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Abstract 36 

The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a 37 

combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic 38 

risk factors. We applied genomic structural equation modeling to examine these genetic factors 39 

across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies 40 

(GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, 41 

transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms 42 

[SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified 43 

two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, 44 

NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) 45 

and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously 46 

significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared 47 

genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with 48 

second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order 49 

factor in EUR individuals. Finally, common and independent genetic effects showed different 50 

associations with psychiatric, sociodemographic, and medical phenotypes. For example, the 51 

independent components of schizophrenia and bipolar disorder had distinct associations with 52 

affective and risk-taking behaviors, and phenome-wide association studies identified medical 53 

conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, 54 

combining transdiagnostic and disorder-level genetic approaches can improve our understanding 55 

of co-occurring conditions and increase the specificity of genetic discovery, which is critical for 56 

psychiatric disorders that demonstrate considerable symptom and etiological overlap.  57 
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Introduction 58 

Substance use disorders (SUDs) commonly co-occur with mood, anxiety, and psychotic 59 

disorders.1-3 For example, about one-quarter of individuals with major depressive disorder 60 

(MDD) meet criteria for at least one SUD,1 and 20-80% of individuals seeking SUD treatment 61 

have MDD.4 Similarly, the prevalence of anxiety disorders among individuals with an illicit SUD 62 

is almost three times that of the general population.2 Additionally, nearly half (42%) of 63 

individuals experiencing a first episode of psychosis5 and a third of those with bipolar disorder3 64 

(BD) have a co-occurring SUD. Such comorbidity complicates the clinical course of affected 65 

individuals, resulting in greater healthcare and other costs.6,7 66 

Large-scale genome-wide association studies (GWAS)8-15 have shown these disorders to 67 

be highly polygenic, with individual variants exerting a small influence on risk. These studies 68 

also provide evidence of pleiotropy, whereby variants are associated with more than one 69 

psychiatric trait. These pleiotropic effects partially account for the co-occurrence of psychiatric 70 

traits and disorders.8-15 Genomic structural equation modeling (gSEM) can leverage this shared 71 

liability to identify common genetic factors that underlie multiple disorders.16 In combination 72 

with downstream analyses, these multivariate genetic approaches can improve our understanding 73 

of the etiology of commonly co-occurring conditions by identifying shared biological pathways 74 

and possible risk mechanisms. 75 

Several gSEM studies have modeled pleiotropy across psychiatric disorders in European-76 

ancestry (EUR) individuals. The first modeled shared genetic variance across schizophrenia 77 

(SCZ), BD, MDD, posttraumatic stress disorder (PTSD), and anxiety, identifying a single 78 

common factor.16 Across eight psychiatric disorders—attention-deficit hyperactivity disorder, 79 

anorexia nervosa, autism spectrum disorder, BD, MDD, obsessive compulsive disorder, SCZ, 80 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24307111doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307111
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Tourette syndrome17–three underlying genetic factors representing mood and psychotic 81 

disorders, early-onset neurodevelopmental disorders, and compulsive disorders—best 82 

represented the data. More recent work expanded this model by adding problematic alcohol use, 83 

anxiety disorders, and PTSD,18 which resulted in the previously combined mood and psychotic 84 

disorders factor splitting into separate internalizing and psychotic factors.  85 

Similarly, an addiction factor has been identified that underlies cannabis use disorder 86 

(CanUD), opioid use disorder (OUD), and measures of problematic alcohol and tobacco use.19 87 

Although this study included African-ancestry (AFR) in addition to EUR individuals, limited 88 

power precluded the application of gSEM in AFR individuals. Instead, an alternative approach, 89 

ASSET,20 was taken to identify pleiotropic effects among AFR individuals. However, this 90 

approach failed to identify any variants having effects common to all four substance use 91 

behaviors in AFR individuals. Other research applying gSEM has derived a common factor 92 

underlying measures of substance use in EUR individuals,21 reaffirming the shared genetic basis 93 

underlying multiple substance use behaviors or disorders. 94 

Although research has demonstrated consistency in the genetic factor structure across 95 

models of substance use and psychiatric disorders, these studies have applied gSEM only in EUR 96 

individuals. The modeling of complex genetic relationships via structural equation modeling 97 

imposes greater demands for statistical power than simpler univariate GWAS analyses, which 98 

themselves are often underpowered in AFR and other non-EUR ancestry groups. Thus, the 99 

statistical power requirements of the approach, whose strength lies in its ability to enhance our 100 

understanding of the complexity of genetic relations, have hampered its application in non-EUR 101 

