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Abstract 
 
Pain is a complex experience that remains largely unexplored in naturalistic 
contexts, hindering our understanding of its neurobehavioral representation in 
ecologically valid settings. To address this, we employed a multimodal, data-driven 
approach integrating intracranial electroencephalography, pain self-reports, and 
facial expression quantification to characterize the neural and behavioral correlates 
of naturalistic acute pain in twelve epilepsy patients undergoing continuous 
monitoring with neural and audiovisual recordings. High self-reported pain states 
were associated with elevated blood pressure, increased pain medication use, and 
distinct facial muscle activations. Using machine learning, we successfully decoded 
individual participants' high versus low self-reported pain states from distributed 
neural activity patterns (mean AUC = 0.70), involving mesolimbic regions, striatum, 
and temporoparietal cortex. High self-reported pain states exhibited increased low-
frequency activity in temporoparietal areas and decreased high-frequency activity in 
mesolimbic regions (hippocampus, cingulate, and orbitofrontal cortex) compared to 
low pain states. This neural pain representation remained stable for hours and was 
modulated by pain onset and relief. Objective facial expression changes also 
classified self-reported pain states, with results concordant with electrophysiological 
predictions. Importantly, we identified transient periods of momentary pain as a 
distinct naturalistic acute pain measure, which could be reliably differentiated from 
affect-neutral periods using intracranial and facial features, albeit with neural and 
facial patterns distinct from self-reported pain. These findings reveal reliable 
neurobehavioral markers of naturalistic acute pain across contexts and timescales, 
underscoring the potential for developing personalized pain interventions in real-
world settings. 
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Introduction 
 
Pain disorders represent a major burden of disease and severely reduced quality of 
life1. Developing a comprehensive understanding of pain processing and 
dysregulation is essential for informing diagnosis, monitoring, and treatment 
strategies. Pain is a multifaceted experience that involves the integration of 
distributed brain networks responsible for sensory, affective, and cognitive 
processing2. Much of our current knowledge about central pain processing stems 
from neuroimaging studies examining healthy individuals exposed to transient, 
experimentally induced painful stimuli3–5. These efforts identified neural markers of 
physical pain3,6, pain-related negative affect4,7, and pain-induced facial expressions5. 
While the sensory aspects of painful stimuli appear encoded in early sensory 
networks3,4, the generalized negative affect associated with pain is represented in a 
distributed set of regions, including the thalamus, orbitofrontal cortex (OFC), insula, 
and anterior cingulate cortex (ACC)3,4. However, the extent to which experimentally 
induced pain accurately represents the heterogeneous and persistent pain 
experienced in everyday life remains an important question8. For example, while 
tonic pain induced by capsaicin may better mimic natural pain compared to phasic 
thermal stimuli9, the extent to which experimental stimuli mirror real-life pain 
experiences remains uncertain. Therefore, studying pain within naturalistic and 
ecologically valid settings is important to elucidate the similarities and differences 
between experimental and naturalistic pain states, advancing our understanding of 
pain and facilitating the translation of this knowledge into potential therapeutic 
interventions. 
 
Behaviorally, facial expressions serve as reliable indicators of pain across 
mammalian species10,11. These automatic changes in facial behavior likely stem from 
the complex integration of nociceptive, sensory, cognitive, and affective processes12. 
Moreover, pain-related facial expressions are thought to encode multidimensional 
pain experiences and may in part reflect activity within the spino-thalamo-cortical 
network13. While much research has focused on facial expressions in response to 
experimental pain, there is increasing recognition of the value in understanding how 
these dynamics unfold during naturalistic acute pain. This understanding is 
particularly valuable for aiding pain recognition in non-communicative individuals, 
and for characterizing facial expressions as a meaningful output channel of pain-
related neural activity in everyday scenarios.  
 
The inpatient epilepsy monitoring unit (EMU) provides a unique window into studying 
the neurobehavioral underpinnings of naturalistic acute pain states. Patients 
undergoing invasive monitoring for seizure localization often encounter varying 
degrees of acute pain during their stay14. Two forms of acute pain can be assessed: 
1) patients' self-reported assessments of their current or ongoing acute pain can be 
quantified using routine verbal rating scales15 and 2) episodes of momentary pain 
observable through behavioral cues such as changes in facial expressions and 
vocalizations15. Notably, intracranial electroencephalography (iEEG) recorded in the 
EMU offers exceptional spatiotemporal resolution, capturing direct neuronal activity 
over prolonged periods ranging from days to weeks16. Simultaneous video recording 
allows for the concurrent quantification of facial expressions alongside neural 
recordings on similar timescales. While iEEG has facilitated the identification of 
precise brain networks responsive to thermal pain stimuli17, and chronically 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2024. ; https://doi.org/10.1101/2024.05.10.593652doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

implanted electrodes have demonstrated the involvement of the OFC and ACC in 
decoding self-reported chronic pain18, a knowledge gap persists regarding the neural 
and facial behavioral dynamics underlying variations in naturalistic acute pain states. 
 
Employing a naturalistic, data-driven approach, we evaluated the two forms of acute 
pain in the EMU setting: 1) longitudinal acute pain as measured by pain self-reports 
and 2) transient episodes of momentary pain as identified by observational cues. 
First, we delineated the physiological and behavioral characteristics of self-reported 
pain states. High pain states were characterized by higher blood pressure, more 
frequent pain medication use and differential activation of facial muscles. Using 
spectro-spatial features derived from intracranial recordings, we then constructed a 
binary classifier capable of decoding self-reported pain states. Classifier 
interrogation revealed that pain decoding relied upon a distributed pattern of brain 
activity involving mesolimbic regions, thalamus, and temporoparietal cortices. 
Classifier output was temporally stable in between similar self-reported pain states 
and was sensitive to pain onset or analgesia of pain. Pain decoding based on 
objective facial behaviors performed worse but was positively correlated with 
electrophysiological decoding performance. We then extended these findings to 
transient episodes of momentary pain, demonstrating that momentary pain can be 
reliably decoded from periods of neutral affect using either neural or facial features. 
Notably, the neural and facial markers of momentary pain were distinct from those of 
self-reported pain states. Taken together, we find that distributed brain activity forms 
a reliable representation of naturalistic acute pain states and is closely mirrored by 
changes in facial dynamics.  
 
Methods 
 
Participants  
 
The study included 12 human participants (5 females, ages 27-58; Supplementary 
Table 1) who underwent surgical implantation of intracranial electroencephalography 
(iEEG) recording electrodes for clinical seizure localization. All participants provided 
informed consent, monitored by the local Institutional Review Board, in accordance 
with the ethical standards of the Declaration of Helsinki. The decisions regarding 
electrode implantation, targets, and duration were made entirely based on clinical 
grounds, independent of this investigation. Participants were informed that their 
involvement in the study would not affect their clinical treatment, and they could 
withdraw at any time without compromising their care. While no statistical method 
was used to predetermine the sample size, the final sample size is comparable to 
contemporary iEEG literature 19–21.  
 
