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Abstract12

While the terms “gene-by-gene interaction” (GxG) and “gene-by-environment inter-13

action” (GxE) are widely recognized in the fields of quantitative and evolutionary14

genetics, “environment-byenvironment interaction” (ExE) is a term used less often.15

In this study, we find that environmentby-environment interactions are a meaningful16

driver of phenotypes, and moreover, that they differ across different genotypes (sug-17

gestive of ExExG). To support this conclusion, we analyzed a large dataset of roughly18

1,000 mutant yeast strains with varying degrees of resistance to different antifungal19

drugs. Our findings reveal that the effectiveness of a drug combination, relative to sin-20

gle drugs, often differs across drug resistant mutants. Remarkably, even mutants that21

differ by only a single nucleotide change can have dramatically different drug x drug22

(ExE) interactions. We also introduce a new framework that more accurately predicts23

the direction and magnitude of ExE interactions for some mutants. Understanding24

how ExE interactions change across genotypes (ExExG) is crucial not only for mod-25

eling the evolution of pathogenic microbes, but also for enhancing our knowledge of26

the underlying cell biology and the sources of phenotypic variance within populations.27

While the significance of ExExG interactions has been overlooked in evolutionary and28

population genetics, these fields and others stand to benefit from understanding how29

these interactions shape the complex behavior of living systems.30
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Introduction31

Over 100 years ago, William Bateson (1) used the term, “epistasis,” to describe pe-32

culiar findings where the phenotypes of offspring deviated from expectation in a way33

that could not be accounted for by dominance effects nor differences in environment34

(2). More recently, the term “epistasis” has come to include any genetic interaction35

(GxG) where the combined effect of two genetic changes differs from the sum of their36

individual contribution (2, 3). Or, as one colloquial definition frames it, epistasis is37

the “surprise at the phenotype when mutations are combined, given the constituent38

mutations’ individual effects” (4). Genetic interactions have been of interest, in both39

classical and modern settings, because they complicate a major goal of biology: pre-40

dicting phenotype from genotype (5–8). Scientists have debated the impact of genetic41

interactions on such prediction efforts (9, 10) and which types of interactions, e.g. gene42

x gene (GxG) or gene x environment (GxE), are important (11). These interactions43

are of interest to other disciplines as well (12). For example, genetic interactions have44

suggested which genes participate in the same regulatory modules (13, 14), predicted45

which evolutionary trajectories are most likely (3, 15), and revealed global constraints46

on protein evolution (16) and adaptive evolution (17). Given their broad utility to47

biologists, many useful mathematical frameworks exist for quantifying GxG (18), GxE48

(19) and GxGxE (3, 11, 20). Further, many experimental frameworks have compre-49

hensively surveyed GxG or GxGxG (15, 16, 21–23), GxE (24–27), or GxGxE (24,50

28–31). But one type of interaction has remained largely neglected by quantitative51

geneticists: ExE interactions, or those arising from interactions between environments52

(Figure 1A).53

54

Here, we define ExE (i.e. environment-by-environment interactions) as when the com-55

bined effect of two environments on phenotype is unexpected given their individual56

effects (Figure 1B). For example, if a microbe grows slowly in a high salt environment57

and equally slowly in a high temperature environment, but does not grow even slower58

in a high salt plus high temperature environment, this would be unexpected under an59

additive model and herein termed “ExE”. Perhaps the reason for the near omission60

of the term “ExE” in the quantitative genetics literature is straight-forward: there is61

no genetic component (no “G”), so those who map the effects of genetic changes onto62

phenotype are naive (or disinterested) to the benefits of quantifying ExE interactions.63

But there are several reasons it may be worthwhile to turn attention towards ExE. For64

one, understanding why environments have non-additive effects on phenotype stands65

to expand knowledge about regulatory network architecture (32, 33), as have GxG66

and GxE models (13, 34). Further, if ExE often varies across genetic backgrounds,67

in other words, if ExExG is common, then quantitative and evolutionary geneticists68

can incorporate ExExG interactions into models that predict the phenotypic effects of69

mutation. ExExG is not the same phenomenon as GxGxE (Figure 1C–D). Several70

studies have examined the power of GxGxE interactions, or the role of the environment71

in sculpting epistatic interactions (labeled “environmental epistasis”; see Lindsey et al72

2014) (11, 24, 30, 35). To date, only a handful of studies mention ExExG (36–42),73

though usually not in a way that speaks to the circumstance whereby different geno-74

types tune the interactions between environments (the focus of the current study).75

76

One key reason to study ExE pertains to understanding how multidrug environments77
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affect microbial phenotypes (43–45), though in the relevant literature ExE interactions78

are usually termed “drug interactions” (32, 46) or occasionally “drug epistasis” (47)79

rather than “ExE” (Figure 1A). There is practical interest in finding pairs of drugs80

that interact ‘synergistically’, i.e., the combination of both drugs is more effective than81

one would predict based on either single drug (Figure 1D; top panel) (48–52). But82

just as genotype-phenotype mapping studies rarely examine environment interactions,83

drug synergy studies focus on genetic interactions less frequently. For example, several84

studies suggest that if one understands the cell biological mechanisms underlying drug85

interactions, one can predict synergy (53–55), but this ignores that mutations may86

change the underlying drug interactions (56, 57). Studies of the combined impacts of87

multiple environmental stressors on natural ecosystems often make a similar omission88