ancestries. 102 
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Previous studies have also typically focused on identifying transdiagnostic genetic risk, 103 

but gSEM can also enable more precise identification of disorder-specific genetic mechanisms 104 

than individual GWAS. In combination with transdiagnostic genetic approaches, GWAS-by-105 

subtraction22 can parse associations with single nucleotide polymorphisms (SNPs) into those that 106 

influence risk for a disorder through a common genetic factor from those that operate 107 

independently of the common factor. The two resulting genetic dimensions can be used to 108 

differentiate the associations of a common genetic factor with psychiatric, medical, and social 109 

phenotypes from the associations of genetic risk that operates independently of the common 110 

factor. Combining transdiagnostic and disorder-level approaches enhances statistical power to 111 

detect pleiotropic effects, while identifying patterns of genetic heterogeneity and increasing the 112 

specificity of SNP discovery.23  113 

To extend previous study findings, we used gSEM to characterize the underlying genetic 114 

structure of SUDs, psychotic, and mood and anxiety disorders in EUR and AFR individuals. 115 

First, we examined the genetic factor structure of the disorders using exploratory and 116 

confirmatory factor analyses, and then we explored each factor’s biological underpinnings by 117 

conducting GWAS. Next, we investigated the shared genetic comorbidity of SUDs with 118 

psychotic, mood, and anxiety disorders using a second-order gSEM approach, which involves 119 

examining the relationships between the lower-level factors to identify genetic risks that are 120 

shared across factors. Finally, we characterized the common and independent genetic variance 121 

for select disorders using GWAS-by-subtraction. Thus, we sought to address two critical gaps in 122 

previous research: first, by applying gSEM among AFR individuals, and second, by employing a 123 

hierarchical approach to explore both genetic specificity and transdiagnostic genetic risk. 124 
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Ultimately, these techniques were applied to obtain a more comprehensive understanding of the 125 

genetic underpinnings of SUDs, psychotic, mood, and anxiety disorders. 126 

Methods 127 

 To explore the genetic relationships among SUDs, psychotic, mood, and anxiety 128 

disorders, we used gSEM, which is a statistical technique that integrates summary-level genetic 129 

data with structural equation modeling. By estimating the genetic covariance structure among 130 

traits, gSEM enables the explicit and flexible modeling of complex relationships.16  131 

[Figure 1 here] 132 

Summary Statistics 133 

We used large discovery GWAS for SUDs, psychotic, mood, and anxiety disorders in 134 

EUR and AFR individuals (Supplementary Tables 1-4) as inputs for gSEM. Genetic ancestry was 135 

determined for each input GWAS by the researchers conducting the original study, and these 136 

inferences should not be considered proxies for either race or ethnicity. Instead, the groups 137 

represent statistical determinations of ancestral similarity, within which there remains 138 

heterogeneity. The traits included four SUDs: alcohol use disorder (AUD),13,24 tobacco use 139 

disorder (TUD),15 cannabis use disorder (CanUD),12 and opioid use disorder (OUD);11 two 140 

disorders that can include psychotic features: BD10,25 and SCZ;9,25 and two mood and anxiety 141 

traits: anxiety (ANX)8,26,27 and MDD.14,28 In EUR individuals, we used multi-trait analysis of 142 

GWAS (MTAG)29 to enhance the power to detect effects associated with a broad spectrum of 143 

anxiety disorders, including generalized anxiety disorder, panic disorder, social phobia, 144 

agoraphobia, and specific phobias (see Supplementary Materials and Supplementary Table 5). 145 

The resulting ANX summary statistics produced by MTAG were then used as an input for gSEM. 146 

[Table 1 here] 147 
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Prior to common factor modeling in accordance with the procedure for performing 148 

gSEM, we calculated genetic correlations between the disorders using linkage disequilibrium 149 

score regression (LDSC) implemented in GenomicSEM 0.0.5c.16 To prevent downward bias in 150 

LDSC estimates, when SNP-level sample sizes were not available within each set of summary 151 

statistics, we calculated the effective sample size using the sum of effective sample sizes across 152 

the input GWAS cohorts (see Supplementary Materials).30 For EUR analyses, SNPs were 153 

restricted to those contained within the EUR HapMap3 reference panel31 with a minor allele 154 

frequency (MAF) > 0.01. We then performed LDSC using EUR 1000 Genomes Phase 3 linkage 155 

disequilibrium (LD) scores.32 Given the statistical challenges associated with including non-EUR 156 

individuals in gSEM analyses due in part to differences in LD structure and admixture, we 157 

compared the performance of three sets of LD scores before performing LDSC in AFR 158 

individuals. We restricted each set of LD scores to well-imputed SNPs with MAF > 0.01 and 159 

then compared several parameters, including LD score distribution, LD block length, and the 160 

stability of SNP-based heritability and genetic correlation estimates to determine the optimal 161 

approach (see Supplementary Materials). This step ensured the selection of an appropriately 162 

matched reference panel to avoid biasing estimates. Ultimately, we selected the Pan-UKB AFR 163 

reference data,33 which enabled the best performance of gSEM models among AFR individuals.  164 

