles of rs9294987 (C) and rs9294988 (C)

substantially increase transcriptional activity of the element (Δ log2 activity of 1.68) over the

expected additive effect by together creating a near consensus Jun motif (Supplementary Fig.

7j). These examples support shared variation potentiation102, where effects on a shared

regulatory element are not distributed equally but act on average to either repress or activate

gene expression.

Looking beyond pairs of variants in a single CRE, we continued our investigation into

whether single common variant associations (same CS) harbored multiple causal (functional)

variants. To rigorously test this hypothesis, we investigated whether we could observe an

excess of CRE emVars in CSs containing at least one such variant (Methods). Using either low

PIP, location-matched, or annotation-matched variants to control for background expectation, we

observed significant enrichments for additional CRE emVars within CSs across multiple CS

sizes and LD thresholds (risk ratio range: 1.03-2.81, Fig. 3f, Supplementary Table 18). This

corresponds to an excess of CRE emVars in 0.1-3.0% of CSs, which is likely a lower bound

when considering the moderate recall of our approach (see Discussion). Excesses of CRE

emVars were primarily due to variants in multiple enhancers93 rather than multiple variants in a

single enhancer (range of 0.69-0.83 additional CREs per excess CRE emVar), and were notably

higher in CSs that were fine-mapped to smaller sets of variants. Consistent with prior studies,

using only CRE annotations93, we confirm an excess of fine-mapped variants in these elements

(risk ratio range: 1.17-1.60, low PIP controls only) but find that further conditioning on emVar

status improves enrichments (Supplementary Table 18). Finally, when emVar effects are not

restricted to endogenous CREs, we often observe fewer excess emVars than expected (risk

ratio range: 0.62-1.39), highlighting the importance of accounting for genomic context and

background rate of emVar identification when assessing genetic architectures44,54,57.
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High-resolution saturation mutagenesis reveals regulatory mechanisms

We next experimentally interrogated the molecular mechanisms for a subset of

trait-associated emVars using MPRA-based saturation mutagenesis (SatMut). We selected 128

CREs containing 136 fine-mapped emVars (PIP range of 0.13 to 1.00) that either (i) disrupt the

canonical motifs of occupied TFs or (ii) reside within a CRE but do not disrupt an occupied motif

(Fig. 4a, Supplementary Table 19, 20, Methods). For each allele, we synthesized DNA

sequences with every possible single nucleotide mutation (substitution) across the 200 bp

sequence and measured their effects on transcription in two cell-types (K562s and HepG2s,

Fig. 4b). To further investigate haplotype effects, we generated SatMut measurements across

all 4 possible diplotypes for 14 pairs of fine-mapped variants, consisting of 22 of the 136 emVars

in the test set and 6 additional non-emVars (Supplementary Fig. 8a, Methods). All told, allelic

effects were estimated for 99% of possible substitutions with an average of 81 unique barcodes

and 1,470 reads per replicate. The result is a high quality dataset of >170,000 single nucleotide

substitutions across 284 genetic backgrounds that displays excellent concordance with the

allelic effects of the original 136 emVars (Pearson r = 0.98, P < 10-150, Supplementary Fig.

8b-d, Supplementary Tables 20, 21, Methods).

Single-nucleotide effects on transcription were physically clustered, suggestive of the

disruption of TF binding sites103. To identify the short motif-like sequences that affect

transcriptional activity based solely upon the results of our saturation mutagenesis assay, we

used a Gaussian filtering approach to identify “Activity Blocks” (ABs) of functional nucleotides in

each element (Methods). Across all cell-types and background alleles, ABs covered an average

of 26% of each element with 98% of sequences containing at least one block. ABs significantly

overlapped TF footprints (OR = 1.51, P = 10-300), but 44% of ABs and 48% of footprints did not

14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.592437doi: bioRxiv preprint 

https://paperpile.com/c/Fbnz17/NbxdT
https://doi.org/10.1101/2024.05.05.592437
http://creativecommons.org/licenses/by-nc/4.0/


overlap, suggesting shared but non-redundant regulatory features identified by each assay.

Since the length of an AB was approximately the size of a TF binding motif (9 bps on average,

range of 5-33), we matched position weight matrices (PWMs) for known TFs to PWMs derived

from each nucleotide substitution’s contribution to element activity in our SatMut experiments

(Methods), confidently assigning at least one known TF for 89% of ABs (Supplementary Table

19). Notably, this approach more directly implicates both the AB sequence and its assigned TF

in regulating transcription from this element than a standard motif search of the DNA sequence

alone.

Although each of the 128 selected elements drove transcriptional activity in at least one

background and cell-type, a surprising proportion of ABs act as repressors (34%) and exhibited

increased expression when disrupted. Known repressor TFs, including GFI1B and SNAI1/3,

matched SatMut PWMs exclusively at repressive ABs (Supplementary Table 21), and the

relative enrichment of TF motifs at activating or repressive ABs was consistent with their inferred

direction from the initial screen, validating our initial regression estimates (ρ = 0.68, P < 10-300,

Fig. 4c). Saturation mutagenesis of several emVars disrupting a repressor sequence allowed us

to identify activators that are able to drive expression only in the absence of the repressor. For

example, the low frequency alternative allele of rs536864738 (MAF = 0.0015) ablates an

evolutionary constrained GFI1B repression site when tested in K562 cells, revealing several

activators, including a strong adjacent PBX3 site (Fig. 4d,e). In the CCK promoter, the alleles of

the fine-mapped eQTL rs11571842 create either an activating TFDP1 or a repressive ZNF343

sequence, corresponding to increased or decreased CCK expression (Supplementary Fig.

9a,b). Notably, at the well-known α-globin locus enhancer cluster104, our SatMut experiment

revealed that the minor allele of rs11864973 converts an activating KLF1 site to a repressive

SNAI1 in the MCS-R4 element (Fig. 4f,g).
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Individual ABs could be attributed to single TFs or combinations of TFs (Methods). For

instance, SatMut reveals a repressive 16 bp AB downstream of the TSS for DDX11 whose

activity profile most closely matches adjacent E2F4 and Lin54 motifs (Fig. 4h,i). Together, these

TFs bind DNA with additional cofactors to form the DREAM complex, a potent repressive

complex which has been shown to mediate repression of cell cycle genes during G0105,106. The

reference allele (T) of rs7953706, an eQTL for DDX11 within this AB, partially ablates this

repressive effect, which is supported by recent reports using in silico mutagenesis at the

region107. Lin54 and E2F4, along with 16 other TFs, have evidence of endogenous occupancy

from ChIP-seq, but each canonical PWM is either a sub-threshold DNA sequence match (P >

10-4) or rs7953706 has only a weak effect on its PWM (∆ PWM < 0.1). In contrast, MPRA

SatMut shows that the variant has a measurable impact on transcription by disrupting a

repressive element matching adjacent binding sites of TFs making up the DREAM complex.

Between cell-types, single nucleotide substitution effects and AB assignments were

often correlated (Fig. 4j), with 60% of sequences exhibiting strong correlation (Pearson r > 0.6)

or sharing of at least 50% of ABs. Nevertheless, a number of sequences demonstrated clear

cell-type specific effects that were largely explained by the presence or absence of GATA motifs

for K562 sequences and FOX/HNF motifs for HepG2 sequences. In the previous example

(rs536864738), ablation of the GFI1B repressor site only had effects in K562s, but not HepG2s

(Fig. 4d,e, Supplementary Fig. 9c,d), underscoring the importance of cellular context. A

particularly prominent instance of allele- and cell-type specific transcriptional regulation occurs

in sequences from a distal CRE (187 kb) for CDHR3. SatMut identified two proximal ABs

matching SRY/SOX motifs only in the HepG2 cell line and only in sequences with the alternative

(A) allele for rs2529369, a fine-mapped eQTL for CDHR3 (Fig. 4k,l). SRY, the sex-determining

region Y gene, is expressed only from the Y chromosome, which is present in XY HepG2 but

not XX K562 cells, and drives expression of SOX9, which encodes a TF that has been shown to

16

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2024. ; https://doi.org/10.1101/2024.05.05.592437doi: bioRxiv preprint 

https://paperpile.com/c/Fbnz17/LB1ZA+SISjV
https://paperpile.com/c/Fbnz17/FeUYR
https://doi.org/10.1101/2024.05.05.592437
http://creativecommons.org/licenses/by-nc/4.0/


dimerize and recognize similar endogenous target sites as SRY108,109. Since this effect appeared

to be dependent on Y chromosome-initiated SRY/SOX9 activity, we investigated whether the

sex-dependent allelic effects of rs2529369 could ultimately be observed on CDHR3 expression

in the GTEx v8 cohort. We find that the activating A allele is associated with higher CDHR3

expression in XY compared to XX individuals (P = 0.026, Fig. 4m), supporting the SatMut

nominated variant mechanism and the overall ability of MPRA to accurately identify in vivo allelic

effects.