(58, 59). Other studies describe the biggest challenge in detecting synergy as there89

being more possible combinations of environments than one can study (44, 53, 60), but90

this ignores that studying these combinations in multiple genetic backgrounds would91

be even more difficult. Despite the combinatorics challenge, efforts have been made92

to measure large numbers of drug and environment interactions (58, 60), including93

higher-order interactions (61, 62), which have fueled multidrug treatment strategies94

and evolutionary models (63). But these treatments and models could fail if mutations95

change the way environments interact (57).96

97

Indeed, the literature describes several cases where drugs interact differently across98

different mutants or cell lines (60). For example, the antifungal drugs fluconazole and99

radicicol each administered independently have little effect on the fitness of erg3 mu-100

tants in yeast, but act synergistically to kill these mutants (64, 65). However, numerous101

yeast strains resist fluconazole via mutations such as those to PDR3 and ERG11 that102

are less sensitive to the addition of radicicol (56, 66). Similarly, recent screens for other103

types of drug interactions, e.g., collateral sensitivity, have shown that these interac-104

tions can change dramatically across different drug-resistant mutants (67). Further105

study of the extent to which drug and environmental interactions change across ge-106

netic backgrounds (ExExG), and deeper consideration of how this affects predictive107

models, is needed.108

Figure 1: Comparative visualizations of ExE, GxGxE and ExExG interac-109

tions. (A) ExE interactions are understudied. Search results retrieved from Pubmed110
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on May 3, 2024 demonstrate that publications describing ExE interactions, includ-111

ing GxExE, show substantial disparities when compared to simpler interactions like112

GxG and GxE, and drug interactions, which have significantly greater representation.113

Complete search term results are located in table S1. (B) A cartoon to define ExE.114

Environments 1 and 2 have unique effects on an organism’s phenotype or fitness (light115

orange and light yellow bars). When exposed to both environments simultaneously,116

one might expect that the combined effect is additive (E+E, indicated by gray). Here,117

we define ExE as when the observed effect of combining environments differs from the118

expectation (blue and red bars). (C) A cartoon to define GxGxE. GxGxE interac-119

tions describe how the combined effect of the same two mutations (light pink and dark120

pink bars) changes across two or more environments (top vs bottom panels). In this121

cartoon, the effects of gene 1 and gene 2 are additive in environment A (top panel;122

expectation equals observed), but produce unexpected interactions in environment B.123

Since the interaction between genes (GxG) differs across environments, this is referred124

to as a GxGxE interaction. (D) A cartoon to define ExExG. In general, ExExG inter-125

actions describe how the combined effect of two environments (purple and teal bars)126

changes across two or more genetic backgrounds (top vs. bottom panels). In this127

manuscript, the environments we study are different drugs. Different drug-resistant128

genotypes are exposed to the same single drugs (Drug 1, purple and Drug 2, teal)129

and their combination (Drug combo, gray). In this cartoon, genotype A (top) is re-130

sistant to drug 1 and 2 and thus has a fitness advantage over the ancestor of all the131

drug-resistant mutants in these environments (purple and teal bars). But genotype A132

is unexpectedly sensitive to the combination of these two drugs, losing almost all of133

its fitness advantage (blue bar). This might imply that Drug 1 and drug 2 interact134

synergistically, enhancing one another’s ability to harm cells. However, this is not the135

case for genotype B, with respect to which the drugs interact antagonistically, mean-136

ing they hinder one another’s ability to harm cells, resulting in genotype B having an137

increased fitness advantage over the ancestor (red bar). Since the effect of combining138

drugs (ExE) varies across genotypes, this is referred to as ExExG.139

140

Large-scale study of ExExG has recently become possible due to evolution experi-141

ments that utilize DNA barcodes (56, 68) to create thousands of adaptive microbial142

strains that each possess only a small number of genetic differences and are highly143

tractable, meaning their fitness relative to a common ancestor can be measured in144

many conditions using pooled barcoded competitions. Here, we take a large collection145

of roughly 1,000 antifungal drug resistant yeast mutants evolved using this method and146

ask how often fitness in multidrug environments is predicted by fitness in single drug147

environments (Figure 1D). We find substantial ExE (i.e., multidrug fitness is not148

easily predicted by single drug fitness). We also find substantial ExExG (i.e. the mag-149

nitude and direction of ExE are different across different mutants). We demonstrate150

that single point mutations often alter ExE and that even similar adaptive mutants151

that emerge from the same evolution experiment can have different ExE.152

153

Given the prevalence of ExExG in our data, we next explored some new ways to154

study ExE and ExExG. We applied a GxG model to better predict environmental in-155