Genomic Structural Equation Modeling 165 

Consistent with best approaches for gSEM, we performed exploratory factor analysis 166 

(EFA) and confirmatory factor analysis (CFA) on independent data to evaluate the reliability of 167 

our results. We first performed EFA on the odd chromosomes using LDSC matrices derived from 168 

the summary statistics of the previously described SUDs and psychiatric disorders to evaluate the 169 

optimal number of factors and the loadings of each disorder in a hypothesis-free manner. We 170 
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used the Matrix R package to correct for the possibility of a non-positive definite matrix34 within 171 

the LDSC output and then performed EFA for 1-4 latent factors using the lavaan R package and 172 

a promax rotation.35 Following EFA, we examined model fit indices (i.e., chi-square value, 173 

Akaike information criterion (AIC), comparative fix index (CFI), and standardized root mean 174 

squared residual (SRMR)) and eigenvalues to determine the optimal model.36 Traits with a 175 

loading ≥0.35 on each latent factor were retained for confirmatory factor analysis (CFA), which 176 

was performed on the even chromosomes to avoid overfitting the data. Because of the limited 177 

statistical power in AFR models, factor analyses were performed on all chromosomes.  178 

Following CFA, we prepared the input summary statistics for GWAS by standardizing 179 

coefficients and standard error (SE) values, such that SNP effects were scaled similarly for 180 

binary and continuous phenotypes. For quality control, we included only SNPs with MAF>0.01 181 

and imputation score>0.60. In GWAS, we regressed each SNP on each latent variable using 182 

diagonally weighted least squares (DWLS) estimation and standard genomic control. We 183 

calculated the effective sample size of each resulting common factor GWAS as described by 184 

Mallard et al. (2022).37 185 

Next, we constructed second-order common factor models to capture genetic effects that 186 

account for co-occurrence among SUDs and their psychiatric comorbidities. For both the EUR 187 

and AFR analyses, to ensure identification of the second-order models, we set the loadings of 188 

each first-order factor onto its respective second-order factor equal to the square root of their 189 

genetic correlation.38 We then ran GWAS on each second-order factor using the procedure 190 

described for the first-order common factor GWAS.  191 

To identify significant independent SNPs from GWAS, we performed LD clumping with 192 

PLINK 1.939 using an r2 threshold of 0.1 and physical distance threshold of 3000 kb 193 
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(Supplementary Materials). For loci not previously significantly associated with a corresponding 194 

SUD, psychotic, mood, or anxiety disorder (hereafter referred to as novel), we performed 195 

PheWAS on the lead SNP to examine its associations across the phenomic spectrum using the 196 

GWAS Atlas (Supplementary Materials).40 Additionally, for any novel lead SNPs identified, we 197 

used the LD-based Probabilistic Identification of Causal SNPs (PICS) v2.1.1 finemapping tool to 198 

assess their potential as the most likely causal variant to be responsible for the observed 199 

association in a given locus. 200 

After performing each of the first- and second-order common factor GWAS, we 201 

calculated QSNP, a measure of heterogeneity that tests the null hypothesis that a SNP’s effects 202 

operate entirely through a common factor. For example, a SNP that primarily influences SUDs 203 

through its effects on a single disorder, like TUD, should violate the null hypothesis. To identify 204 

SNPs with heterogeneous effects, we examined associations between each SNP and common 205 

factor via a common pathway model. Then, separately for each factor, we fit an independent 206 

pathway model in which the SNP predicted each of the factor’s indicators. We performed a chi-207 

square difference test on the two models (Supplementary Figure 1) and removed SNPs with p < 5 208 

x 10-8 (Supplementary Tables 6-10) from the factor’s summary statistics prior to conducting all 209 

post-GWAS analyses. 210 

GWAS-by-Subtraction 211 

To ensure that the GWAS-by-subtraction models were informative and adequately 212 

powered, we performed these analyses only on disorders with a standardized unexplained 213 

variance > 0.30 in the first-order CFA. Following the paradigm of Demange et al. (2021),22 we 214 

first specified two latent genetic factors. On the first factor, we loaded only the specific disorder 215 