Single nucleotide effects and allelic interactions of trait-associated variants

We investigated how well MPRA and other methods could explain the molecular

mechanisms underlying fine-mapped emVars. Overlap with an AB or matching motif explained

91% of emVars (124 of 136), regardless of whether the emVar disrupted the motif of an

occupied TF (92%, 76 of 83) or lacked a clear canonical mechanism (91%, 48 of 53). Overlap

with an AB matching motif explained more emVar mechanisms than any other predictor,

including Enformer87 (P = 0.001), particularly for non-canonical or unknown mechanisms (Fig.

5a, Supplementary Table 19). Notably, SatMut nominated at least one TF for 30 of 31 variants

(97%) where traditional PWM matching failed to identify a TF disruption. For most variants (18

of 30) where only SatMut identified a disrupted TF, a predicted PWM disruption could be

matched after relaxing the calling thresholds (Methods), with the remaining misses partly

attributed to the disruption of a low information content motif (i.e. short motifs) or the variant

residing in a low information content nucleotide.

We used our SatMut-based maps of sequence-to-function to explore the spectrum of

possible mutation and contrast their regulatory impacts with those of natural, trait-associated

variation. Across all altered nucleotides tested by MPRA, a median of 9% of positions and 5% of
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substitutions had large effects on transcription (> 50% increase or decrease, Fig. 5b), most of

which affected ABs (72%). Full ablation (log2 fold-change < 1) of activity was rare (1% of

substitutions) and only achievable in 38% of elements. The majority (80%, 2,277) of large effect

substitutions did not have evidence of evolutionary constraint, but mutating nucleotides broadly

constrained across mammals110 (FDR < 5%) was significantly more likely to have a large

transcriptional impact (OR = 7.8, P = 10-50). In most elements (63%, 80 / 128), the strength of

constraint at each position correlated with the impact of an average substitution on

transcriptional activity (FDR < 5%, Methods), including a subset (10%, 13 / 128) where MPRA

measurements and PhyloP scores were highly concordant (Pearson r > 0.4, Supplementary

Fig. 8f-g, Supplementary Table 22). Compared to the largest effect substitution, we found that

fine-mapped emVars reduced activity less on average (47% reduction compared to 73%),

although there was large heterogeneity across elements (Fig. 5c), including slightly larger

reductions at complex trait-associated elements (P = 0.03).

Elements that harbor larger transcriptional effect alleles than the trait-associated emVar

provide an intrinsic opportunity to test whether these alleles, which are likely less common in the

population, have similar or more extreme effects on the trait of interest. We observed that 16 out

of 136 SatMut elements had at least one substitution that impacted transcription by an absolute

difference of 50% more than the fine-mapped variant. One such example is an erythroid CRE

that is strong in our reporter assay (98th percentile of active K562 elements) containing

rs191148279, which was fine-mapped (PIP = 0.92) for glycosylated hemoglobin A1c (HbA1c)

levels111 and is predicted to fully abrogate GATA1 binding. We detected an AB overlapping this

variant with a SatMut motif matching GATA1 (Pearson r = 0.92), but surprisingly the variant has

only a weak effect on transcription (∆ log2 activity = -0.49, Fig. 5d,e). Instead, GATA motif

matches at upstream and downstream ABs contribute substantially more to transcriptional

activity (e.g. ∆ log2 activity = -2.93 and -2.42 for similar G>A substitutions, Fig. 5d). Each of
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these stronger GATA1 motifs has AB PWMs matching GATA1 cofactor (TAL1 and KLF1) motifs

that are important for stable GATA1 binding and function112–115. Collectively, these sites appear to

limit the transcriptional effects of mutations at the weaker GATA1 site, a phenomenon known as

buffering116,117. We searched for variants whose single nucleotide substitutions in SatMut are

larger than that of the common variant, rs199148279, in 402,990 unrelated individuals from the

UK Biobank who underwent whole genome sequencing. Although there are no other common

variants in either of the GATA1 or cofactor sites, we identified 39 individuals who are carriers for

one of five rare mutations (allele count < 100) affecting these sites (Fig. 5e). Compared to

individuals without these mutations, carriers had higher variance (P = 4.7x10-6) in HbA1c and

were more likely to decrease HbA1c by 1 SD or more (OR = 3.8, P = 6.2x10-5, Fig. 5f),

consistent with lower HbA1c levels observed in individuals with the common allele that affects

the weak GATA1 site. Compared to standard PWM-based analysis, SatMut and other

mutagenesis approaches expand our capacity to interrogate the impacts of genetic variation

across the allelic spectrum within regulatory elements.

Next, we used SatMut to study mechanisms underlying fine-mapped variant pairs in the

same CRE with the primary aim of validating and uncovering the sequence determinants of 9

variant pairs with non-additive regulatory effects and 5 additive pairs, each of which is

associated with a complex trait. Non-additive effects measured in SatMut and the original

experiment largely agreed in terms of effect direction (15/16) and effect size (Spearman ρ =

0.97, P = 9.1x10-10, Supplementary Fig. 8e), with 5 / 9 validated pairs having large (∆ log2

activity > 0.5) amplifying effects and 1 / 9 having a large (∆ log2 activity < 0.5) dampening effect.

SatMut allowed us to distinguish instances where interactive alleles were within the same

binding motif or independent motifs, including validation of the proposed mechanism for the

previously described epistatic variant pair, rs1936950 and rs1936951, supporting our initial

hypothesis that both variants alter the same CTCF site (Fig. 3e, Supplementary Fig. 9e,f).
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A second example of a non-additive interaction where SatMut provides insight into the

mechanism is at a liver-specific eQTL for DOP1B, where fine-mapping pinpointed a CS

containing 3 potential causal variants in its 3rd intron. Although all 3 variants were in CREs, only

rs7282770 (PIP = 0.08) was an emVar (∆ log2 activity = 0.38 in HepG2s). SatMut revealed that

the minor allele (G) of this variant created two adjacent HNF4 binding sites, separated by 3 bps.

Introducing the minor allele (C) of rs7282886 (PIP = 0.08), a CS variant in perfect LD (R2 = 1.0)

with rs7282770 and located 11 bps away between the two HNF4 sites, resulted in a pronounced

non-additive increase (Δ log2 activity of 2.25 vs 1.48, Fig. 5g). This increase was accompanied

by enhanced contributions from both HNF4 sites to transcriptional activity (Fig. 5h). Although

the 3rd CS variant, rs2246810, which is 3.1 kbps downstream, captured most of the probability

(PIP = 0.8), this apparent difference is due to a small reduction in pairwise LD attributable to a

single individual’s genotype (R2 > 0.99). While we cannot exclude that rs2246810 also

contributes to differences in DOP1B expression, our SatMut results suggest that rs7282770 and

rs7282886 are putative causal alleles for the same eQTL, where both minor alleles facilitate the

formation and stabilization of dimeric HNF4 activator sites.

Another example of where SatMut provides insight into the mechanisms of multiple

variants in the same CRE is at the promoter of ZNF329. Here, the minor alleles of rs35081008

and rs34003091 (R2 = 0.99) are associated with decreased expression of ZNF329 in the liver

(PIPs = 0.22) and decreased LDL cholesterol (LDL-C) in the UKBB (PIP = 0.50 and 0.43,

respectively). Both variants are emVars and decrease transcription in MPRA (∆ log2 activity =

-0.30 and -0.82, respectively, Fig. 5i). SatMut confirms these effects, but reveals a different

mechanism for each variant. The minor allele (T) of rs35081008 creates a HIC2 repressor site in

both K562 and HepG2 cells, while the minor allele (C) of rs34003091 disrupts a motif for HNF1,

a strong activator in hepatocytes, specifically in HepG2s (Fig. 5j). The role of rs35081008 as a
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causal variant is supported by a recent base-editing study118, which found increased ZNF329

expression after converting the minor allele to the major. However, the likely additional causal

role of rs34003091, which has a larger transcriptional effect than rs35081008, and the

regulatory mechanisms influenced by both variants are distinctly uncovered by MPRA and

SatMut.

Finally, since mutagenesis was performed across entire elements on each allelic

background, we investigated the interaction between each of the 114 emVars that were

centered on the oligo and all 597 possible substitutions at other positions. We found

non-additive effects with 10% of substitutions (|∆ activity| > 25%), of which 58% were

dampening effects (Supplementary Fig. 9g). Most non-additive effects occurred within ABs or

matched motifs (78%), and nearly 1 out of 5 substitutions within an AB had non-additive effects

(18% vs 4%, P < 10-300). Notably, non-additive effects exhibited a strong positional dependence

to the central emVar (35% lower odds per log(bp), P < 10-300), consistent with our observations

from fine-mapped common variant pairs. Amplifying effects were both 85% more likely to be

observed in an AB (P = 2.4x10-119) and had stronger positional dependence than dampening

effects (P = 5.4x10-33). Although these results demonstrate that epistatic effects can be

frequently observed between random substitutions, the extent to which selective forces exploit

or avoid these alleles to shape complex and molecular traits remains an open question.