teractions for some mutants. We also observed that diverse mutants cluster into groups156

with similar ExE, implying the ExE of some mutants can be used to predict ExE of157

others. In general, our findings call for greater study of ExExG across disciplines,158
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including among scientists interested in modeling the evolution of drug resistance, the159

links from genotype to phenotype (5), how gene expression responds to environmental160

change (36), the construction of microbial communities (69), and how the interaction161

between different forces crafts complex biological systems (6).162

Results163

Environment by environment (ExE) interactions vary across drug pairs164

165

In order to study environment-by-environment interactions, we compared data from166

pooled fitness competitions conducted in 4 environments each containing a single drug167

to data from 4 environments representing all pairwise combinations of these drugs (56)168

(Figure 2A). We asked if multidrug fitness of 1000 drug-resistant mutants was easily169

predicted by fitness in each single drug environment. We used four different models170

(Figure 2B) to predict fitness in the drug combination environments, including the171

simple additive model depicted in Figure 1 and other common models (32, 43, 44,172

52, 70). None of the models we tried accurately predicts fitness in all four drug combi-173

nations. For example, fitness in the combined low rad + low flu environment (LRLF)174

is often predicted by taking the higher fitness of the low rad and low flu single drug175

environments (Figure 2B; leftmost panel; median falls on the zero line when using the176

highest single agent “HSA” model). But this same model tends to overpredict fitness177

in the high rad + low flu environment and underpredict fitness in the low flu + high178

rad environment (Figure 2B; middle panels; medians of HSA model fall farther from179

the zero line). Overall, there appears to be a good deal of ExE interaction. In other180

words, there are many cases where fitness in multidrug environments is not predicted181

by fitness in single drug environments.182

183

Like previous studies, we noticed that the direction of ExE interaction is sometimes184

specific to a multidrug environment (33, 61). For example, most of the models we tried185

tend to overpredict fitness in the high rad + low flu environment (HRLF). In other186

words, this combination of drugs is “synergistic”, meaning it hinders fitness more than187

expected based on the fitness effects of both single drugs (Figure 2B; third panel,188

more points are blue and most boxplot medians fall below the zero line). The opposite189

tendency, “antagonism”, appears more common in the low rad + high flu environment190

(LRHF). Fitness in this drug combination is often greater than expected based on fit-191

ness in the relevant single drug conditions (Figure 2B; second panel, more points are192

red and more boxplot medians fall above the center line). These trends are important193

because identifying synergistic drug combinations (those that are more detrimental194

than expected) could be helpful in treating viral (71), bacterial (72), and fungal in-195

fections (73), and cancers (60). Identifying drug pairs that interact antagonistically196

could be helpful as well by suggesting functional relationships between drug targets197

and strategies for restraining the evolution of drug resistance (32, 33, 61).198

199

But, the major question of this study is: to what extent is synergy or antagonism200

a property of a drug pair? Even for drug pairs in which most of the mutants we study201

have lower fitness than expected, there are a few mutants that have unexpectedly high202

fitness (Figure 2B; there are always a number of red points even when most points203
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are blue). So we next asked to what extent ExE varies across drug pairs versus across204

different mutants.205

206

One additional thing to note from figure 2B is that different models often make207

generally different predictions. For example, the simple additive model tends to over-208

predict fitness in all four environments (Figure 2B; boxplots labeled “Add” are under209

the zero line). However, the average model is more likely to underpredict fitness210

(Figure 2B; boxplots labeled “Avg” are often above the zero line). Many previous211

studies discuss the strengths and weaknesses of these different models (52, 70), there-212

fore, we do not focus on comparing models in this study. Our main focus here is that,213

no matter which model we use, we see mutants that deviate from the prediction in214

both directions, suggesting the presence of ExExG.

215

Figure 2: ExE interactions vary across drug pairs and across mutants. (A)216

We predict fitness in four double drug environments from fitness in four relevant single217

drug environments. (B) Environment-byenvironment interactions are revealed when218

fitness in a double drug environment deviates from the expectation generated by the219

relevant single drug environments. Four different models (horizontal axis) are used220

to calculate expected fitness for each of roughly 1000 mutants per drug pair (LRLF:221

n=1688; LRHF: n=850; HRLF: n=1318; HRHF: n=1023). Points representing each222

mutant are colored blue when a mutant’s fitness is worse than expected (synergy),223

and red when fitness is higher than expected (antagonism). Boxplots summarize the224

distribution across all mutants, displaying the median (center line), interquartile range225

(IQR) (upper and lower hinges), and highest value within 1.5 × IQR (whiskers). (C)226

Some mutants have different ExE interactions than others. The left panel displays227

the fitness of a yeast strain with a mutation in the HDA1 gene. It has lower fitness228

in the LRLF double drug environment than expected based on the simple additive229

model depicted in figure 1. The right hand panel shows a different yeast strain that230
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has higher fitness than expected in the same environment. Error bars represent the231

range of fitness measured across two replicate experiments. Fitness is always measured232

relative to a reference strain, which is the shared ancestor of all mutant strains. (D)233