of interest (i.e., depending on the model, TUD, BD, or SCZ), while on the other factor we loaded 216 
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the specific disorder and the other disorders included in its broader common factor. Then, we 217 

imposed two constraints by setting to 0 the covariance between: (1) the disorder of interest and 218 

all other disorders, and (2) the two latent genetic factors. Finally, to capture genetic effects on the 219 

disorder that were not correlated with the common factor, we regressed each SNP on the latent 220 

factor with a sole loading for the disorder of interest. To identify genetic effects on the disorder 221 

of interest that operated through the common factor, each SNP was regressed on the latent factor 222 

on which all common factor traits were loaded. Due to the limited statistical power of the AFR 223 

models (max Neff = 6,421), we restricted GWAS-by-subtraction analyses to EUR models. The 224 

effective sample size calculations for each of the GWAS-by-subtraction models were adjusted to 225 

account for the fact that the GWAS modeled residual heritability.22 226 

Biological Characterization 227 

 We used Functional Mapping and Annotation of Genome-Wide Association Studies 228 

(FUMA) version 1.6.041 to conduct post-GWAS analyses of each GWAS (i.e., first-order 229 

common factors in EUR and AFR individuals, second-order common factors in EUR and AFR 230 

individuals, and GWAS-by-subtraction models in EUR individuals). Gene-based tests, gene-set 231 

enrichment, and gene-tissue expression analyses were conducted using MAGMA version 1.08.42 232 

We examined gene expression in BrainSpan43 and GTEx v844 tissue samples. SNP-to-gene 233 

associations and gene annotations were evaluated using: (1) expression quantitative trait loci 234 

(eQTLs) from PsychENCODE45 and GTEx v844 brain tissue samples and (2) chromatin 235 

interactions via Hi-C data for the dorsolateral prefrontal cortex, hippocampus, ventricles, and 236 

neural progenitor cells.46 To annotate the protein products and investigate protein-protein 237 

interactions of MAGMA-identified genes, we used the STRING database v12.0 and applied its 238 

default parameters.47 Enrichment of protein-protein interactions was calculated as the observed 239 
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number of edges (i.e., interactions) divided by the expected number of edges in the protein 240 

network. Significant enrichment would suggest that the proteins that are encoded by genes 241 

associated with a factor participate in common pathways relevant to that factor. 242 

Genetic Correlations with gSEM Factors 243 

Genetic correlations between gSEM output summary statistics and other traits were 244 

calculated using LDSC48,49 with 1000 Genomes Project phase 332 (for EUR) and PanUKB33 (for 245 

AFR) data as LD references. For first- and second-order common factors in EUR individuals, we 246 

used the Complex-Traits Genetics Virtual Lab50 to calculate batch genetic correlations with 1,437 247 

traits across a wide variety of domains assessed via International Classification of Diseases 248 

(ICD) codes and self-report. In AFR individuals, genetic correlations were calculated for selected 249 

psychiatric and medical phenotypes as the Complex-Traits Genetics Virtual Lab does not 250 

currently facilitate LDSC in non-EUR ancestries. For GWAS-by-subtraction models in EUR 251 

individuals, we calculated genetic correlations with a selection of relevant psychiatric, social, 252 

and physical traits to facilitate comparison of the common and independent genetic effects 253 

associated with each disorder. We applied a Benjamini-Hochberg false discovery rate (FDR) 254 

correction to each set of genetic correlation analyses to account for multiple testing. Lastly, we 255 

calculated trans-ancestry genetic correlations using the regression fit method to compare gSEM 256 

common factors across EUR and AFR ancestry individuals with Popcorn v1.051 and ancestry-257 

matched 1000 Genomes reference files. Reference files were prepared by excluding the MHC 258 

region, and Popcorn was used to compute LD scores for both populations.  259 

Polygenic Score-Based PheWAS 260 

 Prior to calculating polygenic scores (PGS) in the Penn Medicine Biobank (PMBB), 261 

GWAS for the first-order, second-order, and TUD GWAS-by-subtraction models were re-run 262 
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excluding PMBB to ensure independence of the GWAS and target samples. We calculated PGS 263 

from gSEM output summary statistics using PRS-CSx52 and conducted a phenome-wide 264 

association study (PheWAS) in the PMBB. PheWAS is a hypothesis-free approach to explore the 265 

association between genetic variants and traits across the spectrum of human disease and health. 266 

PMBB participants are recruited through the University of Pennsylvania Health System and 267 

provide access to their electronic health record (EHR) and blood or tissue samples.53 Genotyping 268 

was performed using the Illumina Global Screening Array. Quality control procedures included 269 

removing SNPs with marker call rates <95% and sample call rates <90%, as well as individuals 270 

with sex discrepancies. Imputation was performed using Eagle2 (Reference-based phasing using 271 

the Haplotype Reference Consortium panel) and Minimac4 on the TOPMed Imputation Server. 272 