Discussion

We combined state-of-the-art statistical fine-mapping22,25,26 with comprehensive experimental

validation of non-coding, cis-regulatory variants to both identify causal trait-associated

regulatory variants and dissect their mechanisms. In total, we tested 221,412 fine-mapped

variants associated with hundreds of complex human phenotypes and molecular traits,
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identifying 12,025 variants that alter the transcriptional activity of annotated CREs. Through

careful comparisons with 86,064 unique controls, we conclude that MPRA combined with

endogenous CRE annotations can confidently identify causal alleles at an important subset of

trait associated loci with high precision (0.82-0.83) and modest recall (0.15 for eQTLs and 0.20

for complex traits). The substantial number of fine-mapped loci identified by MPRA also allowed

us to assess foundational mechanisms of causal variation. We find that 31% of likely causal

(PIP > 0.9) regulatory variants (CRE emVars) are not confidently predicted to alter binding of a

canonical TF motif and 39% are not predicted to alter TF occupancy.

To extend our understanding of variant mechanisms, we assessed the fidelity of

canonical assignments of regulatory function and dissected those that were enigmatic via

saturation mutagenesis of 136 emVars. SatMut experiments uncovered sequence motifs

directly associated with transcriptional outcomes and assigned a known TF for 91% of

fine-mapped emVars that initially had a non-canonical or unclear mechanism. Our data suggests

the inability to resolve the regulatory mechanisms from DNA sequence alone reflects an

unresolved trade-off between the sensitivity and specificity of current methods to discriminate

between functional and non-functional binding sites of known TFs. We did identify several

examples with more cryptic mechanisms, including variants in the spacer between known TF

dimers. Our SatMut approach can be applied to other trait-associated regulatory elements to

provide a better mechanistic understanding of regulatory architecture at single-nucleotide

resolution and can serve as essential validation data for sequence-based models of regulatory

function, extending previous works103.

Our study further quantifies the genetic architecture of transcriptional regulation,

providing clear evidence for widespread allelic heterogeneity90 and relatively infrequent but
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compelling examples of multiple functional variants underlying a single, fine-mapped

association. We only detect multiple functional variants within individual CSs for 0.1-3.0% of

relevant non-coding associations, after carefully controlling for background effects (1-15% after

adjusting for a recall of 15-20%). In general, we find that regulatory variants in the same CRE

are capable of dampening each others’ effects, although in rare instances these variants

collaborate to amplify their effects on transcription. We note that our findings may not generalize

to all variants, traits, or contexts.

Non-coding loci missed by MPRA likely represent a mix of variants with regulatory

mechanisms undetectable by MPRA in the cell-types tested, variants with small regulatory

effects below detection limits, and variants where fine-mapping is miscalibrated.119 We expect

that MPRA in additional cell-types and contexts will improve the precision and recall of causal

variant identification, especially when coupled with fine-mapping approaches that can

incorporate prior functional effect estimates. At the level of the MPRA assay, we estimate that

we can improve recall by 2.5-3.4% per additional cell-type on average (Supplementary Fig.

3c,d, Supplementary Table 5), although this will eventually yield diminishing returns. As a

result, this work suggests modifications to MPRAs66,120 and additional high-throughput functional

characterization121,122 tools will be needed to comprehensively capture variant effects. We

caution that to conclusively demonstrate causality for a cellular or organismal phenotype,

genetic manipulation in an endogenous genome alongside appropriate phenotypic readouts

must be performed42,123.

Overall, we demonstrate that large-scale reporter assays provide a tractable

experimental system for nominating and dissecting the functions of trait-associated regulatory

variants across three large biobanks. Ultimately, application of variant-centric approaches,

including not only MPRA but predictive models based on large perturbation datasets, like the
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one introduced here, will help bridge the critical gap between variant association and functional

mechanisms.
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Figures

Figure 1. Identification of functional genetic variation underlying fine-mapped complex and
molecular traits. a. Fine-mapped complex trait variants from UKBB and BBJ, as well as fine-mapped
eQTL variants from GTEx v8, were included in this study. b. 304,278 unique variants were tested by
MPRAs, including 86,064 unique control variants. Nearly 25% of high PIP (> 0.5) eQTLs were associated
with gene expression in multiple tissue systems (black), while high PIP complex trait variants were more
domain specific. Number of variants per category include overlapping variants, causing totals to exceed
the number of unique variants. c. Experimental overview of the massively parallel reporter assay (MPRA)
experiment. d. Element activity and allelic activity results for variants. Each point represents one
measurement per variant (selected by best log2(fold-change) p-value), with significant expression
modulating variants (emVars) denoted in orange, vs non-significant variants in purple. The maximum
activity of each variant (ref or alt allele) is shown on the x-axis which has a bimodal activity distribution
around 0. Variants with <20 normalized RNA counts are omitted. e. The proportion of variants that are
emVars across fine-mapping controls and PIP bins stratified by trait type. Error bars represent 95% CIs. f.
Precision-recall plots evaluating different methods for discriminating between equally-sized sets of
positives (PIP > 0.9) and negative (PIP < 0.01) variants. Error bars represent 95% CIs.
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Figure 2. Reporter assays recapitulate endogenous regulatory function. a. Correlation (Pearson r) of
element MPRA activity with chromatin accessibility at promoters (orange) and distal CREs (blue).
Ribbons represent 95% confidence intervals. b. TF occupancy at emVars is compared to TF occupancy
at high PIP variants for 1,233 TFs. Odds ratios are calculated as emVars vs non-emVars (y-axis) and high
PIP (PIP > 0.5) vs low PIP (x-axis). Point size is proportional to the square root of the number of ChIP
peaks overlapping variants in this analysis. A linear regression fit through the origin is shown in burgundy.
TFs with significant differential enrichment are highlighted in burgundy (Bonferroni-adjusted P < 0.05). c.
Chromatin accessibility QTL effects sizes are correlated (Pearson r) with MPRA allelic effects. emVars are
shown in orange and non-emVars in purple. d. Correlation (Pearson r) of element activity at promoters
and distal CREs separately across 4 tested cell-types. e. Results from a linear regression of normalized
motif counts on MPRA activity from 120k CREs in K562 and HepG2 cells. Specific motif families are
highlighted in different colors. f. Enrichment of high PIP emVars compared to low PIP non-emVars (odds
ratio) for complex traits (dark blue) and eQTLs (light blue) in selected genomic annotations defined from
SEI.76 Error bars represent 95% CIs. g. Proportion of variants in each category with the indicated
predicted variant effect mechanism. Error bars represent 95% CIs. h. Correlation (Spearman ρ) between
allelic effects in MPRA and TF binding motif scores for significant TFs (FDR < 0.05). The most significant
cell-type is shown for each TF. Error bars represent 95% CIs.
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Figure 3. Evidence for regulatory allelic heterogeneity and multiple causal variants. a. All 4
diplotypes of fine-mapped variants on the same CRE (< 150 bps, top) were tested across six different
windows (bottom) in MPRA. b. Comparison of the expected additive and observed double allele effects
after uniformly re-coding diplotypes from largest to smallest effects on activity. Variant pairs with
non-additive effects (11%, FDR < 0.05) are shown in red. Each point represents one measurement per
variant per cell-type, with the exception of non-additive pairs identified only through a meta-analysis
across windows and cell-types, for which one point represents one variant. More dense regions are
shown in blue. c. Variant pairs with non-additive effects are physically closer than variant pairs with
additive effects (p = 10-8, Binomial test). Boxes show quartiles, with lines at medians and lower and upper
hinges at first and third quartiles; lines extend 1.5 times the interquartile range. d. Non-additive pairs of
variants are classified into pairs with activating or dampening effects. e. Example of an amplifying
non-additive variant pair. rs1936950 and rs1936951 (shaded purple) are associated with changes in
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ESS2 expression, alter the CTCF binding motif, and fall within a CTCF ChIP-seq peak. Additive prediction
is the sum of the re-coded allelic effects from variant 1 (AA vs TA) and variant 2 (TG vs TA). Double
variant is the observed difference between (AG vs TA, FDR = 5.5x10-4). f. Comparison of the number of
observed variants in each category (emVars in CREs, CREs, or emVars) and the expected number using
three types of controls (location-matched, annotation-matched, or low pip). Risk ratios are from a random
effects meta-analysis across experiments (library and cell-type). CSs containing up to 5 variants with r2 >
0.9 are included in the analysis. Error bars represent 95% CIs.
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Figure 4. Saturation mutagenesis of 136 fine-mapped emVars. a. Schema for two categories included
in saturation mutagenesis (SatMut) experiments, emVars with canonical (left) or unknown (right)
mechanisms of action. b. Schema of the saturation mutagenesis experiment and analysis. On both allelic
backgrounds, mutation of all 200 bases to each of the other three bases is assayed. Short regions that
impact transcriptional activity in the SatMut assay are identified as Activity Blocks (ABs) by a Gaussian
filtering approach and subsequently matched to motifs PWMs. c. Scatter plot of motif effects on activity
from CRE sequences presented in Fig. 2e compared to the log2 enrichment of motifs in repressive or
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activating ABs in SatMut sequences by cell-type. The size of each observation corresponds to the p-value
from AB enrichment test. d.,f.,h.,k. MPRA results of transcriptional activity for the reference (darker
shade) and alternative (lighter shade) in either K562 (blues) or HepG2 (purples) for emVars rs536864738
(d.), rs11864973 (f.), rs7953706 (h.), and rs2529369 (k.). Error bars indicate SEs. e.,g.,i.,l. Nucleotide
contribution scores across the 200 bp elements (or zoomed in region) containing emVars from d., f., i.,
and l. are highlighted by a dark yellow bar. Activity measurements for all positions when tested on the
reference (top) or alternative (bottom) allele are depicted as lollipops indicating the change from baseline
activity (Δ log2 activity). Activity blocks (ABs) are labeled with a gray bar and matching TF motifs are
highlighted with a black bar. Shaded boxes overlap allele(s) of interest, with a callout of the SatMut
constructed motif (MPRA) and canonical motif PWM (Canonical). j. Scatter plot of baseline log2 activity for
all SatMut tested elements between K562 and HepG2. The correlation between single-nucleotide
substitutions for each element is shown. m. Violin plot of CHDR3 expression in tibial nerve tissue from
GTEx individuals stratified by both for rs2529369 alleles and sex chromosome status (XX and XY). A
significant genotype by sex chromosome interaction is observed (P = 0.026).
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Figure 5. Saturation mutagenesis uncovers canonical, non-canonical, and interacting variant
mechanisms. a. Proportion of emVars explained by canonical TF mechanisms (blue) or non-canonical
mechanisms (orange) across different categories of annotation. Error bars represent 95% CIs. b.
Cumulative distribution of the percent change in activity for every substitution in each saturation
mutagenesis (SatMut) element (teal) or the largest (max) substitution at each nucleotide position (pink).
Ribbons represent percent change in activity at the 10th percentile element and the 90th percentile
element. c. Trait associated variant effects compared to the largest single nucleotide effect seen in a
SatMut element. Colors represent the type of trait and size represents the baseline activity of the element.
d. MPRA results of transcriptional activity for rs191148279, which is an emVar in K562. Error bars
indicated SEs. e. Nucleotide contribution scores across the 200 bp element containing the fine-mapped
variant rs191148279, which are highlighted by a dark yellow bar. Activity measurements for all positions
when tested on the reference (top) or alternative (bottom) allele are depicted as lollipops indicating the
change from baseline activity (Δ log2 activity). Activity blocks (ABs) are labeled with a gray bar and
matching TF motifs are highlighted with a black bar. Shaded boxes overlap allele(s) of interest, with a
callout of the SatMut constructed motif (MPRA) and canonical motif PWM (Canonical). Locations of large
regulatory effects from rare alleles observed in the UKBB are indicated by pink arrows. f. The proportion
of carriers of these rare alleles with decreased HbA1C (> 1 SD) are compared to controls. Error bars
indicate 95% CIs. g.,h. MPRA and SatMut results of transcriptional activity for two adjacent emVars
rs7282770 and rs7282886, similar to d. and e. except for all 4 diplotypes. Error bars indicate SEs. i.,j.
MPRA and SatMut results of transcriptional activity for two interacting emVars rs35081008 and
rs34003091, similar to f. and g. except for results in both K562 (blues) and HepG2 (purples).
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Methods