ExE interactions vary more across mutants than they do across drug pairs. The verti-234

cal axis displays the standard deviation across all four environments (brown) or across235

all roughly 1,000 mutants (green) when ExE is predicted using an additive model.236

237

ExE interactions vary more across mutants than they do across drug pairs238

239

The drug resistant mutants we study were created in previous work by evolving a240

barcoded ancestral yeast strain in 12 different environments, including the 8 in figure241

2A (56). Each mutant yeast strain differs from their shared ancestor by, on average,242

a single point mutation (56, 68). Yet, despite this similarity at the genetic level, there243

is variation in ExE (Figure 2B; see spread of points along vertical axis). To point244

to an example, one of these evolved yeast strains has a single point mutation in the245

HDA1 gene. It has unexpectedly low fitness in the LRLF environment given its fit-246

ness advantage in the relevant single drug environments (low rad: 5uML Rad and low247

flu: 4ug/mL Flu) (Figure 2C; left panel; error bars reflect range across 2 replicates).248

However, another (unsequenced) one of these evolved mutants has unexpectedly high249

fitness in this environment (Figure 2C; right panel; error bars reflect range across 2250

replicates). The fitness of all mutants is measured relative to a reference strain, which251

is their shared ancestor (56).252

253

While our previous work focused on 774 mutants with high quality fitness measure-254

ments in all 12 environments, here we are able to expand that collection. We do so255

by allowing each drug pair to have a unique dataset consisting of all mutant strains256

for which fitness was robustly measured in the relevant double and single drug condi-257

tions, plus a control condition with no drugs (LRLF: n=1688; LRHF: n=850; HRLF:258

n=1318; HRHF: n=1023). These datasets include 810 overlapping mutants for each259

of which we calculated ExE in all four drug pairs.260

261

Overall, we found that ExE interactions vary at least as much across genotypes as262

they do across drug pairs. When using a simple additive model, the median amount of263

ExE varies across environments from -1.35 in HRLF to -0.3 in LRHF, with a standard264

deviation across all 4 drug pairs of 0.52 (Figure 2D; leftmost bar). This standard265

deviation is smaller than the standard deviation across mutants within each environ-266

ment, which ranges from 0.8 to 1.05 (Figure 2D). In sum, these results suggest that267

ExExG is prevalent. Our follow-up analyses provide additional evidence that ExExG268

indeed reflects how ExE varies across different genes and strains.269

270

Mutations in different genes have different ExE interactions271

272

Of the 810 drug resistant yeast strains present across all environments we survey,273

53 have been previously sequenced at high enough coverage to identify the single nu-274

cleotide mutations that likely underlie drug resistance (56). A few genes appear to275

be common targets of adaptive mutation such that we can ask whether mutants in276

the same gene tend to have similar ExE interactions. For example, 35/53 sequenced277

drug-resistant strains have different mutations to either the PDR1 or PDR3 paralogs.278
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Other genes, such as SUR1, GBP2 and IRA1, were also found to be mutated in multi-279

ple different strains, though far less frequently than PDR1/3. Mutations to the same280

gene tend to have similar effects on fitness (Figure 3 A–D; error bars reflect standard281

deviation across all strains with mutations to a given gene).

282

Figure 3: A few mutations can change a drug pair from having a synergistic283

to an antagonistic effect. (A – D) Fitness advantages of strains with mutations284

in either PDR1/3 (n=35), IRA1 (n=3), SUR1 (n=2), GPB2 (n=2), relative to unmu-285

tated reference strains. Light gray bars represent the average fitness of each class of286

mutants in single drug environments, dark gray bars represent fitness predictions in287

double drug environments made using an additive model, and colored bars represent288

average fitness in double drug environments (colored blue when fitness is lower than289

prediction and red when fitness exceeds the prediction). Colors lighten when within290

0.5 of the expected value. The type and magnitude of ExE interaction appears to be291

similar across mutations to the same gene, but different across mutations to different292

genes. Each row corresponds to one of the double drug environments we study, in-293

cluding (A) LRLF, (B) LRHF, (C) HRLF, (D) HRHF. (E) ExE for 774 mutants in294

each studied drug combination broken down by cluster assigned in previous work (56).295

Mutants are colored by their type of ExE interaction. Here, mutants that experience296

synergistic interactions are noted with a blue point while antagonistic interactions are297

noted with a red point. Colors lighten as ExE approaches zero. Sequenced mutants298

from A-D are shown by colored diamonds. Boxplots summarize the distribution across299

all mutants, displaying the median (center line), interquartile range (IQR) (upper and300
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lower hinges), and highest value within 1.5 × IQR (whiskers).301