Pain self-report 
 
Participants were routinely asked by the nursing staff what level of pain they are 
experiencing currently from a scale of 0 to 10, with 0 being no pain and 10 being the 
most intense pain ever felt. The median frequency of pain reporting for each 
participant was every two hours (Range: 1.5 – 2.5 hours; Supplementary Table 2). 
The pain score, painful body site, and the time of the pain report were documented. 
If more than one body site was painful, then additional pain scores were recorded for 
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each body site. In this case, an average of all pain scores across the painful body 
sites was taken to obtain a mean pain score for that period.  
 
Participant Inclusion Criteria 
 
We selected participants for the study who had (1) at least thirty measurements of 
self-reported pain (2) the median pain score was not zero, which would indicate a 
mostly pain-free monitoring period and precludes further analysis, (3) a pain score 
range of at least 50% of the total possible pain range during the monitoring period, 
thereby providing sufficient variation in self-reported pain scores, and (4) absence of 
large structural abnormalities (encephalomalacia, mass lesion, hematoma) as 
identified on MRI. Across participants, the mean range of pain scores was 74% of 
total possible pain range. (Supplementary Table 2).  
 
Pain medications  
 
In addition to pain scores, nursing staff routinely asked participants if they would like 
to take as-needed pain medication. Pharmacological interventions administered 
included: acetaminophen, hydromorphone, gabapentin, ketorolac, lidocaine patch, 
acetaminophen-hydrocodone, oxycodone, acetaminophen-oxycodone, and tramadol. 
The names of medications, dosages, and administration times were documented. 
Alternatively, non-pharmacological approaches to pain management could be 
utilized at the nurses' discretion or participants' requests, including repositioning, ice 
packs, heat packs, or verbal reassurance. 
 
Physiology 
 
As part of routine care, heart rate, respiratory rate, and blood pressure were 
measured every 4 to 6 hours. Physiological measurements taken within 5 minutes of 
pain assessments were matched. Any physiological measurements falling outside 
this 5-minute window were excluded from the analysis. 
 
Electrode registration and anatomical parcellation 
 
Electrode location in 3D space was obtained from post-implant CT co-registered with 
the subject’s pre-operative MRI19,20. Anatomic location of each contact was 
determined using FreeSurfer-based automated parcellation, as described 
previously22. Electrodes were further anatomically categorized into the following 
regions: parietal cortex, lateral and basal temporal cortex, hippocampus, amygdala, 
thalamus, lateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex, 
striatum and the insular cortex. Electrodes located outside of the brain were 
excluded. Electrodes located in the occipital cortex were also excluded due to 
infrequent sampling. For electrode visualization, the FreeSurfer average brain was 
used with coordinates in standard Montreal Neurologic Institute (MNI) space. 
 
Data acquisition and signal preprocessing 
 
Using stereoelectroencephalography (sEEG), neural recording from implanted depth 
electrodes (Adtech Medical; centre-to-centre contact spacing of 3 mm) were 
sampled at 1024�Hz (Nihon Koden). sEEG preprocessing and analysis were 
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performed using FieldTrip23. Preprocessing consisted of notch filtering, re-
referencing, and bandpass filtering. Specifically, a fourth order notch filter was first 
used to attenuate line noise (60, 120, and 180�Hz), followed by a laplacian re-
referencing scheme to minimize far-field volume conduction24. Delta (1–4�Hz), theta 
(4–8�Hz), alpha (8–12�Hz), beta (15–25�Hz), gamma (25–70�Hz) and high-
gamma (70–170�Hz) signals were obtained by using an 8th order zero-phase IIR 
Butterworth filter25. The filtered signals were subsequently downsampled to 100 Hz 
for further processing.  
 
Behavioral annotation of momentary pain episodes 
 
Raw video footage was reviewed by two evaluators for episodes of momentary pain. 
All footage review was completed during periods of wakefulness. Momentary pain 
were considered present if any of the following observational cues were met: 1) 
facial grimace, 2) verbal statements reflecting pain such as “ouch”, “that really hurts”, 
3) defensive behaviors such as bringing a hand to the site of pain and 4) pausing an 
ongoing activity due to pain15. No minimum duration was specified. Periods of 
‘neutral’ affect were also labeled for comparison. Neutral periods were defined as 
any periods where there was absence of any affective facial expressions (happy, 
sad, cry), and absence of any of the above criteria for painful behaviors. For both 
momentary pain and neutral events, if the start and the end time of the painful or 
neutral periods were different between the two evaluators, then the average time 
was taken. If a particular event was only labeled by one evaluator, then this event 
was re-reviewed by the other evaluator to reach consensus. A minimum of five 
momentary pain events was required for each participant to be included for 
subsequent analysis.  The mean number of momentary pain events identified was 20 
with a mean duration of 18s (Supplementary Table 3). Only participants #5 and #10 
did not exhibit the minimum number of momentary pain events, and they were 
excluded from this analysis.  
 
Acute pain state classifier construction, training, and evaluation 
 
To investigate whether intracranial activity can predict self-reported pain states, we 
constructed a pain decoder based on spectro-spatial features. We primarily 
approached this as a binary classification problem by dividing pain reports into low 
versus high pain states on an individual participant level based on the median pain 
score.This was motivated by the observations that 1) people provide self-report 
ratings on a non-linear scale 26, 2) decoding of non-binary linear pain distributions 
performed much worse than binary pain classes in a cohort of chronic pain patients18 
and 3) current clinical systems utilize a dichotomized signal threshold for closed loop 
stimulation paradigms (Medtronic Activa PC+S, Medtronic Percept). We constructed 
the spectro-spatial intracranial feature set by obtaining the log spectral power (root 
mean square) of the filtered signals for each channel and frequency band 5 minutes 
prior to the pain report. We evaluated signals prior to the report to avoid the 
confound of the neural signal being altered while participants reflected on their pain 
level. The 5-minute duration was chosen as a reasonable timeframe in which pain 
level is not expected to fluctuate dramatically. Due to the large number of potential 
spectro-spatial features present in the data (e.g., channels and powerband 
combinations), we employed Elastic-Net regression, a hybrid of ridge regression and 
lasso regularization favored in the presence of highly correlated variables, which is 
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often the case with intracranial recordings27. To avoid data leakage while optimizing 
hyperparameters in the feature pruning process, we used a nested k-fold cross-
validation (CV) scheme (Figure 2B). The number of folds, k, was either five or ten, 
ensuring that each fold contained at least five observations (pain measurements).In 
this scheme, data is split into a training set comprising k-1 fold of spectro-spatial 
features and pain state and a test set of the remaining fold. We used SMOTE 
(Synthetic Minority Over-sampling Technique) to upsample the class with fewer 
observations when present to account for class imbalance in the training set28. As a 
part of the inner k-fold CV scheme, we optimized the regularization strength of the 
Elastic-Net model. The optimal model based on the training set was then evaluated 
in the left-out test set. This process was repeated k times as a part of the outer k-fold 
CV scheme. Finally, a bootstrap was performed to allow for performance stability by 
repeating the process with random selection of cross validation indices each time for 
a total of 100 bootstraps. The null distribution is constructed by repeating the 
process with the pain label shuffled. Area under the curve (AUC) and accuracy were 
obtained as performance measures. As an ancillary analysis, we also trained 
multivariate linear models to predict continuous pain scores using the same k-fold 
CV scheme, with Elastic-Net models trained on continuous pain outcomes rather 
than binary outcomes. Pearson's correlation value between actual and predicted 
pain scores was used as the performance measure. 
 