Fine-mapping

We obtained fine-mapping summary data, including PIPs for each variant and 95% CSs, for 48

traits in the UKBB and BBJ from previous studies25,26. Detailed methods are available from these

studies, but we describe the general approach briefly here. The UKBB is a population-based

cohort in the United Kingdom, of which 366,194 “white British” individuals were selected for

inclusion (https://github.com/Nealelab/UK_Biobank_GWAS). The BBJ is a large, non-European

hospital-based biobank from Japan, of which 178,726 individuals of Japanese descent were

included in this study. We selected 48 traits across 12 domains (including an “other” category)

from the UKBB and BBJ (Supplementary Table 1). GWAS was performed on each using a

generalized linear mixed model as implemented in SAIGE124 (for binary traits) or

BOLT-LMM125,126 (for quantitative traits) with the following covariates: age, sex, age2, age × sex,

age2 × sex, and the top 20 genetic principal components. Fine-mapping was then performed

using SuSiE22 with the GWAS summary statistics and in-sample dosage LD in merged 1.5 Mb

windows.

Similarly, we obtained fine-mapping results across 49 tissues from the Genotype Tissue

Expression Project (GTEx) v8 from previous studies25,36,53 and summarize the approach below.

The GTEx project is a tissue-based biobank with genotypes (WGS) and gene expression data

(RNA-seq) for 838 individuals across 49 tissues (Supplementary Table 1), which are grouped

into 11 systems. cis-eQTL summary statistics, genotype PCs, and other associated data were

obtained as input to fine-mapping, which was performed similar to fine-mapping of complex

traits from the UKBB, with the major modification that covariates (including genetic PCs) were

projected out of the genotypes prior to LD calculation, since GTEx is a more ancestrally

heterogeneous cohort.52 When collapsing PIPs across multiple tests into a single estimate, the
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maximum PIP across traits and/or tissues is used. In addition to individual trait CSs, merged

CSs across traits or across tissues were obtained as previously described26.

Variant selection & oligo design

We designed 200 bp oligos centered around the reference and alternative alleles of

fine-mapped eQTLs from GTEx v8 and fine-mapped complex traits from the UKBB and BBJ

cohorts (Fig. 1a). Variants were selected for inclusion if they demonstrated a PIP > 0.5 or

greater in any tissue or a PIP > 0.1 in any trait or if they fell within a 95% credible set with fewer

than 25 variants (eQTLs), 30 variants (quantitative traits), or 75 variants (binary traits). Variants

with PIP > 0.1 in any of 3 GTEx tissues approximately corresponding to cell-types for MPRA

were also included. That is, we selected additional fine-mapped eQTLs from Liver (matched to

HepG2), transverse colon (matched to HCT116), and any Brain tissue (matched to SK-N-SH).

All together, we included 148,805 eQTL test variants and 78,238 complex trait test variants (Fig.

1b, Supplementary Tables 1,2), with 5,645 variants shared across the two sets. All test and

control variants (see below) were split into 8 libraries (Supplementary Table 26).

In order to test for potential non-additive effects between trait-associated variants in the same

element, we selected 2,522 pairs of variants that were within 150 bps of each other, were

fine-mapped with PIP > 0.1 for at least one trait, and overlapped with an endogenous CRE in at

least one cell-type (Supplementary Table 14). To maximize power to detect non-additive

effects, oligos were designed for up to 6 possible windows. Centering on each variant in the

pair, the variant was placed at approximately 50 bp, 100 bp, or 150 bp (where the exact location

can change for variants causing insertions or deletions), and windows where the second variant

was at least 10 bps from the edge of the oligo were included (Fig. 3a). For each window, we

designed oligos for all four possible diplotypes (Ref/Ref, Ref/Alt, Alt/Ref, Alt/Alt).
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In addition to trait-associated test variants, we designed several comprehensive sets of controls.

We selected 32,534 “location-matched” controls that were greater than 150 bps but less than

500 bps away from test variants and were not significantly associated with a complex trait (P >

0.0001) or change in gene expression (P > 0.001) in our summary data. Next, we selected

39,708 “annotation-matched” controls that were not in 95% CSs or significantly associated with

a trait that were matched for MAF, LD scores, standard genomic annotations (promoter, 3’ UTR,

coding, 5’ UTR, intron, CRE, evolutionary constraint) as well as CRE annotations from relevant

ENCODE cell-types and tissues. Matching was performed by computing propensity scores and

selecting the closest score match using the MatchIt R package. An example of this matching

procedure is shown in Supplementary Fig. 1a. Finally, we selected 14,710 “null” GWAS

controls, where we simulated a typical GWAS phenotype and performed fine-mapping and

variant selection in the same manner as was done for complex traits in UKBB and BBJ. To

simulate these phenotypes127, we drew causal effects from variants present in UKBB or BBJ

largely following a previous approach. That is, we assumed 20% trait heritability, either 1,000

(for binary traits) or 5,000 (for quantitative traits) total causal variants, and a MAF-dependent

per-allele effect size consistent with previously reported complex trait architecture (α = -0.38)127.

For all three classes of controls, matching was performed across PIP bins, resulting in 37,437

controls for eQTLs and 48,880 for complex traits (Fig. 1b).