302

Overall, we find that mutations to the same gene tend to have similar ExE inter-303

actions (Figure 3A – D). For example, the 35 PDR1/3 mutants tend to have lower304

fitness than expected by an additive model in the LRHF environment (Figure 3A;305

left), but not to the same degree as do IRA1 mutants, some of which actually have a306

slight disadvantage in that double drug environment despite being adaptive in both307

single drug conditions (Figure 3A; middle). And in a different double drug environ-308

ment, the fitness of all evolved yeast strains with mutations to either PDR1 or PDR 3309

is fairly well predicted by an additive model (Figure 3B; left). But an additive model310

dramatically underestimates the fitness of mutations to the SUR1 gene in the same311

environment (Figure 3B; right). Across all four double drug environments and all 4312

common targets of adaptation we sequenced, the type and magnitude of ExE interac-313

tions depends on which gene is mutated (Figure 3A – D).314

315

Our observation that ExE varies across mutants does not necessarily arise because316

we collected adaptive mutants across 12 different selective pressures (56). Mutants317

that emerge in response to the same selection pressure can have different ExE. For ex-318

ample, IRA1 and GPB2 are both negative regulators of glucose signaling, and both are319

common targets of adaptation in response to glucose limitation (56, 74, 75). Here, we320

show that these genes demonstrate different ExE interactions. IRA1 mutants perform321

worse than expected in LRHF, while GPB2 mutants perform better than expected322

given their meager fitness advantages in the relevant single drug conditions (Figure323

3B).324

325

In terms of synergy vs antagonism, our results suggest that a small number of mu-326

tations can change a drug combination from having a synergistic to an antagonistic327

effect. For example, figure 2C shows a case where LRLF acts synergistically on a328

yeast strain harboring a single nucleotide mutation to the HDA1 gene, but acts an-329

tagonistically on a different evolved yeast mutant. Similarly, figure 3 shows cases330

where a drug pair changes from having a synergistic to an antagonistic effect across331

different mutants. The extreme sensitivity of synergy to the effect of single mutations332

has important implications for the development of multidrug strategies that rely on333

drugs having synergistic or antagonistic effects.334

335

Some mutants may predict the ExE of other mutants336

337

The above observations highlight the prevalence of ExExG. They beg questions about338

to what extent there are trends that can help us predict ExE of some mutants from339

other mutants. These observations also beg questions about the underlying cellular340

mechanisms that cause ExE interactions to change from one mutant to the next. Both341

types of questions are related because mutations that affect drug resistance through342

similar cellular mechanisms may have similar ExE, such that understanding the mech-343

anisms underlying ExE may help predict its direction and magnitude.344

345

We previously showed that many (774) of the yeast strains we study cluster into a346

small number of groups (6) that each may affect fitness via distinct cellular mech-347

anisms (56). Here, we find that mutants from the same cluster tend to have more348
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similar ExE (Figure 3E). For example, the two yeast strains with mutations to SUR1349

(Figure 3) clustered together with 107 other strains that have fitness advantages in low350

(but not high) concentrations of fluconazole (Figure 3E; cluster 1) (56). On average,351

ExE interactions across these 109 yeast strains are predicted by the behavior of the352

SUR1 strains in figure 3; they tend to behave synergistically in drug combinations353

containing low flu (Figure 3E; cluster 1 in LRLF HRLF), and antagonistically in354

combinations containing high flu (Figure 3E; cluster 1 in LRHF HRHF). Similarly,355

31 of the 35 yeast strains with mutations to either PDR1 or PDR3 clustered together356

with 127 other yeast strains that have fitness advantages in all single and double drug357

environments (Figure 3E; cluster 3) (56). On average, ExE interactions across these358

strains are predicted by the behavior of the PDR strains in figure 3; they are sometimes359

synergistic (Figure 3E; cluster 3 in HRLF HRHF). This synergism (i.e., mutants are360

less fit than predicted by an additive model) seems consistent with the mechanism361

underlying drug resistance in PDR strains. PDR1 and PDR3 regulate a pump that362

eliminates drugs from cells (76, 77). Perhaps the rate at which this pump removes363

drug from cells does not increase linearly as more drug is added, therefore an additive364

model overestimates fitness in double drug environments.365

366

Considering ExExG suggests a nuanced model for predicting ExE367

368

Modeling ExE in the same way that genetic interactions are modeled may improve369

predictions. For example, we found it surprising when some mutants that resisted370

two single drugs lost their fitness advantage when those single drugs were combined371

(Figure 4A; left). However, this loss of fitness is sometimes predictable when we372

modify GxG (i.e.epistasis) models to study ExE (Figure 4; left side). The key is that373

GxG models incorporate information from a wildtype individual (Figure 4B). We374

can modify this GxG framework to model ExE by incorporating information from an375

environment lacking drugs. This lets us model the “effect” of each single drug relative376

to the no drug condition similarly to how models of GxG model the “effect” of each377

single mutation relative to the wildtype (12) (Figure 4B – C). Once this effect is378

measured, it creates an expectation for how addition of this drug will modify fitness379