Neural classifier feature analysis 
 
To evaluate the importance of iEEG spectro-spatial features, we analyzed the model 
coefficients obtained from the Elastic-Net trained models. Each feature's coefficient 
can be either a non-zero number, indicating its inclusion in the model, or zero, 
indicating its exclusion. We sorted the mean feature coefficients from all 100 runs in 
descending order and estimated the change point in the cumulative summation 
curve based on mean and slope using the 'findchangepts.m' function in Matlab. The 
cumulative set of features leading up to the change point were considered important. 
Furthermore, we assessed feature stability by determining the number of times each 
feature was selected across all 100 model runs. To ensure the robustness of the 
selected features, we compared the distribution of feature coefficients from the 
trained models with those from permuted models. Features whose coefficient 
distributions did not differ significantly between the trained and permuted models 
were discarded. This procedure was used previously to analyze intracranial neural 
features in the context of behavioral state classification analysis21. To investigate the 
relationship between spectro-spatial features and the underlying acute pain state, we 
first normalized the raw power values within each participant. We then computed the 
median power value for each feature across low and high pain states on an 
individual participant level. Finally, we pooled the median values across participants 
to derive the group average of feature values, stratified by either spectral band or 
anatomical region. This approach allowed us to identify the specific spectral and 
spatial characteristics of iEEG features that were most informative for decoding pain 
states. 
 
Neural classifier state timescale analysis 
 
Next, we evaluated the stability of brain activity for making pain state classifications 
by calculating serial inferences using the index model trained on 5 minutes of 
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spectro-spatial features immediately prior to pain self-reports. For each patient, we 
tested the stability of these neural features by using progressively distant non-
overlapping 5-minute windows of data to calculate pain state probabilities without 
further model training. Rapidly changing neural activity since the index time should 
result in changes in the model output probabilities over time, whereas slowly 
changing neural activity should lead to relatively stable model output probabilities. To 
calculate the null serial probabilities, we trained the index model using shuffled pain 
state levels and subsequently used this model to make inferences. As the median 
time interval between pain self-reports ranged from 1.5 to 2.5 hours across 
participants, we limited the inferences to 3 hours after the time of pain self-report to 
prevent the model from encountering data on which it had already been trained. We 
stratified the pain state probabilities over time by the outcome class (low and high 
pain states) and categorized observations based on whether the subsequent pain 
measurement remained the same or changed. If a low pain state was followed by a 
high pain state, it indicated pain onset; conversely, if a high pain state was 
succeeded by a low pain state, it indicated pain relief or analgesia. Furthermore, we 
assessed the interventions used to alleviate pain within high pain states, including 
both pharmacologic and non-pharmacologic means. 
 
Non-linear pain state classification 
 
To assess the performance of non-linear classification methods for pain states, we 
employed a random forest (RF) model, which utilizes multiple decision trees to 
converge on a classification output. RF models have been previously used 
successfully in decoding naturalistic affect21. For the RF classifiers, we specified the 
following hyperparameters based on a prior study21: 300 trees, the maximum number 
of samples per leaf between 1 and 20, and the number of features at each node 
between 1 and the total number of features minus 1. Similar to the Elastic-Net 
classification, we utilized a k-fold cross-validation scheme to evaluate the RF model's 
performance. To determine feature importance, we used the out-of-bag error 
estimate derived from the RF models. This approach assesses the significance of 
individual spectro-spatial features by constructing each tree using bootstrap samples 
from the original dataset while reserving one-third of the data as a test set. 
Subsequently, the tree is constructed, and the omitted samples are classified, 
measuring the frequency of misclassification termed as the 'prediction error'. This 
process is a standard method for assessing feature importance in RF models29. To 
rank the features based on their importance, we performed change point 
identification on the prediction error for each feature, similar to the approach used for 
Elastic-Net features. We then compared each feature's prediction error to its null 
distribution, which was obtained by shuffling the outcome labels across 100 runs. 
This process allowed us to identify the most informative spectro-spatial features for 
non-linear pain state classification using the RF model. 
 
Facial dynamic analysis 
 
To investigate behavioral changes underlying naturalistic pain states, we evaluated 
facial dynamics, which have been extensively studied in the context of experimental 
and clinical pain11. We estimated moment-to-moment facial action units (AUs) from 
clinical videos recorded simultaneously with iEEG recordings. All participants in the 
epilepsy monitoring unit were routinely recorded with high-definition audio at 48 kHz 
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and RGB video (640 x 480 pixels at 30 fps) 24 hours a day. The camera, located on 
the room ceiling, was manually centered on the participants' faces by video 
technologists throughout their stay. This face-centered video capture is ideal for 
automated facial quantification approaches, which leverage deep learning models 
trained on large databases of mostly frontal-facing faces30. We partitioned the videos 
into non-overlapping 5-minute windows to mirror the parameters used for neural 
analysis. In each window, we computed estimates for common facial AUs using a 
multi-step process. First, we identified all faces in each video frame using a facial 
detection model (MTCNN). As family and staff were frequently present in the 
participant's room, we isolated the participant's face from the list of detected faces 
using a facial recognition model (DeepFace, https://github.com/serengil/deepface). 
We then applied a facial AU model (OpenGraphAU31) to make inferences on a set of 
27 facial AUs (AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU11, AU12, AU13, 
AU14, AU15, AU16, AU17, AU18, AU19, AU20, AU22, AU23, AU24, AU25, AU26, 
AU27, AU32, AU38, AU39). This model provided the probability of each AU being 
present on the target face. From these frame-level features, we generated temporal-
level features by computing the presence and average duration of each AU within a 
5-minute time window. An AU was considered active if its inference probability was > 
0.5 and lasted for at least 1 second, helping to eliminate spurious inferences on 
isolated frames. We used the Py-Feat toolbox to visualize the facial AUs that differed 
between low and high self-reported pain states. 
 
Mirroring the classification approach used with electrophysiology, we trained an 
Elastic-Net regularized logistic regression model using facial features to classify 
between low and high self-reported pain states, as defined previously. We employed 
a k-fold cross-validation scheme to determine model performance. To evaluate the 
stability of facial activity in making pain state classifications, we calculated serial 
inferences based on the index model trained on 5 minutes of facial features 
immediately prior to pain self-reports. For each participant, we used progressively 
distant non-overlapping 5-minute windows of facial data to make serial inferences, 
representing facial expression activity across increasingly distant video timeframes in 
5-minute increments after the pain report. To calculate the null serial probabilities, 
we trained the index model using shuffled pain reports and subsequently used this 
model to make inferences. 
 