In the case of related individuals (pi-hat threshold ≥ 0.25), one from each pair was removed 273 

from analyses. Genetic ancestry was determined using quantitative discriminant analysis of 274 

principal components (PCs) using smartpca.54,55 These procedures resulted in 10,383 AFR 275 

individuals and 29,355 EUR individuals for inclusion in the PheWAS. 276 

ICD-9 and ICD-10 codes were gathered from EHR and mapped to phecodes. Cases were 277 

individuals with at least two instances of a given ICD code (“phecodes”). PGS were 278 

standardized, and PheWAS was conducted by fitting a logistic regression predicting each 279 

phecode from the PGS, with sex, age, and the top 10 PCs included as covariates using the 280 

PheWAS package56 in R. We used a Benjamini-Hochberg FDR corrected p-value to ascertain 281 

significant associations. 282 

Results 283 

Genetic Correlations among Input GWAS 284 
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 European Ancestry. Genetic correlations among SUDs ranged from 0.60 (SE = 0.06, p < 285 

0.001; TUD and OUD) to 0.92 (SE = 0.05, p < 0.001; AUD and OUD). MDD and ANX were 286 

strongly genetically correlated (rg = 0.91, SE = 0.04, p < 0.001), as were BD and SCZ (rg = 0.68, 287 

SE = 0.03, p < 0.001). Furthermore, SUDs were significantly genetically correlated with the 288 

other psychiatric disorders, ranging from 0.08 (SE = 0.02, p < 0.001; TUD and BD) to 0.51 (SE 289 

= 0.03, p < 0.001; AUD and MDD; Supplementary Figure 2 and Supplementary Table 11).  290 

 African Ancestry. All four SUDs exhibited significant genetic correlations with one 291 

another, ranging from 0.56 (SE = 0.10, p < 0.001; TUD and CanUD) to 0.89 (SE = 0.18, p < 292 

0.001; OUD and CanUD). MDD and ANX were significantly correlated (rg = 0.89, SE = 0.385, p 293 

= 0.021), as were BD and SCZ (rg = 0.43, SE = 0.17, p = 0.011). Across disorder classes, AUD 294 

was correlated with all the psychiatric disorders except BD (rg = 0.19, SE = 0.15, p = 0.21). On 295 

the other hand, TUD was only significantly genetically correlated with BD (rg = 0.24, SE = 0.12, 296 

p = 0.037) and SCZ (rg = 0.29, SE = 0.10, p = 0.005). CanUD was significantly genetically 297 

correlated with all the psychiatric disorders except ANX (rg = 0.29, SE = 0.20, p = 0.145), and 298 

OUD was correlated with all (Supplementary Figure 3 and Supplementary Table 12).  299 

First-Order Common Factors: SUDs, Psychotic, and Mood Disorders 300 

European Ancestry. Of the EFA models examined, the 3-factor model fit the data best 301 

(Supplementary Table 13). As all loadings were ≥ 0.35 with no significant cross-loadings, all 302 

traits were carried forward on their respective factors for CFA, which fit the data well (𝜒2(17) = 303 

130.04, p = 1.84x10-19, AIC = 168.04, CFI = 0.95, SRMR = 0.05). All SUDs loaded onto the first 304 

factor, while BD and SCZ loaded onto the second, and MDD and ANX onto the third. The 305 

factors were significantly intercorrelated, ranging from 0.39 (F1~F2) to 0.50 (F2~F3) 306 

(Supplementary Table 14). 307 
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[Figure 2 here] 308 

The SUD factor GWAS identified 143 lead SNPs (Supplementary Table 15), of which 47 309 

were not genome-wide significant (GWS) or in LD with any GWS SNPs in the input GWAS, 310 

although they had all been significantly associated with SUDs or SUD-related traits in prior 311 

GWAS (Supplementary Table 15).57 There were 17 independent Q-SNPs that demonstrated 312 

significant heterogeneity across SUDs (Supplementary Table 6). The psychotic disorder factor 313 

GWAS identified 9 independent Q-SNPs (Supplementary Table 7) and 162 lead SNPs 314 

(Supplementary Table 16), 27 of which had not been identified by the SCZ or BD GWAS, but all 315 

of which had previously been GWS or in LD with GWS SNPs in at least one psychotic trait 316 

GWAS (Supplementary Table 16). The mood factor GWAS identified 14 independent Q-SNPs 317 