(Figure 4C; purple diamond). We call our model the “Drug Effect” (DE) model be-380

cause, like the GxG framework upon which it is based, it assumes that a perturbation381

(e.g., a drug) has a static effect on a given mutant’s fitness. One limitation however, is382

that to implement this DE model, one must have fitness measurements not only from383

single drug and double drug conditions, but also in conditions lacking any drug.384

385

To better illustrate the DE model, consider that the decisive difference between the386

mutants in figure 4A left and right is their fitness in conditions lacking any drug. The387

mutants on the left have a fitness advantage in conditions lacking drug (Figure 4A;388

no drug). While the mutants on the left also have a fitness advantage in each single389

drug, the “effect” of each single drug on fitness is actually negative. In other words,390

these drugs reduce the fitness advantage. The DE model thus correctly predicts that391

the effect of combining both drugs will be a further reduction in fitness (Figure 4C;392

left) while our original additive model fails to make an accurate prediction (Figure393

4A; left). But the mutants on the right have no advantage in the no drug environ-394

ment, and the “effect” of adding each single drug is actually to improve their relative395

fitness (Figure 4A; right). Here, the DE model performs similarly to our original396
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additive model in predicting fitness in the multidrug environment (Figure 4; right).397

An important caveat is that, although the DE framework makes reasonable fitness398

predictions for these two drug pairs, it fails in many other environments and for many399

other genotypes, again highlighting the prevalence of ExExG (Figure S1).400
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Figure 4: Classical GxG framework inspired a new “drug effect” (DE) model401

that accurately predicts the behavior of some drug resistant mutants in402

double drug environments. (A) Our original additive model (“E+E”) makes poor403

fitness predictions for the 145 mutants in the left panel, but not for the 158 mutants in404

the right panel. Another key difference is that the mutants in the left panel have fitness405

advantages over the reference strain in the no drug environment, while the mutants406

in the right panel do not. The mutants in each panel clustered together in previous407

work based on their fitness in 12 environments (56). Dark gray bars represent average408

fitness in no drug, light gray bars represent average fitness in single drug environments,409

medium gray bars represent fitness predictions in double drug environments made us-410

ing our original additive model, and colored bars represent average fitness in double411

drug environments. Error bars represent standard deviation. (B) Classic GxG addi-412

tive models are different from the additive models in panel A and in earlier figures.413

GxG models add together the effect of each single mutation to predict the fitness of414

the double mutant, rather than adding together the fitness of each single mutant (12).415

The left panel provides an example where the wildtype (ab) has a fitness advantage416

in environment 1. Gaining mutation A or B results in decreased fitness. Subtracting417

the effect of both A and B allows for the correct prediction of the double mutant’s418

(AB) fitness in environment 1. The right panel presents a second environment where419

the wildtype fitness is improved by mutations A and B. Here adding the effect of both420

A and B results in accurate prediction of the double mutant’s fitness. (C) Repur-421

posing the GxG model in panel B to predict fitness results in accurate predictions422

for the mutants described in panel A. Boxplots summarize the distribution across all423

mutants, displaying the median (center line), interquartile range (IQR) (upper and424

lower hinges), and highest value within 1.5 × IQR (whiskers). No drug is shown in425

dark gray, single drugs in blue/orange and double drugs in pink/purple. The effect426

of each drug is represented by a colored line matching that of the single drug. The427

average prediction of the DE model for both groups of mutants is shown by a purple428

diamond.429

430

Different mutants have different drug dose-response curves431

432

One major model for predicting ExE that we do not utilize in figure 2B (or else-433

where) is Loewe additivity. This model allows for non-linear dose-response curves434

when predicting how environments interact. Consider the simplest case where the two435

environments in question are actually two different concentrations of the same drug.436

The effect of combining these environments might not be predicted by an additive437

model if the response curve to this drug is non-linear (Figure 5A). Just as nonlinear-438

ities can lead to the appearance of ExE, they also commonly result in GxG (Figure439

5B) (12).440

441

We cannot use Loewe additivity to capture nonlinearities because some of our mu-442

tants have extremely different dose-response curves than others. For example, we see443

a distinct class of mutants for which relative fitness increases with the concentration of444

fluconazole (Figure 5C), another class for which fitness decreases with the concentra-445

tion of fluconazole (Figure 5D), and still another class for which fitness is similar in446

low and high fluconazole conditions (Figure 5E). No single non-linear dose-response447

curve can describe how fitness changes upon combining two different concentrations of448
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fluconazole for all of these mutants. Instead, we again conclude that multiple different449

models of how environments interact are required to capture the behavior of these450

diverse mutants (in other words, we conclude that there is ExExG).451

452

One question that may arise is: to what extent does our decision to study relative453

fitness advantages affect our results. Many previous studies on ExE and GxG interac-454

tions focus on relative fitness (13, 32, 33, 78), e.g. by measuring growth relative to a455

condition without drugs (Figure 5A) and growth relative to a strain without mutations456