Momentary pain classification 
 
To classify between periods of momentary pain and neutral activity, we split the 
labeled time periods into one-second bins and trained three models for comparison. 
First, we trained an optimized model using an Elastic-Net regularized logistic 
regression, as defined previously, utilizing all spectro-spatial features. The outcome 
variable was the one-second bins, labeled as either momentary pain or neutral 
activity. We employed a conservative sequential 5-fold cross-validation scheme to 
account for the temporal dependency of behavioral timepoints occurring close 
together, which could artificially increase model performance. In this scheme, bins 
used for training and testing were grouped in time, ensuring that all one-second bins 
belonging to a labeled event (momentary pain or neutral) were not split between 
folds. To address the imbalance between the number of one-second bins for neutral 
events and momentary pain (Supplementary Table 3), we randomly down-sampled 
the neutral bins to match the number of momentary pain bins during model training 
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for each participant. Second, we hypothesized that spectro-spatial features encoding 
self-reported pain states would also contain shared information representing periods 
of momentary pain. Consequently, we trained a logistic regression model using only 
the spectro-spatial features retained by the index binary pain self-report state 
classifier (trained on 5 minutes of data prior to the pain report). As the number of 
features was sparse due to pre-selection by the index classifier, we employed a 
logistic regression model without regularization. Third, we repeated the procedure 
using features retained by the index binary pain state classifier trained on shuffled 
pain reports. These features were not supervised by the self-reported pain states. 
Each model condition underwent 100 bootstrap iterations to ensure robustness. 
Similarly, we performed classification of momentary pain and neutral periods based 
on facial dynamics. We constructed features as facial AU probabilities averaged 
within one-second time bins and employed an Elastic-Net regularized logistic 
regression with a sequential 5-fold cross-validation scheme, as described above. 
Comparison of neural and facial features-based pain state decoding 
We performed analyses to evaluate the relationship between acute pain decoding 
based on spectro-spatial features and facial dynamics, as well as to determine 
whether facial features provided additional information for acute pain decoding. First, 
we assessed the correlation between the decoding performances of the two 
modalities by conducting Pearson's correlation analysis on the AUC values obtained 
from the spectro-spatial and facial dynamics models across participants. Next, we 
investigated whether the integration of facial features with spectro-spatial features 
could improve acute pain decoding performance. To do this, we identified the 
spectro-spatial features retained by either the index binary pain self-report state 
classifier or the optimized momentary pain model. We then calculated the classifier 
performance using these features through cross-validation. Subsequently, we 
integrated the facial features into the neural feature set and evaluated the classifier 
performance using the combined set of neural and facial features, again employing 
cross-validation. By comparing the performance of the classifiers using spectro-
spatial features alone with the performance of classifiers using the combined feature 
set, we evaluated whether facial features contributed additional, complementary 
information for acute pain decoding independent of neural features.  
 
Results 
 
Study participants and naturalistic pain states 
 
We designed a naturalistic paradigm to study the neurobehavioral markers of acute 
pain states in an unconstrained manner, involving participants with implanted depth 
electrodes for seizure localization (Figure 1A). The study included regular pain self-
reports, intracranial electrophysiology, and simultaneous audiovisual recordings. On 
average, we analyzed 6.3 days (SD = 2.1) of behavioral and electrophysiological 
data per participant, with channel coverage spanning cortico-thalamo-limbic 
networks (Supplementary Table 1). In addition to pain self-reports, we manually 
annotated periods of momentary pain based on video as another measure of 
naturalistic acute pain. 
 
To characterize acute pain states, we first analyzed regular pain self-reports 
obtained from participants. An average of 58 (SD = 21) pain self-reports were 
documented per participant, with a median frequency of every 2 hours (IQR = 0.3) 
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(Supplementary Table 2). The most frequently reported pain locations were the 
head and jaw, followed by the hands and lower back (Figure 1B). In an example 
participant, visualizing all reported pain scores over time revealed fluctuations within 
and across days (Figure 1C; Supplementary Figure 1 for other participants). We 
subsequently defined low and high acute pain states using the median pain score as 
the division threshold (Figure 1D). This approach was motivated by findings that 
most individuals do not reliably rate pain on a linear scale26, binary decoding of 
chronic pain performs better18, and a dichotomized signal threshold might be more 
clinically practical. Across participants, the median duration of pain states was 4.3 
hours (IQR = 7.1) based on when pain scores transition from one state to another, 
with participants spending more time in low compared to high pain states (Figure 
1E; paired t-test; t(11) = 2.6, P = 0.02). We also evaluated pain medication use 
surrounding the times of pain self-reports. More pain medications were administered 
within a 1-hour window centered on high pain states compared to low pain states 
(Figure 1F; paired t-test; t(11) = 10.1, P < 0.001). The timing of pain medications 
was heterogeneous, with some scheduled and others given as needed, resulting in a 
large distribution of medication timing relative to pain self-report times (Figure 1G). 
Participants in high pain states experienced higher blood pressure compared to low 
pain states (Figure 1H; paired t-test: t(11) = 2.7, P = 0.02), but no significant 
changes were observed for heart rate (Supplementary Figure 2A; one-sample t-
test; t(11) = -1.50, P = 0.16) or respiratory rate (Supplementary Figure 2B; t(11) = -
1.93, P = 0.08). 
 
Moreover, we quantified changes in facial behaviors using continuous video 
recordings to understand behavioral aspects underlying self-reported pain states. 
Facial behaviors were derived from frame-by-frame estimates of facial action units 
(AUs), which taxonomize human facial movements (see Methods). In an example 
participant, low pain states had higher expression of facial AUs denoting positive 
affect, whereas high pain states had higher expression of facial AUs denoting 
negative affect (Figure 1I). Across participants, several facial AUs were differentially 
expressed between acute pain states, with AU14, AU15, AU26, and AU39 exhibiting 
consistent effect sizes (Figure 2J; Cohen's d > 0.2). 
 
Self-reported acute pain states decoded from distributed intracranial activity 
 
To explore the neural mechanisms underlying self-reported acute pain states, we 
leveraged multi-site semi-chronic iEEG recordings (Figure 2A). Five-minute 
windows prior to pain self-report times were used to construct spectro-spatial 
features, which were subsequently employed to train an Elastic-Net classifier for 
decoding acute pain states (Figure 2B). We utilized a nested k-fold CV scheme to 
ensure that model performance was purely determined on unseen test data for each 
individual participant (Figure 2B,C, see Methods). At the group level, we achieved a 
mean classification AUC of 0.70±0.06 and a mean accuracy of 66%±5.5 for 
discriminating between low and high acute pain states (Figure 2D). We also 
evaluated the classification performance of a non-linear model (Random Forest, see 
Methods), as discrepancies in performance may suggest underlying non-linear data 
statistics. RF models performed slightly better, with a mean classification AUC of 
0.72±0.06 and a mean accuracy of 69%±6.3 (Supplementary Figure 3). Moreover, 
we performed Elastic-Net based decoding of continuous pain scores 
(Supplementary Figure 4). Median Pearson’s R between actual and predicted pain 
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scores was 0.29 (range: 0.01 to 0.70), with six out of twelve participants achieving 
significant decoding. In contrast, eleven participants exhibited significant binary 
decoding (Supplementary Table 4). Given the highly variable performance with 
continuous decoding, these results supported pain dichotomization, and subsequent 
analyses focused on results from the binary classifiers.  
 