We also selected 128 elements containing variants from the original screen that overlap

endogenous CREs on which to perform saturation mutagenesis (SatMut). This set contains a

total of 136 emVars, where 114 elements each contain 1 emVar, 8 elements contain 2 emVars,

and 6 elements contain 1 emVar and 1 non-emVar (Supplementary Table 19). Three

categories of variants were prioritized for SatMut. First, we prioritized 83 emVars with “canonical

regulatory mechanisms”, where a fine-mapped emVar was predicted to disrupt the canonical
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motif of an occupied TF. Second, we prioritized 53 emVars with “non-canonical or unclear

regulatory mechanisms”, where a fine-mapped emVar did not disrupt the canonical motif of a TF

with evidence of occupancy from ChIP-seq. Candidate variants were manually inspected and

selected variants have at least one alternative measure of function, such as residing within a

DHS footprint, lying in the flank (0-10 bps) of an occupied TF motif, or having strong predicted

allelic effects in sequence-based models of function, such as Enformer. Third, we prioritized 14

“same CRE variant pairs”, where at least one variant in the pair was an emVar and the pair

demonstrated a non-additive effect or both variants were strong candidates for the first two

categories. Unless otherwise indicated, the 22 emVars selected as variant pairs were also

included in their respective canonical and non-canonical categories.

Overall, variants were chosen in order to survey a variety of complex and molecular traits, a

range of PIPs to allow for both confirmation (PIP > 0.9) and exploration (PIP > 0.1 and < 0.9), a

variety of predicted effects on different TFs and in different cell-types, and sufficient

representation within all 3 categories. In total, we selected 83 variants from category 1

(canonical mechanism), 53 variants from category 2 (non-canonical or unclear regulatory

mechanisms), and 14 variant pairs from category 3 (same CRE variant pairs). For each of the

114 single variant elements, we designed 200 bp oligos using both the reference and alternative

background sequences, as well as all possible single nucleotide substitutions for both

backgrounds (3 alternative nucleotides x 200 positions x 2 backgrounds). For each of the 14

variant pairs, we designed mutagenesis oligos using each diplotype (Ref/Ref, Ref/Alt, Alt/Ref,

Alt/Alt) as a background (3 alternative nucleotides x 200 positions x 4 backgrounds).

Finally, we also included technical controls to evaluate the quality of individual MPRA

experiments. For each library, we included 91 activity controls, 96 emVar controls, and 506

negative controls selected from previously published experiments44,128 (Supplementary Table
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23). Activity controls were chosen for their ubiquitous activity across multiple cell-types and were

selected to represent a broad range of enhancer activities. For the saturation mutagenesis

library, we included an additional 2,126 negative controls, selecting 1,876 ORF controls and 250

shuffled sequences from previously published work129,130.

MPRA library construction

The MPRA libraries were constructed as previously described44 with several modifications to the

original protocol. 230 bp oligonucleotides were synthesized using Agilent Technologies HiFi

libraries for complex trait (seven 60K libraries) and eQTL (two 244K libraries) or Twist

Biosciences for SatMut (one 300K library) with the designed 200 bp oligo in the middle and 15

bp adaptor sequences on either end. Unique 20 bp barcodes were added by PCR using primers

#82 and #202 (Supplementary Table 24). Each oligo amplification consisted of 16-32 50 uL

reactions containing 25ul Q5 2xMM Ultra II, 2.5uL each of 10uM primer, and 0.5 uL oligo library

using the following PCR conditions (98°C for 30s; 6x [98°C for 10s; 60°C for 15s; 65°C for 45s];

72°C for 5m). PCR products were purified using AMPure XP SPRI (Beckman Coulter, A63881)

and incorporated into the SfiI digested pMPRAv3:∆luc:∆xbaI (Addgene #109035) backbone

vector by Gibson assembly (50uL 2xNEB HiFi Assembly MM, 2.2ug DNA oligo pool, 2.0ug SfiI

digested pMPRAv3:∆luc:∆xbaI in 100uL reaction incubated at 50°C for 1 hour). To achieve a

library composition of 200-300 barcodes per oligo, a test transformation was performed with 1uL

of the 20uL SPRI purified Gibson assembly mixture and 50uL of 10-beta electrocompetent cells

(NEB) to determine the optimal amount of Gibson assembly and 10-beta cells to achieve the

desired colony-forming unit (CFU) count. Based on the results of the test transformation, a

subset of a second identical transformation was taken directly after electroporation and split

across ten 1 mL cultures with 10-beta recovery media (NEB) then incubated for 1 hour at 37°C.

After 1 hour, each culture was independently expanded in 20 mL of Luria Broth (LB) with

100ug/mL of carbenicillin. In parallel, CFU colony counting plates were created from 4 of the 10
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cultures. After 6.5 hours of growth at 37°C, the cultures were individually pelleted and frozen,

and the desired number of cultures from 10 expanded cultures was selected, based on the CFU

counting plates, to reach an average of 200-300 CFUs (barcodes) per oligonucleotide (15-21

million CFUs for complex traits, 49 million CFUs for eQTLs and 86 million for SatMut.). Cultures

were combined and purified using a Qiagen Plasmid Plus Maxi or Midi kit. For each library,

sixteen colonies from the CFU plates were checked by colony PCR to determine the oligo

insertion rate for the test transformation (insertion rate range: 93%-100%). The expanded

purified pMPRAv3:∆GFP plasmid library was sequenced using Illumina 2 x 150 bp chemistry to

acquire oligo-barcode pairings. To construct the final MPRA libraries, 10ug of the

pMPRAv3:∆GFP library was digested with AsiSI, and a GFP amplicon with a minimal TATA

promoter (amplified from pMPRAv3:minP-GFP, Addgene #109035) was inserted using Gibson

assembly (125uL 2xNEB HiFi Assembly MM, 5.28ug GFP amplicon, 1.6ug pMPRAv3:∆GFP in a

250uL reaction incubated at 50°C for 1.5 hours). The resulting pMPRAv3 library includes the

200 bp oligonucleotide sequence positioned directly upstream of the minimal promoter and the

20 bp barcode falling in the 3’ UTR of GFP. The Gibson reaction was purified using 1.5x SPRI

and eluted in 40 uL water prior to electroporation of 2-16 uL of purified plasmid library into

100-400 uL 10-beta cells. The electroporation was split across six 2 mL cultures and recovered

at 37°C for one hour followed by expansion of each 2 mL culture in 500 mL of TB media with

100ug/mL of carbenicillin. After 16 hours of growth at 30°C, plasmid was purified using Qiagen

Plasmid Plus Giga Kits. CFU counting plates from 4 of the 500 mL cultures were made to

monitor transformation efficiencies (23 million - 185 million CFUs for complex traits, 285 million -

1 billion CFUs for eQTLs, and 123 million - 171 million CFUs for SatMut). Sixteen colonies from

the CFU plates were checked by colony PCR to determine the GFP insertion rate for the test

transformation with all libraries having a minimum of 80% of plasmid containing a GFP insert.
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MPRA library transfections

We used 5 cell-types for MPRA transfections, selected for representing 5 distinct tissue types.

The complex trait libraries were tested in K562, SK-N-SH, HepG2, and A549 cells; the eQTL

libraries were tested in K562, SK-N-SH, HepG2, and HCT116 cells; and the SatMut library was

tested in K562 and HepG2 cells. All cell lines were acquired from ATCC and routinely tested for

mycoplasma and other common contaminants by The Jackson Laboraotry’s Molecular

Diagnostic Laboratory. Each replicate experiment was expanded from a low passage

cryopreserved aliquot followed by consistent handling for each cell-type across all libraries.

Specifically, K562 cells were grown in RPMI (Life Technologies, 61870127) supplemented with

10% FBS (Life Technologies, 26140) maintaining a cell density of 0.5-1 million cells per mL;

SK-N-SH cells were grown in DMEM (Life Technologies, 10566-024) supplemented with 10%

FBS (Life Technologies, 26140); HepG2 cells were grown in DMEM (Life Technologies,

10566-024) supplemented with 10% FBS (Life Technologies, 26140); A549 cells were grown in

Ham's F-12K (Life Technologies, 21-127-030) supplemented with 10% FBS (Life Technologies,

26140); and HCT116 cells were grown in McCoy's 5a (Thermo Fisher, 16600108) supplemented

with 10% FBS (Life Technologies, 26140). All transfections were performed using a Neon

transfection system (Life Technologies), transfecting 150 million (complex traits), 500 million

(eQTL) or 700 million (SatMut) cells for each replicate. Transfections were performed using 100

uL tips with optimized settings for each cell-type; K562: 10 million cells per 100 uL, 5 ug of

plasmid, 3 pulses of 1450 V for 10 ms; SK-N-SH: 10 million cells per 100 uL, 10 ug of plasmid, 3

pulses of 1200 V for 20 ms; HepG2: 10 million cells per 100 uL, 5 ug of plasmid for complex

traits and SatMut or 10 ug of plasmid for eQTLs, 1 pulses of 1200 V for 50 ms; A549: 10 million

cells per 100 uL, 5 ug of plasmid, 2 pulses of 1200 V for 30 ms; and HCT116: 10 million cells

per 100 uL, 10 ug of plasmid, 2 pulses of 1350 V for 20 ms. We performed a minimum of 5

replicates for each library and harvested each replicate 24 hours post-transfection by rinsing

three times with PBS and collecting by centrifugation. Cell pellets were either frozen at -80°C for
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later processing or homogenized immediately in RLT buffer (RNeasy Maxi kit) and dithiothreitol,

prior to freezing at -80°C. For each cell-type and library, no more than two replicates were

performed on the same day and with parallel replicates processed from independently

expanded batches of cells.