(Figure 5B). In our study, we did not measure growth curves for each mutant, but457

instead conducted pooled fitness competitions (56), calculating fitness advantages of458

all mutants relative to an unmutated reference strain, and comparing these advan-459

tages across environments. This can make it harder to interpret the drugdose response460

curves we see in figures 5C – E. For example, the increase in relative fitness advan-461

tage across conditions observed in figure 5C may indicate that these mutants perform462

better as the drug concentration increases. Alternatively, their growth rate might be463

insensitive to changes in the drug concentration, and their increased fitness advantage464

could reflect the worsening performance of the unmutated reference strain. Indeed, we465

find that the latter is true. When we previously measured the growth rates of three466

isolates each with a mutation to either the PDR1 or PDR3 genes, we find that these467

mutants have similar growth curves in a range of fluconazole concentrations (Figure468

5F) (56). On the other hand, the three isolated mutants depicted in Figure 5D with469

mutations to either SUR1 or UPC2 perform more poorly as fluconazole concentrations470

increase (Figure 5G) (56). Whether models seeking to predict how microorganisms471

will respond to drug treatment should focus on absolute measures of performance,472

such as the growth rate of isolated cultures, or relative measures of fitness, such as473

the advantage in a pooled competition, is a question for another study, though both474

seem very important (56, 79–81). The salient point, with respect to this study, is that475

these two groups of mutants behave differently, in both their absolute (Figure 5F–G)476

and relative fitness (Figure 5C– D), in their responses to increasing fluconazole con-477

centrations (Figure 5) and their responses to multidrug environments (Figure 3),478

signifying the presence of ExExG.479
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Figure 5: Different drug-resistant mutants have different drug dose re-480

sponses. (A–B) Toy examples showing how fitness predictions made assuming an481

additive model can fail when nonlinearities are present. (C–E) A simple nonlinear482

model cannot account for ExE in these data because different mutants have differ-483

ent drug dose responses. Each panel captures unique mutants; sequenced mutants484

are highlighted with diamonds corresponding in color to those in figure 3. Boxplots485

summarize each distribution, displaying the median (center line), interquartile range486

(IQR) (upper and lower hinges), and highest value within 1.5 × IQR (whiskers). (F)487

Three isolated mutants from panel C have similar growth curves in multiple flucona-488

zole concentrations. (G) Three isolated mutants from panel D grow better in low489

fluconazole and increasingly worse as the drug concentration increases.490

Discussion491

In this study, we explored ExE interactions (i.e. drug interactions) in a large popula-492

tion of drug resistant yeast strains and found that different strains often have different493

ExE, meaning that ExExG is common. In other words, the way two drugs interact,494

whether their combined effect is stronger or weaker than the sum of their individual495

effects, depends on genotype. This means that we may require multiple different mod-496

els to predict the way the fitness of a collection of mutants will respond to combined497

drug treatment. For example, three different models are needed to predict how the498

fitness of three different groups of mutants responds to increased fluconazole concen-499

trations (Figure 5 C – E). And our DE model predicts the fitness decrease observed500

in multidrug conditions that was unexpected under a more simplistic additive model501

(Figure 4), but does so only for some mutants (Figure S1). There are hints of pre-502

dictability in that some drugresistant yeast strains, such as those with mutations to503

the same genes, tend to have similar ExE interactions (Figure 3). In sum, this work504

suggests that in order to make better predictions about ExE interactions, including505

drug interactions, it may be necessary to use models that consider genotype.506
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507

Is it useful to create a new term, “ExExG”?508

509

When building predictive models of interactions, it may be helpful to consider when it510

is useful to codify contextual perturbations as genetic vs. environmental or otherwise?511

On one hand, classifying which studies focus on GxG, GxE, GxGxE, ExExG, etc, is512

tedious and can be confusing (but we hope Figure 1 will help). Further, classifying513

based on these factors can create a language barrier whereby studies focusing on drug514

interactions are disparate from those focusing on genetic interactions. Here we show515

that communication between these fields is important by demonstrating that classi-516

cal models of genetic interactions can be helpful in understanding drug interactions517

(Figure 4). Finally, genetic and environmental perturbations are indeed similar in518

that they can both change the way genotype maps to phenotype, therefore, perhaps519

they should be modeled in the same ways simply as “perturbations” that affect phe-520

notype, or as “parcels of information” that are interpreted by cells and manifest in521

phenotypic outcomes (11). On the other hand, when asking more specific questions522

pertaining to specific genetic or environmental factors, distinguishing contexts is im-523

portant.524

525

Why study ExE and ExExG?526

527

A key reason to study ExE (or other) interactions is a desire to identify rules op-528

erating in biological systems that allow for better predictions of their behavior (e.g.,529

phenotype) based on different factors. For example, if we knew that two drugs interact530

synergistically, we could predict that together they would be more effective for treating531

infections. Several modern paradigms aim to add rhyme and reason to even nonlinear532

interactions. One perspective, labeled “global” or “nonspecific” epistasis, posits that533

the even non-additive interactions between perturbations or parcels can follow a math-534

ematical pattern, which offers hope that we might one day truly predict how systems535

work (12, 82–84).536

High throughput technologies that survey genotype and phenotype with increasingly537

fine levels of detail could help resolve the complexity and caprice of biological systems538

in the form of basic rules. But in biology and other disciplines, we know that rules often539

do not apply to every circumstance. One might even suggest that biology has become540

a field defined by an understanding of the context-dependence of its basic axioms (5).541