Intracranial neural activity sufficient for decoding of self-reported acute pain states 
are spatially distributed, temporally stable and modulated by pain onset or pain relief 
 
To elucidate the spectro-spatial contributions to the classification of self-reported 
acute pain states, we examined the spatial profiles of significant neural features (see 
Methods). We visualized the locations of each recruited electrode and its associated 
spectral content (Figure 2E), revealing a distributed spatial recruitment pattern with 
a mix of low-to-mid frequency bands (delta, theta, alpha, beta powers) and high-
frequency bands (gamma, high-gamma). Fewer electrodes contained predictive 
spectral content spanning both low-to-mid and high frequencies for pain states. The 
anatomical distribution of significant electrodes was widespread, with the striatum, 
hippocampus, amygdala, cingulate cortex, and temporal cortex harboring the highest 
proportion of features predictive of pain states (Figure 2F). However, the proportion 
of significant features did not differ significantly across regions (Figure 2G; Chi-
square test: χ2 = 7.2, P = 0.7), highlighting the distributed nature of acute pain 
markers. Irrespective of feature normalization or classifier type, the gamma band 
was the most common predictive frequency band (Supplementary Figure 5). 
Across all significant spectro-spatial features, high pain states exhibited a consistent 
increase in theta power (linear regression coefficient adjusted for participant; t(85) = 
2.44, P = 0.02) and alpha power (t(137) = 4.81, P < 0.001) compared to low pain 
states, accompanied by a decrease in gamma (t(509) = 3.26, P < 0.001) and high-
gamma power (Figure 2H; t(233) = 3.21, P < 0.001). When stratified by anatomical 
region, the aggregate increase in theta and alpha power was driven by temporal, 
parietal, and thalamic regions, while the decrease in gamma and high-gamma power 
originated from mesolimbic regions (Figure 2I; linear regression coefficient adjusted 
for participant: * < 0.05, ** < 0.01, *** < 0.001, FDR-correction for multiple test 
comparisons). Note that while other regions did not exhibit consistent directional 
changes in power, they were still important in predicting acute pain states. To assess 
the consistency of these neural feature patterns, we performed feature analysis 
using random forest classifiers (see Methods). The random forest classifier relied on 
distributed neural activity, with a similar pattern of increased theta (t(173) = 2.1, P = 
0.04) and alpha (t(241) = 5.8, P < 0.001) power, as well as decreased gamma 
(t(427) = 3.5, P < 0.001) and high-gamma (t(231) = 4.4, P < 0.001) power 
(Supplementary Figure 6A-B). However, we also noted a decrease in delta power 
(t(221) = 5.6, P < 0.001) and an increase in beta power (t(271) = 6.2, P < 0.001). 
Anatomically, similar decreases in high-frequency activity were observed in the 
hippocampus and anterior cingulate cortex, while increases in theta and alpha power 
were seen in the temporal and parietal cortices (Supplementary Figure 6C; linear 
regression coefficient adjusted for participant: * < 0.05, ** < 0.01, *** < 0.001, FDR-
correction for multiple test comparisons). In summary, neural activity underlying self-
reported acute pain decoding is distributed, exhibiting regionally specific spectral 
profiles. 
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We next evaluated the temporal stability of acute pain neural encoding between pain 
self-reports. We hypothesized that if self-reported pain states lasted on the timescale 
of hours, the output of the pain state classifier should remain relatively stable when 
using unseen spectro-spatial features over a similar time period. Additionally, if 
participants underwent a self-reported pain state transition, the classifier should be 
sensitive to that change. Starting with observations recorded as low pain, across 
participants, when the next pain measurement remained in a low pain state, the 
relative change in classifier signal was fairly stable (mean % change across time: 
0.19; Figure 2J), indicating that neural features encoding pain states are stable in 
the absence of state change. In contrast, when the next pain measurement 
transitioned to a high pain state, we observed a larger change in classifier signal 
over time (mean % change across time: 0.31), which was significantly different 
compared to when the pain measurement remained stable (Figure 2J; paired t-test: 
t(11) = 2.64, P = 0.02). Similar findings were observed when starting with high pain 
state observations (Figure 2K). The classifier signal remained stable over time when 
the next measurement stayed in a high pain state (mean % change across time: 
0.25). However, when pain relief was experienced (i.e., the next measurement 
transitioned to a low pain state), a significantly larger change in classifier signal was 
observed (mean % change across time: 0.39; t(11) = 3.0, P = 0.01). Since pain 
medications were often administered during high pain states, we evaluated the effect 
of medications given at the time of a high pain self-report (Supplementary Figure 
7). We found that medications alone did not change the classifier signal. For 
instance, medications given without a self-reported change in pain state did not 
result in a classifier signal change (t(11) = 1.82, P = 0.1). Medications given with 
associated pain relief produced a signal change similar to that of pain relief achieved 
through non-pharmacologic means, such as rest, elevation, verbal reassurance, or 
physical comfort (t(11) = 1.1, P = 0.3). Notably, pain scores were rated on average 1 
point higher across participants in high pain states when pain medication was given 
compared to high pain states in which non-pharmacologic interventions were used 
(Supplementary Figure 8). These results indicate that neural features underlying 
self-reported pain states change slowly, are tuned to state transitions, and are not 
directly altered by pain medications. 
 
Facial behavioral underlying self-reported acute pain states 
 
Mirroring the analytical approach for neural-based acute pain decoding, we trained a 
classifier using five minutes of video-based facial features immediately prior to pain 
self-report (Figure 3A). Using facial features alone, we achieved a group AUC of 
0.62 ± 0.09 in classifying self-reported pain states (Figure 3B). Notably, model 
performance based on facial dynamics was concordant with neural-based decoding 
at the group level; participants who demonstrated high AUC using neural activity to 
predict self-reported pain states also had high AUC using facial data to predict self-
reported pain states (Figure 3C; Pearson's R = 0.70, P = 0.01). We also evaluated 
the temporal stability of facial features in encoding pain states (Figure 3D). Starting 
with high pain state observations, the facial feature-based classifier demonstrated a 
greater signal change when the next measurement indicated pain relief compared to 
remaining in a high pain state (paired t-test; * < 0.05, ** < 0.01, *** < 0.001). 
However, the facial feature-based classifier was not sensitive enough to detect 
differences between remaining in a low pain state and pain onset (Supplementary 
Figure 9). Given the observed correlation between facial and neural-based 
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decoding, which suggests a relationship between neural features and facial 
expression changes, we investigated whether facial features contributed unique 
predictive value or redundant information. We compared the classifier AUC using 
neural features alone to the AUC when neural and facial features were combined. 
The inclusion of facial features did not improve the decoding of self-reported pain 
states (Supplementary Figure 10; paired t-test: t(11) = 0; P = 0.99). These findings 
demonstrate that facial dynamics alone can be used to classify acute pain states, 
albeit with lower performance compared to neural-based decoding. The concordance 
between facial and neural-based decoding at the group level suggests a shared 
underlying representation of pain states. However, the lack of improvement in 
decoding performance when combining facial and neural features indicates that 
facial features may not provide additional predictive value beyond what is already 
captured by neural activity.  
 