(Supplementary Table 8) and 112 lead SNPs (Supplementary Table 17), 13 of which were not 318 

identified by the MDD or ANX GWAS, and 2 of which (rs75174029 and rs7652704) were not 319 

previously significantly associated with or in LD with GWS SNPs for any mood or anxiety 320 

disorder (Supplementary Table 17). PheWAS in the GWAS Atlas identified associations of 321 

rs75174029 with the number of non-cancer related illnesses, general risk tolerance, and having 322 

recent trouble relaxing; and rs7652704 with sensitivity/hurt feelings, neuroticism, and positive 323 

affect, among other related traits (Supplementary Figure 4). 324 

rs75174029 is an intronic variant in FOXP1, which serves as a key regulatory gene in 325 

neural development.58,59 Finemapping identified the SNP as the most likely causal variant 326 

accounting for the observed association within the locus (PICS probability = 0.307; 327 

Supplementary Table 18). Additionally, Hi-C chromatin interaction data (Supplementary Figure 328 

5) revealed that rs75174029 contacts several regions of FOXP1, including its promoter. Taken 329 

together, this evidence suggests rs75174029’s association with mood/anxiety disorders may be 330 
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due to its presence in an enhancer with cis-regulatory function on FOXP1 during neural 331 

development. The second novel SNP, rs7652704 (Supplementary Figure 6), is an intronic variant 332 

in an uncharacterized non-coding RNA locus. rs7652704 and 20 other SNPs in strong LD all had 333 

PICS probabilities of 0.027, suggesting difficulty in determining the most likely causal variant 334 

accounting for the association in the locus (Supplementary Table 19). rs7652704 is an eQTL of 335 

NECTIN3 (also known as PVLR3) in cultured fibroblasts and displays chromatin interaction with 336 

both BTLA, which is a gene involved in immune response,60 and NECTIN3, which encodes a 337 

nectin adhesion molecule that regulates cell organization and modulates stress responses.61-63 338 

Thus, ample evidence associates both rs75174029 and rs7652704 with regulatory roles. 339 

Gene-tissue expression analyses showed a role for both SUD- and psychotic disorder-340 

related genes during prenatal brain development (Supplementary Figures 7 and 8), but no 341 

developmental period was significant for the mood disorders factor (Supplementary Figure 9).  342 

Mapped genes from each of the factor GWAS were significantly enriched for protein-protein 343 

interactions, indicating shared biological functions among disorders of the same class (SUDs = 344 

1.37x, psychotic = 1.40x, and mood/anxiety disorders = 1.43x enrichment; ps < 1.00 x 10-16).  345 

[Figure 3 here] 346 

African Ancestry. Fit was generally poor for each of the EFA models (all CFIs < 0.40; 347 

Supplementary Table 20). Upon examining each model’s factor loadings, the proportion of 348 

variance explained by each factor, and eigenvalues, we tested two CFA models: a 2-factor model 349 

representing SUDs and psychiatric disorders and a 3-factor CFA model replicating the factor 350 

structure identified in EUR individuals. Attempting to fit the 3-factor CFA led to a negative 351 

residual variance and a correlation >1 between the psychotic and mood disorder factors. Because 352 

negative variances and correlations that are out of bounds can indicate issues with model 353 
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misspecification or overfitting the data, we proceeded with the 2-factor CFA model, which had 354 

an adequate fit (𝜒2(19) = 21.49, p = 0.31, AIC = 55.49, CFI = 0.99, SRMR = 0.10) and required 355 

no constraints (Figure 2 and Supplementary Table 21).  356 

The SUD factor GWAS (Supplementary Figure 10) identified 1 lead SNP, rs1944683, 357 

positioned within an intergenic region on chromosome 11. To our knowledge, this variant has not 358 

previously been GWS or in LD with any GWS SNPs in AFR GWAS of substance use traits. 359 

However, the locus has been associated with alcohol consumption, tobacco-related traits, opioid 360 

use disorder, and cannabis use disorder in EUR and cross-ancestry studies.64-66 The SNP 361 

exhibited chromatin interaction with two genes: BLID and C11orf63. A PheWAS of the lead SNP 362 

in the GWAS Atlas identified significant associations with regular smoking, past-month stomach 363 

pain, and tobacco-related conditions, such as atrial fibrillation and respiratory function (i.e., 364 

forced vital capacity and peak expiratory flow). One lead QSNP, rs10489130, identified on 365 

chromosome 4, exhibited significant associations with AUD only and was GWS in a previous 366 