In this study, we find that rules governing how drugs interact (and models based upon542

those rules) do not apply to all mutants. If this departure from the convention were543

isolated to a small group of mutants, then perhaps elucidating general rules would544

still be possible or useful. But if each mutant needs its own rule to describe ExE545

interactions, then the generality of these principles can be called into question. On the546

other hand, even in cases where interactions undermine neat predictions, some previous547

work suggests that not all aspects of a system must be well known or behaved in order548

to develop a reasonably predictive set of rules (31, 57, 62, 74, 85). Our study suggests549

that more work is needed to understand the complexity of biological systems (56, 74,550

86) and the extent to which rules can generate predictions that capture their behavior.551
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Methods552

Data acquired from experimental evolutions and fitness competitions553

554

All data presented in this work was collected as previously described in (Schmidlin et555

al., 2024). Briefly, 300,000 barcoded yeast lineages were evolved for 7 weeks in 10556

drug conditions and 2 controls. From these evolutions, 21,000 ( 2k from each evolution)557

colonies were selected for a fitness remeasurement experiment. Barcode sequencing was558

performed every 48 hours and log-linear changes in barcode frequencies over 4 time559

points were used to infer fitness. From this subset, a final collection of 774 lineages,560

characterized by greater than 500 barcode reads from each of the 12 environments,561

were analyzed from this previous study. However, there are additional lineages that562

have greater than 500 barcode reads/condition if you require fewer conditions. Since563

we were interested in ExE interactions, we created four improved datasets that con-564

tained lineages present in the no drug control, both single drugs that made up the565

combination and the double drug combination. Datasets were improved as follows:566

LRLF: n=1688; LRHF: n=850; HRLF: n=1318; HRHF: n=1023.567

568

Definitions for drug interaction models569

570

Several models were used to quantify drug interactions and are defined as follows:571

1. Additive Model (E+E): The fitness of each lineage in the defined drug combination572

is determined by the sum of the relative fitness values in drug environment 1 and drug573

environment 2. For our work here, this constitutes the expected model.574

575

2. Bliss Independence Model (Bliss): Prior to calculation, each fitness value was con-576

verted to a percentage based on the maximum observed fitness value in the respective577

drug combination (DC). The formula is as follows: (Fitness in drug environment 1 +578

fitness in drug environment 2 - (Fitness in drug environment 1* fitness in drug envi-579

ronment 2))*maxDC.580

581

3. Highest Single Agent Model (HSA): This model reports the maximum fitness value582

among the single drugs present in the combination.583

584

4. Average Model (Avg): The model fitness in the drug combination is represented as585

an average between the two single drugs.586

587

5. Drug Effect Model (DE): This model first finds the fitness value for a single drug,588

then from this value subtracts the fitness of the lineage in no drug from the fitness589

of the lineage in the second single drug. The result is the prediction for the drug590

combination.591

All code is available on OSF under the project: Environment by environment interac-592

tions (ExE) differ across genetic backgrounds (ExExG).593

594

Quantifying ExE for 774 lineages in four drug combinations595

In order to quantify the amount of ExE captured in our dataset, we first estimated the596

fitness of each lineage in the four drug combination environments using log linear slope597

as previously described (Schmidlin et al., 2024). Five predictions, one for each model598
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above, were made for each lineage in the dataset. Once predictions were calculated,599

they were subtracted from the known fitness. Differences that did not equal 0 (truth600

minus prediction) were considered to have environment by environment interactions601

and are reported as ExE.602
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SUPPLEMENT902

Table 1 | Pubmed search terms and results for Figure 1A903

Search term on Pubmed (3May23) Number of articles* Earliest mention

For GxG Total: 11,565 1951
"epistasis" 10,531

"gene-by-gene" 675
’GxG" 264

"genotype-by-genotype" 7
For GxE Total: 3048 1977

"genotype-by-environment" 1355
"GxE" 911

"gene-by-environment" 782
For ExE Total: 11 2012
"ExE" 874**

"environment-by-environment" 11
For GxGxE Total: 4 2018

"gene-by-environment-by-environment" 2
"genotype-by-environment-by-environment" 1

"GxGxE" 1
For Drug-drug interaction Total: 4 1897

"drug drug interaction" 526,630

904

* Search results do not take into account articles that are present in multiple search terms.905

** "ExE" resulted in 874 articles, however, the vast majority of these correspond to terms906

not related to environment-by-environment interactions such as endurance exercise and exe907

genes.

908

Figure S1: The DE model predicts ExE for some mutants but not others.909
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