Neurobehavioral markers of momentary pain 
 
As another measure of naturalistic acute pain, we manually annotated transient 
episodes of momentary pain based on observational cues (Figure 4A; see 
Methods). Across participants, we identified a total of 377 behavioral events 
(Nmomentary pain = 203; Nneutral = 174), which occurred on average 34 minutes from the 
closest pain self-report (Supplementary Figure 11A). Labeled behavioral events 
were found to be equally close to either low or high self-reported pain states 
(Supplementary Figure 11B; χ² = 0.084, P = 0.77). Analysis of facial expression 
changes during momentary pain revealed several consensus changes across 
participants, including AU5, AU6/7, AU9/10, AU11/12, and AU25/26 (Figure 4B; 
Cohen's d > 0.2). Notably, these action units have been previously identified as pain-
related facial markers in studies of elicited pain11. In contrast, the facial action units 
associated with different self-reported pain states were AU14, AU15, AU26, and 
AU39 (Figure 1J), which are more affect-related. This difference in facial expression 
patterns suggests that momentary pain episodes may be more similar to 
conventionally elicited pain in experimental conditions, while self-reported pain states 
reflect a more complex and integrative experience of pain. 
 
To investigate the similarities and differences in neural features underlying 
momentary pain compared to self-reported pain, we trained three different classifier 
models (Figure 4C): 1) an optimized model using all available spectro-spatial 
features, 2) a self-report pain informed model using spectro-spatial features 
previously retained in the index self-report pain state classifier, and 3) a self-report 
pain shuffled model using spectro-spatial features previously retained in the index 
self-report pain state classifier but with shuffled pain labels. The self-report pain 
shuffled model represents a random set of neural features that are approximately 
equal in length to the features in the self-reported informed model and serves as a 
control. The optimized model achieved a group mean AUC of 0.75 ± 0.13 for 
classifying momentary pain periods from neutral affect (Figure 4D), while the self-
report pain informed model achieved a group mean AUC of 0.71 ± 0.10. In contrast, 
the self-reported pain shuffled model achieved a lower group mean AUC of 0.63 ± 
0.10. Although the optimized model did not significantly outperform the self-report 
pain informed model (Figure 4E; paired t-test: t(9) = -2.0, P = 0.08), the self-reported 
pain shuffled model performed significantly worse than the informed model (t(9) = -
2.7, P = 0.03). This finding indicates that neural features supervised to pain self-
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reports are more effective in classifying momentary pain than randomly selected 
neural features. To identify the spectral markers of momentary pain, we evaluated 
significant features in the optimized model. On an aggregate level, momentary pain 
states exhibited a decrease in theta (linear regression coefficient adjusted for 
participant; t(125) = 7.7, P < 0.001), alpha (t(93) = 4.6, P < 0.001), beta (t(107) = 5.8, 
P < 0.001), gamma (t(478) = 3.8, P < 0.001), and high-gamma (t(244) = 2.8, P = 
0.01) power (Supplementary Figure 12A). Regionally, the decrease in gamma and 
high-gamma power was driven by hippocampal and prefrontal activity, whereas the 
decrease in theta, alpha, and beta power was observed in the cingulate, parietal, 
temporal, insular, prefrontal, and sensory/motor cortices (Supplementary Figure 
12B). As an outlier to this pattern, the insular cortex demonstrated an opposite 
pattern, with increased gamma and high-gamma activity during momentary pain. We 
also assessed the decoding of momentary pain using facial dynamics (mean group 
AUC: 0.71±0.15) and compared it with neural-based decoding employing the 
optimized models. While there was a moderate correlation between the two 
decoding methods, it was not statistically significant (Figure 4F; Pearson's R = 0.54, 
P = 0.10). Furthermore, incorporating facial features alongside neural features did 
not result in a significant improvement in model performance across participants 
(Supplementary Figure 13; paired t-test: t(9) = 1.2; P = 0.27). These findings 
demonstrate that momentary pain states can be reliably decoded, with some of the 
informative neural features overlapping with those involved in representing self-
reported pain. However, the spectral markers of momentary pain differ from those of 
self-reported pain. This difference in spectral patterns suggests that momentary pain 
and self-reported pain may engage distinct neural processes, reflecting the 
multifaceted nature of pain experience in naturalistic settings. Finally, the lack of 
significant improvement in decoding performance when combining neural and facial 
features suggests that these modalities may capture overlapping information about 
momentary pain states. 
 
Discussion 
 
The neural and behavioral correlates underlying everyday pain experiences are of 
significant clinical interest due to the substantial burden of prevalent pain disorders. 
While previous studies have provided insight in experimental contexts, there remains 
a paucity of studies evaluating naturalistic pain experiences in unconstrained real-
world settings.  Here, we examined the neural and facial correlates underlying acute 
pain using a purely naturalistic paradigm. This approach enabled us to longitudinally 
study the ecologically valid pain experience in a manner that would be ethically 
challenging to replicate experimentally. Our findings demonstrate that self-reported 
acute pain states over time can be accurately decoded using intracranial brain 
activity across participants. Neural features recruited for pain decoding were 
distributed across cortico-thalamo-limbic regions, with a bias towards high-frequency 
neural activity. Notably, high pain states were associated with increased low-
frequency (theta, alpha power) activity in temporal and parietal areas alongside 
reduced gamma and high-gamma activity in mesolimbic regions including the 
hippocampus, cingulate, and orbitofrontal cortex. Furthermore, the self-reported pain 
classifier output was temporally stable and sensitive to changes in pain state. 
Complementary facial analysis revealed discernible differences between self-
reported acute pain states, concordant with neural decoding performance across 
participants. We also identified transient periods of momentary pain as a distinct 
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naturalistic acute pain measure. Similar to self-reported pain, momentary pain could 
be reliably decoded from neutral states using intracranial and facial features, though 
with distinct neural spectral patterns compared to self-reported pain. These findings 
highlight robust neurobehavioral markers of naturalistic pain states across contexts 
and timescales, motivating further research into diagnostics and interventions of pain 
in unconstrained settings.  
 