AUD GWAS in AFR individuals, suggesting that this SNP may display specificity for AUD 367 

rather than influencing SUDs broadly.66  368 

For the SUD factor, gene expression was significantly enriched in brain tissues involved 369 

in emotion processing, reward signaling, and cognitive control, including the putamen, 370 

amygdala, caudate, and hippocampus (Supplementary Figure 11). No significant variants were 371 

identified for the psychiatric disorders factor (Supplementary Figure 12). Gene expression was 372 

also not significantly enriched for any developmental stage or tissue type, although the top 373 

associations were with brain tissues (Supplementary Figure 13). 374 

Second-Order Common Factors 375 
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European Ancestry. The SUD factor was significantly genetically correlated with both 376 

the psychotic (rg = 0.38, SE = 0.03, p < 0.001) and mood (rg = 0.44, SE = 0.03, p < 0.001) 377 

disorder factors. We used a higher-order CFA model (𝜒2(2) = 57.61, p = 3.09x10-13, AIC = 65.61, 378 

CFI = 0.91, SRMR = 0.07; Supplementary Figure 14 and Supplementary Table 22) to examine 379 

this shared genetic structure. After accounting for shared genetic risk, there was less standardized 380 

residual variance in the SUD factor (uSUD = 0.19, SE = 0.04) than the psychotic (uPsychotic = 0.63, 381 

SE = 0.05) or mood disorder factors (uMood = 0.56, SE = 0.04). A GWAS of the SUD and 382 

psychotic disorders factor identified 4 independent Q-SNPs (Supplementary Table 9) and 76 lead 383 

SNPs (Supplementary Table 23 and Supplementary Figure 15), 12 of which were not significant 384 

in any input or the first-order GWAS. For the SUD and mood factor, 6 independent Q-SNPs 385 

(Supplementary Table 10) and 62 lead SNPs were identified (Supplementary Table 24 and 386 

Supplementary Figure 16), 5 of which were in loci that were not significant in any input or first-387 

order GWAS. All lead SNPs at the second-order level were previously associated with related 388 

traits.  389 

Genetic risk shared among SUD and psychotic disorders implicated several gene sets, 390 

including molecular functions such as transcription regulation and sequence-specific DNA 391 

binding, and biological processes such as neuron differentiation. Genetic risk shared between 392 

SUDs and mood disorders was associated with enrichment in two gene sets involved in the 393 

biological processes of mechanosensory behavior and axonal protein transport. For both second-394 

order factors, gene expression was enriched in brain tissues (Supplementary Figures 17 and 18). 395 

Genes associated with both second-order factors were significantly enriched for protein-protein 396 

interactions (SUDs and psychotic disorder = 1.54x, SUDs and mood/anxiety disorders = 1.57x; 397 

ps < 1.00 x 10-16). 398 
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African Ancestry. The SUD and psychiatric disorder factors were highly genetically 399 

correlated (rg = 0.74, SE = 0.13, p < 0.001), and a second-order CFA model accounting for this 400 

shared genetic risk fit the data well (𝜒2(19) = 21.49, p = 0.31, AIC = 55.49, CFI = 0.99, SRMR = 401 

0.10; Supplementary Table 25 and Supplementary Figure 19). Although no significant SNPs 402 

were identified by the second-order GWAS (Supplementary Figure 20), there was enriched gene 403 

expression in several brain regions, including those associated with reward processing (putamen, 404 

caudate, nucleus accumbens), emotion processing and memory (amygdala, hippocampus), and 405 

executive functions and decision-making (anterior cingulate cortex; Supplementary Figure 21).  406 

GWAS-by-Subtraction 407 

Common and independent genetic effects were examined for TUD, SCZ, and BD, which 408 

each had a residual variance ≥0.30 in the EUR first-order common factor models. We chose this 409 

threshold because analyses performed on traits with less residual variance were underpowered 410 

for parsing transdiagnostic from disorder-level effects. We identified 102 GWS lead SNPs for 411 

TUD Common, which represented genetic effects on TUD that operate through the SUD factor. 412 

There were 20 lead SNPs for TUD Independent, which represented genetic effects on TUD that 413 

are not shared with the other three SUDs. 13 of these SNPs did not reach significance in the TUD 414 

Common GWAS (Supplementary Table 26). Chromatin interaction mapping identified several of 415 

the nicotinic acetylcholine receptor genes (CHRNA2, CHRNA4, and CHRNA5; Supplementary 416 

Figure 22). Gene-set analyses for TUD Independent implicated genes involved in nicotinic 417 

acetylcholine reception and behavioral responses to nicotine. 418 

We identified 51 lead SNPs for SCZ Common and 18 for SCZ Independent, of which 15 419 

were not GWS nor in LD with GWS SNPs in the SCZ Common GWAS (Supplementary Table 420 