RNA isolation and MPRA RNA library generation

Total RNA was extracted from the cell homogenates using the Qiagen RNeasy Maxi kit followed

by a 1 hour Turbo DNase treatment (Thermo Fisher) with 5 uL of DNase in 1475 uL total volume

for 1 hour at 37°C. To stop the DNase digestion, 15 µL 10% SDS and 150 µL of 0.5M EDTA

were added, and the sample was incubated at 70°C for 5 minutes. GFP mRNA was then pulled

down using a mixture of 3 GFP-specific biotinylated primers at 0.5 nM (#120, #123 and #126,

Supplementary Table 24) in 0.2x SSC and 33% Formamide (MilliporeSigma 4650-500ML) and

incubated for 2.5 hours at 65°C. Biotin probes hybridized with GFP mRNA were then captured

by adding 400 uL of pre-washed Sera Mag Beads (Fisher Scientific) eluted in 500 uL of 20X

SSX by agitation at room temperature for 15 minutes. The beads were captured on a magnet

and washed once with 1X SSX and twice with 0.1X SSC. After removal of the last wash, 50 uL

of water was added and the RNA was treated overnight with Turbo DNase at 37°C. The beads

were then collected by magnet and the supernatant removed and purified with 2x RNA SPRI.

Complementary DNA was created using SuperScript III (Life Technologies) in a 100 uL reaction

with a gene specific primer for the GFP transcript (20 uM primer #19, Supplementary Table 24)

and a modified elongation temperature (47°C for 80 minutes). GFP mRNA abundance was

quantified by qPCR to determine the cycle threshold for each replicate using a QuantStudio 5

qPCR instrument (Reaction mix: 5 uL Q5 Ultra II 2x, 0.5 uL 10uM primers #801 and #802, 1.66

uL 1:10,000 Sybrgreen 1, 1 uL cDNA or GFP mRNA in a 10 uL reaction, Cycle conditions: 98°C

for 30s; 40x [98°C for 10s; 62°C for 15s; 72°C for 30s], Supplementary Table 24). A standard

curve with the final MPRA library (10 fg - 1 ng) was run alongside 1 uL of cDNA and 1 uL of
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GFP mRNA for each replicate. Any samples showing amplification in the mRNA sample were

discarded for having plasmid carryover. Replicates within a cell-type and library were diluted to

approximately the same concentration based on the qPCR results, and first round PCR (98°C

for 30s; 6-13x [98°C for 10s; 62°C for 15s; 72°C for 30s]; 72°C for 2m) with primers #801 and

#802 (Supplementary Table 24) were used to amplify barcodes associated with GFP cDNA

sequences for each replicate. A second round of PCR (98°C for 30s; 6x [98°C for 10s; 68°C for

15s; 72°C for 30s]; 72°C for 2m) was used to add Illumina sequencing adaptors. The resulting

MPRA barcode libraries were spiked with 0.01-1% PhiX and sequenced on an Illumina NextSeq

500 or NovaSeq SP.

MPRA data processing and main analysis

Data from MPRA was analyzed as previously described44 using MPRAsuite which includes

MPRAmatch (barcode/oligo pairing), MPRAcount (tag assignment and counting) and

MPRAmodel (activity and allelic effect estimates) (https://github.com/tewhey-lab/MPRASuite).

Briefly, oligo/barcode pairings were identified by merging paired-end reads into single amplicons

using Flash131. Genomic DNA sequences and barcodes were extracted and the Genomic DNA

element was mapped back to the oligo design file using minimap2132. Alignments showing

greater than 5% error to the design files were discarded, leaving only high quality alignments

which were compiled in a lookup table with their matching barcodes. Following sequencing of

the RNA and plasmid libraries, 20 bp barcode tags were assigned to oligos from the lookup

table and oligo counts were aggregated by addition across all barcodes. Variants with fewer

than 30 DNA counts or with exactly 0 RNA counts in oligos for either allele were excluded from

all downstream analysis. In the diplotype analyzes a stricter filter was used, and variants with

fewer than 100 DNA counts or fewer than 10 RNA counts across all 4 diplotypes were excluded.
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When variants were assayed in multiple libraries, the library with the highest sum of the square

roots of plasmid counts in reference and alternative sequences was selected.

MPRAmodel uses DESeq2 as the framework for normalization and statistical analysis. For each

library, counts were normalized across samples using a “summit-shift” approach which centers

the distribution of RNA/DNA ratios for each sample at 1. To determine significant differences

between DNA plasmid count and RNA count, a negative binomial generalized linear model

(GLM) was used within DESeq2 with independent dispersion estimates for each cell-type and

library. We estimate element activity in units of log2(fold-change) for RNA counts compared to

DNA counts by including a contrast in the design matrix of DESeq2 to compare treatment (RNA

vs DNA) and use Wald’s test to evaluate the significance of this estimate, correcting for multiple

hypothesis testing within each cell-type and library using Bonferroni’s method. We estimate an

allelic effect in units of ∆ log2(fold-change) (or ∆ log2 activity) for the difference in RNA counts

compared to DNA counts at the Alt oligo compared to the Ref oligo by including a contrast in the

design matrix of DESeq2 to compare alleles (Alt vs Ref) and treatment (RNA vs DNA) and use

Wald’s test to evaluate significance followed by FDR estimation using Benjamini and Hochberg’s

method. Elements passing a specific effect size and significance threshold for RNA vs DNA are

defined as active, and variants in active elements passing a specific significance threshold are

defined as expression modulating variants or emVars. By performing a grid search as described

in the following section, we define elements as active if |log2[fold-change]| > 1 and

Bonferroni-adjusted p-value < 0.01 and variants as emVars if either the reference of alternative

allele element is active and FDR < 10% for a non-zero allelic effect. For specific analyses

requiring cell-type agnostic estimates, we perform fixed-effect meta-analyses of activity and

allelic effects across cell-types and use these estimates.
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For saturation mutagenesis, we used the saturation mutagenesis mode of MPRAmatch which

applies increased stringency requirements when pairing barcodes to oligo sequences requiring

perfect alignment matches during barcode pairing. Since the majority of the SatMut library

consisted of sequences with strong MPRA activity by design, we performed a summit-shift

normalization procedure where linear scaling factors were determined only from negative

controls sequences. Since the primary goal of the SatMut experiment was to compare the

effects of substitutions across an element rather than to detect individual emVars, we employed

an Empirical Bayes approach to shrink allelic effect sizes towards 0 based upon how accurately

they are measured (i.e. number of RNA and DNA reads) (Supplementary Fig. 8c). First, we

obtain an improved estimate of the baseline activity of the background sequence by pooling the

log2(fold-change) estimates of oligos between the observed 25th and 75th percentiles of

substitutions across this element, assuming that approximately 50% of substitutions will have

little effect and the mean activity of these substitutions is an unbiased estimate of true baseline

activity. Taking the mean and variance of this set as a normal prior, we use DESeq2 estimates of

activity (log2[fold-change]) and their corresponding SEs to define a normal likelihood, allowing

for closed form posterior inference due to conjugacy. We use this prior and likelihood to obtain a

posterior distribution for baseline activity of the background sequence. Next, we use the mean

and variance of activity estimates between the 5th and 95th percentiles of substitutions to form

a less stringent prior with higher variance, better reflecting the distribution of substitutions with

true allelic effects. Using a similar Bayesian approach with this prior, we estimate the posterior

activity distribution of each substitution. To obtain shrunken estimates of each allelic effect, we

subtract the posterior mean activity for each substitution from the posterior mean baseline

activity for the background sequence.
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Grid search for activity and allelic effect thresholds

To find the optimal thresholds for activity and for allelic effect, we performed a grid-search

across Bonferroni-adjusted p-value or FDR and effect magnitude, aiming to maximize precision

and recall in a set with known positives and negatives. For activity, we used overlap with a

cis-regulatory element (CRE) (Supplementary Table 25) to approximate our positive set and

assigning all other oligos to the negative set, reasoning that sequences originating from

accessible chromatin marked by H3K27ac should approximate active transcriptional regulatory

elements. We selected equal-sized randomly-selected matched sets of variants in CREs and

not in CREs (40,000 each for eQTLs, 25,000 each for complex traits) and calculated the

precision and recall across a grid of Bonferroni-adjusted p-value thresholds and activity

(log2[fold-change]) thresholds (Supplementary Fig. 1e,f). Setting |log2[fold-change]| > 1 and

Bonferroni-adjusted p-value < 0.01 optimizes the precision-recall tradeoff and is used as the

definition of active throughout the manuscript. For allelic effects, we repeated our grid search,

using matched sets of high PIP (> 0.9) variants and low PIP variants (< 0.01) as positive and

negative sets. First requiring all elements to be active, we calculate precision and recall across

a grid of FDR thresholds and allelic effect (∆ log2[fold-change]) thresholds (Supplementary Fig.