The distributed pattern of brain activity contributing to naturalistic pain decoding 
aligns with prior neuroimaging studies highlighting the involvement of various regions 
in pain processing3–5,7. These include areas specific to somatic sensations including 
the thalamus, posterior insula, and somatosensory cortex32,33, as well as regions 
relevant to general affect and salience such as the dorsolateral and ventromedial 
prefrontal cortices, parietal cortex, anterior insula, cingulate, and amygdalo-
hippocampal complex3,4. Notably, our findings also revealed engagement of the 
medial and lateral temporal regions, consistent with a recent intracranial study where 
temporal gyri activity predicted thermal pain onset17. The temporal cortex has been 
proposed to encode memories associated with painful experiences, suggesting its 
involvement in the experiential aspects of pain processing 34,35. Additionally, striatal 
regions like the caudate nucleus and putamen have been implicated in modulatory 
pain systems36. Furthermore, various behavioral factors may contribute to the 
distributed neural representations of pain37–39. For instance, sympathetic arousal 
indexed by blood pressure elevations during self-reported pain40, as well as 
unmeasured states like changes in mood, verbal output, or motor movement which 
often co-occur with pain41. Given these potential behavioral co-occurrences, we 
interpret our intracranial findings as biomarkers of naturalistic pain experiences 
rather than specific neural signatures of nociceptive processing. The distributed 
patterns likely reflect the sensory, affective, and cognitive-evaluative components 
inherent to acute pain states. 
 
The spectral patterns associated with pain states remain an active area of 
investigation. Scalp EEG studies have suggested that alpha and beta oscillations 
may encode the intensity of noxious stimuli, while gamma oscillations in the 
prefrontal region could represent prolonged experimental pain experiences 42–45. 
However, intracranial studies examining spectral power in relation to pain are scarce. 
Caston et al. found predominantly increased high-frequency power in several 
regions, notably the lateral temporal cortex and hippocampus, in response to thermal 
pain onset17. Conversely, Shirvalkar et al. demonstrated that chronic pain states 
were largely inversely related to oscillatory activity in the anterior cingulate (ACC) 
and orbitofrontal cortices (OFC), with a mixed relationship for experimental pain18. In 
our study, we observed differential spectral patterns associated with different 
measures of naturalistic acute pain. High self-reported pain states were linked to 
increased low-to-mid frequency power in the striatum, thalamus, and temporo-
parietal regions, alongside decreased high-frequency power in the hippocampus, 
cingulate, and OFC. In contrast, momentary pain was associated with broadly 
decreased power across frequencies, particularly high-frequencies in the 
hippocampus and prefrontal regions, and low-to-mid frequencies in other areas. 
These spectral differences may reflect the nature of the pain experience - self-
reported pain states may encompass a broader range of pain-related sensations, 
emotions and cognitive processes represent temporally stable, integrated processing 
of pain-related sensations, emotions and cognitive processes, whereas momentary 
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pain captures immediate, highly salient pain events akin to experimental stimuli. 
Indeed, facial analyses indicated differential muscle activations during high self-
reported pain versus momentary pain, suggesting distinct experiential qualities. 
Together, these findings highlight the complex spectral dynamics underlying 
naturalistic acute pain experiences. 
 
The naturalistic design of our study provided a unique opportunity to investigate the 
temporal dynamics of neurobehavioral pain markers. We found that between stable 
pain self-reports, both the neural and facial markers of pain remained relatively 
constant, without exhibiting rapid fluctuations. In contrast, when the subsequent pain 
self-report indicated either pain onset or pain relief, these pain-related markers 
demonstrated gradual changes, with neural markers showing greater sensitivity 
compared to facial markers. These results suggest that self-reported pain states over 
time operate on longer timescales, likely reflecting integrated processing of the 
current aversive state rather than rapid encoding of sensory/nociceptive information. 
The temporal stability of pain markers between self-reports, coupled with their 
gradual modulation preceding state changes, highlights the sustained neural and 
behavioral representations of the subjective experience of acute pain over time in 
naturalistic settings. 
 
Behaviorally, we used quantitative facial mapping to assess the facial correlates of 
self-reported pain states as well as momentary pain. While many prior studies have 
evaluated facial action unit (AU) differences in relation to pain in controlled 
settings46,47, we found that facial expression changes underlying self-reported pain 
states had little overlap with conventionally reported pain-related AUs. Instead, these 
AUs (AU14, AU15, AU26) may reflect more general changes in affect 48. In contrast, 
facial expressions associated with momentary pain exhibited many of the canonical 
pain-related AUs (AU5, AU6/7, AU9/10, AU11/12, AU25/26), suggesting immediate 
pain onset. Notably, we observed concordance between the facial and neural 
decoding of acute pain states, implying that some of the informative neural activity is 
related to the outward manifestation of pain. This is further supported by our finding 
that facial features did not independently contribute substantial performance gains, 
indicating that the neural features likely explained much of the variance in facial 
behavior. Prior literature has demonstrated correlations between neural activity and 
facial expressions during pain12,13. Additionally, the activity of regions such as the 
cingulate and amygdala is known to influence the regulation of emotional 
expressions49. These results highlight the tight coupling between the neural and 
facial representations of naturalistic acute pain experiences.  
 
Limitations and Future Directions 
 
The recording locations in our study were solely determined by clinical requirements 
for epilepsy localization, resulting in variable electrode coverage across participants. 
This variability poses a challenge for developing generalizable models that can 
predict pain states across individuals, as electrodes are rarely positioned identically. 
An intriguing future direction would be to explore whether models trained on 
standardized scalp EEG data or large datasets of intracranial recordings with similar 
brain coverage could effectively predict pain states in diverse individuals. 
Furthermore, our naturalistic study design precludes direct causal inferences, raising 
the possibility that the observed correlations between intracranial activity and acute 
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pain states may be influenced by unmeasured variables such as sympathetic 
arousal, altered verbal output, or motor activity, as discussed previously. To address 
this limitation, future studies could employ direct electrical brain stimulation to 
causally manipulate specific regions across varying timescales while closely 
monitoring pain experiences. Such interventional approaches, combined with neural 
recordings, could elucidate the causal mechanisms underlying the neurobehavioral 
markers of naturalistic acute pain identified in our study. Additionally, incorporating 
multimodal physiology data such as skin conductance and pupillary tracking could 
provide a more comprehensive characterization of the multidimensional pain 
experience. 
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Figures and Tables 
 

 
Figure 1: Naturalistic study design and inpatient tracking of acute pain states. 
A) The naturalistic paradigm comprises recording intermittent verbal pain self-report 
along with simultaneous intracranial electroencephalography (iEEG) and patient 
videos. Transient episodes of momentary pain are manually annotated based on 
video review. iEEG spectro-spatial features and quantitative facial dynamics are 
used to decode acute pain states. B) Group-level anatomical distribution of self-
reported pain locations (N = 12). C) Variations in pain scores for an example 
participant over the course of nine days. Dots denote time when a pain medication 
was given. D) Histogram of all recorded pain scores for the same example 
participant. The median value was used to denote the threshold to define low versus 
high acute pain states. E) Amount of time spent in low versus high pain states based 
on consecutive pain reports that are of the same state. Participants overall spent 
less time in the high pain state compared to the low pain state (paired t-test; t(11): 
2.6, P=0.02). F) More pain medications were given during the high pain state 
compared to the low pain state (paired t-test; t(11): 10.1, P<.001). G) Distribution of 
pain medication timing with relations to time of pain report. H) Higher mean arterial 
pressure (MAP) across participants was observed in the high pain state as 
compared to the low pain state (paired t-test: t(11): 2.7, P=0.02). I) Proportion of 
different AUs encountered during high versus low pain states for an example 
participant. Certain AUs denoting a positive affect are more expressed during low 
pain states whereas AUs associated with negative affect are more expressed during 
high pain states. J) Consensus AUs (d > 0.2) across participants which were 
differentially expressed between acute pain states. Colors represent the effect size 
between high versus low pain states. *Denotes P < 0.05, **P < 0.01 and *** P < 
0.001.  
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Figure 2: Intracranial neural activity sufficient for decoding of self-reported 
acute pain states are spatially distributed, temporally stable and modulated by 
pain onset or pain relief. A) Location of implanted depth electrodes in an example 
participant. Traces of raw voltage recording are shown for the two-colored electrodes 
over an 8-hour period, during which three self-reported pain scores were recorded. 
Five minutes prior to each pain score are used to construct spectro-spatial features. 
B) Spectro-spatial features are subsequently used to train an Elastic-Net regularized 
logistic regression model to classify between low versus high pain states. A nested 
cross-validation design is used to optimize hyperparameter selection and prevent 
overfitting. C) Left Panel: Mean receiver operating characteristics (ROC) curve for 
the same example participant for self-reported pain state classification across cross-
validation folds and bootstraps. The grey curve represents the ROC curve when the 
outcome label is randomly shuffled. The shaded error bar represents the s.e.m 
across cross-validation folds and bootstraps. Right Panel: Accuracy of the model in 
prediction of pain states across folds and bootstraps. Accuracy of the model is 
significantly higher than the shuffled model (two-sample t-test; P<0.001). D) Left 
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Panel: Group ROC curve for prediction of self-reported pain states across 12 
participants. The shaded error bar represents the s.e.m across 12 participants. Right 
Panel: Accuracy of the model in prediction of pain states across 12 participants. 
Accuracy of the model is significantly higher than the shuffled model (paired t-test: 
t(11):10.2, P<0.001). E) Significant electrodes across participant classifiers are 
shown on a common brain in MNI coordinates. Color indicates whether a low to mid 
frequency (delta, alpha, theta, beta), high-frequency (gamma, high-gamma) or both 
type of spectral features were used at that location. F) Bar graph showing the sorted 
proportion of different anatomical regions recruited by classifiers across participants. 
G) Box plots showing proportion of different anatomical regions recruited stratified by 
individual participants. Each color dot represents a single participant. No significant 
difference was observed in the proportion of recruited electrodes across anatomical 
regions (Chi-square; χ2 = 7.2, P = 0.70). H) Normalized median distributions of low 
versus high pain state feature values as stratified by power bands. The median 
values from high pain states were significantly different from low pain states within 
theta (two-sample t-test; t(86): 2.41, P=0.02), alpha (t(138): 4.81, P<0.001), gamma 
(t(510): 3.25, P<0.001) and high gamma (t(234): 3.21, P<0.001) power bands. I) 
Heatmap displaying the power-region feature pairs that demonstrate a consistent 
effect size between high and low pain states (one-sample t-test; Single asterisk is 
p<0.05, double asterisk is p<0.01, and triple asterisk is p<0.001; FDR correction for 
multiple test comparisons). J) Percent change in the index classifier signal overtime 
when starting in a low pain state and subsequently stratified by if the next pain 
measurement remains in a low pain state or transitions to a high pain state (pain 
onset). Greater percent change in classifier signal is observed during pain onset. 
Shaded error bars represent s.e.m across participants. K) Percent change in the 
index classifier signal overtime when starting in a high pain state and subsequently 
stratified by if the next pain measurement remains in a high pain state or transitions 
to a low pain state (analgesia). Greater percent change in classifier signal is 
observed during analgesia. Shaded error bars represent s.e.m across participants. 
Single asterisk is p<0.05, double asterisk is p<0.01, and triple asterisk is p<0.001 
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Figure 3: Facial dynamics underlying acute pain states.  A) To evaluate aspects 
of behavior during high versus low self-reported pain states, we performed automatic 
quantification of facial muscle activation on a per-video frame basis. To do this, we 
devised a custom video processing pipeline where faces were first extracted from a 
frame, then the participant of interest was isolated from staff and family members 
using facial recognition, and finally the isolated face embeddings were fed into a pre-
trained deep learning model to facial action unit (AU). Frame level AU outputs were 
collapsed across time to generate temporal statistics, which were subsequently used 
to decode self-reported pain states in a nested cross-validation scheme. B) Group 
ROC curves for decoding pain states using facial dynamics quantified during the 
five-minute window prior to pain report, which is the same time window used for 
electrophysiological pain decoding. Lines represent participants while the shaded 
gray error bar represents the decoding performance when the outcome label was 
shuffled. C) Performance of decoding based on facial dynamics is directly correlated 
with decoding based on brain activity (Pearson’s R: 0.70, P=0.01). Given all the 
points are on the right of the diagonal, brain decoding outperforms facial behavioral 
decoding for all participants. D) Percent change in the index classifier signal 
overtime when starting in a high pain state and subsequently stratified by if the next 
pain measurement remains in a high pain state or transitions to a low pain state 
(analgesia). Greater percent change in classifier signal is observed during analgesia. 
Shaded error bars represent s.e.m across participants. Single asterisk is p<0.05, 
double asterisk is p<0.01, and triple asterisk is p<0.001 
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Figure 4: Transient episodes of momentary pain can be decoded using neural 
and facial activity. A) Manual video reviews by two evaluators were performed to 
identify periods of momentary pain and periods of neutral affect. B) Consensus AUs 
(d > 0.2) across participants which were differentially expressed between periods of 
momentary pain and periods of neutral affect. Majority of these AUs have been 
implicated in pain expression previously. Colors represent the effect size between 
momentary pain and neutral periods. C) Classifiers were trained using the full 
spectro-spatial feature set (optimized model) and using solely features previously 
selected by the index pain self-report state classifier (pain self-report informed 
model). D) ROC curves for prediction of momentary pain from neutral affect across 
participants, stratified by the optimized model, the pain self-report informed model, 
and the self-reported pain shuffled model (spectro-spatial features selected from 
pain self-report state classifier trained on shuffled pain labels). The shaded error bar 
represents the s.e.m across 10 participants. E) Bar plot comparison of the three 
trained models. There was no significant difference between the optimized and the 
pain self-report informed model performance (paired t-test; t(9): 2.0, P=0.07). The 
pain self-report informed model performed better than using features not supervised 
to the self-report pain states (paired t-test; t(9): 2.7, P=0.03) F) Comparison of 
momentary pain decoding based on facial dynamics and neural features.  
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