1g,h). Based on these results, we define emVars as variants residing in active elements with

any magnitude of allelic effect and an FDR < 10% for a non-zero allelic effect.

Non-additive effect estimation and diplotype analyses

Since alternative and reference alleles for trait-associated variants is arbitrarily coded based on

the reference genome, rather strictly by effect direction, disease risk, or minor allele, we

re-coded the alleles to best aid in interpretation of MPRA effects. Using MPRA estimates of

activity for each of the 4 diplotypes, we re-coded alleles in order from lowest to highest activity,

with lowest activity as the reference category. We set the reference category as the

“decrease-decrease” pair and the highest value as the “increase-increase” pair, with
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“decrease-increase” and “increase-decrease” pairs in between. The additive allelic effect is

defined as the sum of the individual allelic effect (“decrease-increase” + “increase-decrease”).

The observed double allele effect is the allelic effect for the “increase-increase” pair compared

to the “decrease-decrease” pair. Interaction effects are the difference between the expected

additive allelic effect and the double allele effect, which are estimated in the DEseq2 model and

re-coded here. Interacting pairs of variants were detected as described below and classified into

amplifying or dampening pairs (Fig. 3b,d, Supplementary Fig. 7i, Supplementary Table 17).

For each variant pair, we meta-analyzed using a fixed effect meta-analysis for element and

allele-specific activity across all available windows for and additionally across all windows and

cell-types. Activity and emVar definitions were the same as single-variant definitions, with the

exception of additional alleles (diplotypes). Significant interaction effects between pairs of

variants were estimated from either a standard fixed effect meta-analysis model (windows and

cell-types are independent), similar to activity and emVar effects, or by using a fixed effect

model where the covariance between windows is empirically estimated across all pairs based

upon the number of shared positions between the windows. Interaction emVars were defined as

pairs where at least one diplotype was active and both the FDR was less than 0.05 and the

absolute value of the interaction effect was greater than 0.25 for one of the meta-analyses. In

the SatMut dataset, interaction effect estimates were similarly obtained by subtraction of the

double allele and additive variant posterior activity estimates and interaction emVars were

defined as having an interaction effect greater than 0.415 (25% change in activity). Analyses of

the distance between pairs of variants was restricted to pairs where variants were tested in all 3

windows (left, middle, and right) since the number of windows a variant pair is tested in is

dependent on the distance between the variants (Fig. 3c).
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Multivariate adaptive shrinkage

To account for differences in power when estimating if element activity or allelic effects are

shared across cell-types, we used the Multivariate Adaptive Shrinkage in R (mashr) package.133

Since MPRA was performed in 4 cell-types for complex trait variants a 4 cell-types for molecular

trait variants, we used only the canonical covariance matrices in the mixture model. We selected

variants with PIP > 0.1 that are in CREs and fit the mash model separately for complex trait

variants and eQTLs separately. Cell-type specific effects were determined using the local false

sign rate (lfsr) < 0.05 (Supplementary Table 10).

Coding and non-coding genomic annotations

Genomic annotations were obtained as described previously.25,26 Briefly, we ran the Ensembl

Variant Effect Predictor (VEP) v85134, selecting the most severe consequence for each variant

including coding (missense, LoF, and splice site) and UTR annotations. Non-coding variants

were annotated as residing within a promoter (using annotations from the S-LDSC baseline

model), a CRE, or having evidence of neither. CREs were defined as accessible chromatin in at

least one cell-type and evidence of histone modification at H3K27ac in at least one cell-type. We

utilized the combined, normalized, and QC’ed chromatin accessibility and histone modification

datasets described in25, including DNase-seq, ATAC-seq, single-cell ATAC-seq, and H3K27ac

measurements from 7 different atlases29,30,135–139. This combined dataset consists of over a

thousand cell-types: ROADMAP Epigenomics DNase-seq across XXX cell-types and H3K27ac

across 98 cell-types30; Meuleman et al. DNase-seq across 438 cell-types29; Domcke et al. single

cell ATAC-seq across 54 cell-types135; Corces et al. ATAC-seq data for 18 hematopoietic

cell-types136; Corces et al. single-cell ATAC-seq across 24 brain cell-types137; Calderon et al.

ATAC-seq for 25 immune cell-types138; and ChIP-Atlas DNase-seq for 284 cell-types and

H3K27ac for 720 cell-types139 to identify CREs (Supplementary Table 25).
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For analyses comparing the strength of endogenous CRE activity to MPRA activity (Fig. 2a),

only CREs from the Meuleman et al. dataset29 are used and cell-type agnostic CRE activity is

estimated as the maximum normalized DNase I hypersensitivity counts across cell-types. In

order to identify cell-type specific CREs, we computed the euclidean norm of normalized counts

from the Meuleman et al. dataset29, selected the maximum value across biosamples

representing similar cell-types, and selected CREs with a euclidean norm > 0.2. Within CREs

from the Meuleman et al. dataset29, variants were annotated for consensus DHS footprints

across 243 cell-types, which were downloaded from140 and lifted over to hg19.

Precision and recall of MPRA

We calculated the precision and recall of different annotations (e.g. emVars) for separating likely

causal trait-associated variants from background variants. We approximated the true causal

(positive) set of variants by using non-coding, trait-associated variants with PIP > 0.9.

Background non-coding variant (negative) sets were defined using either location-matched

controls, annotation-matched controls, or trait-associated variants with PIP < 0.01. Equally

matched sets of positive and negative complex trait variants (995) and eQTL variants (14,999)

were obtained. Precision is defined as the number of true positives divided by the number of

variants selected as positive by the annotation. Recall is defined as the number of true positives

divided by all positives. All three control sets produced similar estimates (Supplementary Table

4), and results using low PIP variants as control have the lowest SEs and are used in the main

analysis shown in Fig. 1f. In addition to evaluating MPRA measurements and genomic

annotations, we estimated precision and recall across CS size (Supplementary Fig. 3e,

Supplementary Table 6) and specific cell-types used in MPRA or for defining CREs

(Supplementary Fig. 3f,g, Supplementary Table 5). For cell-type analyses, meta points are

estimated as averages of cell-type combination and linear regression is used to predict the

impact of each additional cell-type on precision and recall.
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Comparison to genome-wide reporter assays

Measurements of allelic effects using the Survey of Regulatory Elements (SuRE) reporter assay

for 5.9 million variants in K562 and HepG2 cells were downloaded from67. To compare

performance between SuRE and MPRA, we again estimated precision and recall using PIP >

0.9 variants as positives and PIP < 0.05 variants as negatives, but now restricting to variants

assayed by both approaches.

Regulatory quantitative trait loci

Chromatin accessibility quantitative trait loci (caQTLs) and allele-specific TF occupancy

quantitative trait loci were obtained from ENCODE29,141. Variants with an FDR < 0.25 for allele

specific differences were included in comparisons to MPRA allelic effects.

Transcription factor binding motifs and occupancy

Positional motif matches on oligos were identified using a modified version of FIMO142

implemented in motif liquidator, for PWMs from the Homo Sapiens Comprehensive Model

Collection (HOCOMOCO, H12CORE143) and JASPAR144 (2022 release). Motifs shorter than 8

bps or with information content (IC) < 12 were excluded. Sequence matches were called when

the absolute percentage (scaled by the difference between the best and worst possible

sequence matches scores) and the relative percentage (scaled by the difference between the

best and random sequence matches scores) of each sequence was greater than 12, and the

significance for this match was < 0.0001. Disruption of a motif required a difference of greater

than 10% in the absolute percentage of each sequence match to the PWM. Weak calls with

disruptive alleles required only an IC score > 8, no relative percentage filter, P < 0.001 and an

allelic difference of only 5% in the absolute percentage of each sequence. Motifs were defined

as flanking variants if the motif started or ended within 10 bps of the variant (Fig. 2g).
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TF occupancy for tested elements was determined by ChIP-seq support. We obtained ChIP-seq

peaks from ChIP-Atlas, which uniformly reprocessed peaks from 25,823 experiments in 1,046

human cell-types or tissues for 1,741 TFs.31,139 For each specific motif match or disruption, a

corresponding TF was defined as occupying an element if that element overlapped with a TF

peak for any TF that matched a highly similar motif (Pearson r > 0.9 for PWM similarity).

Motif contributions to the activity of elements derived from CREs containing trait-associated

variants was estimated using linear regression, modeling the marginal effect of the number of

motifs in each element on the activity in K562, HepG2, and SK-N-SH cell types. Prior to fitting

the linear regression, activity was quantile normalized across cell-types and a generalized

additive model using smoothing splines of 1-mer and 2-mer counts in each element to model

activity (each cell-type measurement was an independent observation) was fit using the mgcv R

package, and residual activity was used as the outcome for linear regression. P-values for each

motif are obtained from a Wald test and FDRs are estimated using Storey’s q-value. Coefficients

from these regressions for motifs present in > 0.1% of elements are shown in Fig. 2e, although

these estimates should not be considered causal effects. We also assessed whether changing

the extent of PWM disruption for each motif was correlated with the extent of change in activity

in each cell-type. Restricting to variants that are emVars in at least one cell-type and and motifs

represented by at least 10 variants, we computed Spearman correlations and estimated FDRs

using Storey’s q-value.

Regulatory sequence classes (Sei)

We obtained Sei sequence classifications and lifted the annotations over to hg1976. Variants

were excluded if they fell into multiple Sei annotations after liftover (< 1%). The proportion of

emVars for each complex trait, stratified by domain, is estimated and shown in Supplementary
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Fig. 5c. Odds ratios were calculated for high PIP (> 0.5) emVars vs low PIP (< 0.1) non-emVars

and p-values were obtained from a Fisher’s exact test for both complex trait variants and eQTLs

(Fig. 2f).

Enformer

In order to capture more regulatory mechanisms than those mediated through canonical TF

motifs, we scored each variant (after lifting over to hg38) using Enformer87, a transformer-based

neural network model trained to predict functional genomic data, including TF occupancy and

chromatin accessibility. Allelic effect predictions across 1,447 distinct tissue / TF pairs and 320

accessible chromatin predictions were z-score normalized to variants with non-emVars in CREs

with PIP < 0.05. A combined score for each variant was computed by squaring its allelic effect

for individual TF occupancy or accessible chromatin predictions and taking the sum. A threshold

for this score was set such that only 5% of non-emVars in CREs with PIP < 0.05 had higher

scores (Fig. 2g). Thresholds for individual Enformer predictions were similarly obtained.

Multiple causal variants

We designed a hypothesis test to evaluate whether our data provided evidence of multiple

causal variants within independent signals of genetic association (same CS). First, we restricted

our analysis to non-coding 95% CSs where we obtained sufficient MPRA measurements on

variants harboring most of the CS probability (> 90%). Then, we removed CSs without evidence

of the functional annotation being tested (CRE emVars, CRE, or emVars). We counted the total

excess number of variants in each remaining CS (containing at least one variant with a

functional annotation) and compared this to the background rate estimated from controls

(location-matched, annotation-matched, or low PIP), computing both risk ratios and risk

differences. Since the emVar call rate has both biological and technical variance across

experiments, we designed each library so that individual traits were fully contained within a
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single library along with all three types of matching controls. Thus, risk ratios and risk

differences were computed within each experiment and meta-analyzed using a random effects

model implemented in the R package metafor. Meta-analysis was performed separately for

complex traits and eQTLs across multiple CS sizes (5, 10, 15) and r2 thresholds (0.8, 0.9, 0.99).

Activity blocks

To identify blocks of quasi-contiguous non-zero variant positions, we used the crossover points

between a threshold T∈ℝ and a smoothed signal S = [Sk∈ℝ] of the ∆ log2(fold-change) [Δk] of

an element as follows. For any given sequence element, each Δk is obtained by averaging all

three posterior allelic substitution effects at each position k. Then, S is obtained by applying a

one-dimensional Gaussian filter (scipy.ndimage.gaussian_filter1d) to [Δk] with a kernel standard

deviation of sigma = 1.15. To identify blocks of negative allelic effects, which indicate positive

contributions to activity by the reference sequence, we found the crossover indices {ci∈ℕ}

between S and T = -0.2, and considered as salient those regions [ci,,ci+1] such that

i) Sk ≤ T = -0.2∀k∈ [ci, ci+1], i.e., the signal S along the block is below the threshold;

ii) ci+1 - ci +1 ≥ 5, i.e., the length of the region is at least 5;

iii) mean(Δk, k∈[ci, ci+1]) ≤ -0.15, i.e., the mean of the allelic effects has to be at most

0.15.

Similarly, we took T = 0.2 and mean(Δk, k∈[ci, ci+1]) ≥ 0.15 to identify blocks of positive allelic

effects.

Motif matches in activity blocks

In order to find a TF motif match to a given activity block b=[bstart,bstop], we constructed a position

weight matrix (PWM) from the allelic effects as follows. Let 𝛿ak denote the 3 allelic effects at

position k∈[bstart,bstop] between the reference allele r∈{A,C,G,T} and the alternative alleles

{A,C,G,T}∋a≠r. We define a matrix Mt
k, where t∈{A,C,G,T} and k∈[bstart,bstop], as Mt

k= 𝛿ak if t =
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a, Mt
k = 0 if t = r. Then, we define PWM[bstart,bstop] = 20 * Mt

k / Mmax for t∈{A,C,G,T} and

k∈[bstart,bstop], as the position weight matrix induced by the allelic effects in the activity block

[bstart,bstop], where 20 is a chosen temperature parameter and Mmax = maxt(∑k|Mt
k|). Using

PWM[bstart,bstop], we construct the block position probability matrix PPM[bstart,bstop] by applying the

Softmax function to the values of PWM[bstart,bstop] at each position. We also define the block

information content matrix ICM[bstart,bstop] by mapping the values of PPM[bstart,bstop] at each

position into information bits with respect to the uniform background pA = pC = pG = pT = 0.25.

Once we obtained the matrices PWM[bstart,bstop] and ICM[bstart,bstop] from the allelic effects in an

activity block b, we sought to find their best match to a human transcription-factor motif in

JASPAR144 or HOCOMOCO143. Let 𝒟 represent the dataset of known human TF motifs in the

union of JASPAR (2022 REDUNDANT) and HOCOMOCO (H12CORE). Let PWMm, ICMm, and

𝝀m represent the position weight matrix, information content matrix, and length, respectively, of a

motif m∈𝒟. We defined the best alignment offset o(b, m)∈ℤ between a block b = [bstart,bstop]

and a motif m∈𝒟 as the integer that maximizes the sum of the element-wise product between

ICM[bstart,bstop] and PWMm for all possible alignments of the nucleotide positions between the two

matrices (with the appropriate zero padding to match the dimensions of the two matrices). Next,

we computed the (block) Pearson correlation between ICM[bstart,bstop] and ICMm (with the

appropriate zero padding) in their best alignment given by o(b, m) for every m in 𝒟, and

collected the motifs in the top 50 Pearson correlations. Then, for those top 50 motifs we

computed the (match) Pearson correlation between ICMm and ICM[bstart + o(b, m), bstart + o(b, m)

+ 𝝀m], that is, the correlation to the ICM allelic effects given the alignment induced by the

alignment to the activity block. Finally, we selected the motif with the highest match_Pearson +

0.2 * block_Pearson. If the overlap between the selected TF match and the activity block leaves

5 or more contiguous positions in the block unassigned, we repeat the process above to the

unassigned sub-block.
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Rare variant analysis

Whole genome sequencing for 402,990 unrelated (max kinship coefficient < 0.884) individuals in

the UK Biobank were analyzed on DNAnexus. Carriers were defined as single nucleotide

substitutions with a higher MPRA allelic effect size than rs191148279 from the SatMut

experiments in K562 cells. Residual HbA1c phenotypes were obtained as previously

described26, and an odds ratio using Firth’s correction for > 1 SD change in the phenotype was

computed as well as Levene’s test, which was run to test if the variances were different between

carriers and non-carriers.

GTEx interaction analysis

Sex-biased eQTLs were mapped as described in Oliva et al.145. Briefly, a linear model with a

genotype x biological sex interaction term was used to model normalized gene expression.

Genotype principal components and expression PEER factors were included as covariates. The

interaction p-value was obtained from a Wald test.

Constraint

Nucleotide-level PhyloP scores for constraint in 427 mammals were downloaded from

Zoonomia32. SatMut sequences were lifted over to hg38 and matched to PhyloP scores. Specific

positions were defined as constrained if the PhyloP FDR was less than 0.05, corresponding to a

PhyloP score > 2.27. Prior to estimating the correlation with PhyloP, ∆ log2(fold-changes) for all

3 substitutions at each position were averaged and inverted to obtain a contribution score,

similar to the height of letters in SatMut examples in Fig. 4 and Fig. 5. Correlation between

either the signed contribution score or the |contribution score| and PhyloP using Pearson’s

method and corresponding FDRs obtained using Storey’s q-value are provided in

Supplementary Table 22.
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Data availability
Reference data sets used in this study are linked and annotated in Supplementary Table
25-26. ENCODE accession IDs for all MPRA data generated for this study are available in
Supplementary Table 26. The UKBB analysis in this study was conducted via application
number 31063.

Code availability
Code used to analyze and visualize data related to this work will be available at
https://github.com/julirsch/finemapped_mpra/.
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