27). Chromatin interaction mapping identified several genes on chromosome 6, including the 421 
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ZSCAN and HIST1H gene families, as possible sources of functional effects related to SCZ risk 422 

independent of BD (Supplementary Figure 23). Although after Bonferroni correction no gene-423 

sets were significantly enriched for SCZ Independent, the top set involved up-regulated genes in 424 

the prefrontal cortex in mouse models of 22q11.2 microdeletions, which, in humans, are 425 

associated with risk of developing SCZ.67 Finally, there were 189 significant lead SNPs for BD 426 

Common and 13 for BD Independent, 10 of which did not reach significance in the BD Common 427 

GWAS (Supplementary Table 28). Although few SNPs were significant in the BD Independent 428 

GWAS, chromatin interactions identified potential functional effects of these variants on genes, 429 

including MXI168 and ADD3,69 which have been previously associated with BD (Supplementary 430 

Figure 24). For BD Independent, one gene-set involved in the regulation of trans-synaptic 431 

signaling remained significant after Bonferroni correction. Protein-protein interactions were 432 

significantly enriched for TUD, SCZ, and BIP Independent (TUD = 3.31x, p = 3.45 x 10-13, SCZ 433 

= 5.48x, p < 1.00 x 10-16, BIP = 5.75x, p = 2.19 x 10-11), indicating potential molecular 434 

mechanisms with enhanced specificity (Supplementary Figures 25-27).  435 

[Figure 4 here] 436 

Genetic Correlations with gSEM Factors 437 

European Ancestry. The SUD factor was, as expected, strongly genetically correlated 438 

with smoking and alcohol traits, as well as depression and socioeconomic factors, including 439 

reduced educational attainment, unemployment due to sickness/disability, and the Townsend 440 

deprivation index (Supplementary Figure 28). The psychotic factor correlated most strongly with 441 

related traits, such as SCZ, BD, depression, and anxiety. However, psychotic disorders also 442 

exhibited a positive genetic correlation with risk taking and a negative correlation with cognitive 443 

performance, which consists of fluid intelligence and the first principal component of scores on 444 
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neuropsychological tests (Supplementary Figure 29). Although the mood disorders factor 445 

correlated most strongly with measures of depression and anxiety, the remaining correlations 446 

were predominantly with somatic conditions, such as chronic pain, longstanding 447 

illness/disability/infirmity, and prescription medication usage (Supplementary Figure 30). 448 

For the second-order factors, the top genetic correlations were a mixture of SUD-related, 449 

psychiatric, and medical traits. The SUD and psychotic disorders factor, for example, correlated 450 

most strongly with SCZ and BD. Other significant genetic correlations included smoking-related 451 

traits, cognitive measures, and risk taking, as with the first-order psychotic disorder factor. The 452 

SUD and mood disorders factor correlated most strongly with mood and anxiety traits and illness 453 

and medication use for pain or gastrointestinal problems, reflecting similar associations observed 454 

for the first-order mood disorders factor (Figure 5). 455 

Genetic correlations underscored differences between disorder-level and transdiagnostic 456 

genetic effects (Figure 4). Although TUD Common was significantly positively genetically 457 

correlated with SCZ (rg = 0.35, SE = 0.02, p < 0.001), TUD Independent was not (rg = -0.05, SE 458 

= 0.03, p = 0.08), with a similar pattern observed for other thought/psychotic disorders. SCZ 459 

Common had a nominally weaker negative genetic correlation with cognitive performance (rg = -460 

0.09, SE = 0.02, p < 0.001) and was significantly positively correlated with educational 461 

attainment (rg = 0.11, SE = 0.02, p < 0.001), while SCZ Independent had consistently negative 462 

associations with both (rg = -0.22, SE = 0.03, p < 0.001 and rg = -0.09, SE = 0.02, p < 0.001, 463 

respectively). Among other traits, BD Common and Independent showed opposite patterns of 464 

associations with automobile speeding propensity and cognitive performance, both of which 465 

were negative for BD Common (rg = -0.21, SE = 0.02, p < 0.001; and rg = -0.24, SE = 0.02, p < 466 

0.001, respectively) and positive for BD Independent (rg = 0.13, SE = 0.03, p < 0.001; and rg = 467 
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0.05, SE = 0.02, p = 0.03, respectively). SCZ and BIP Independent had significantly different 468 

associations with risk-taking (rg = 0.25, SE = 0.03, p < 0.001 vs. rg = -0.04, SE = 0.03, p = 0.14; 469 

Z = 6.84, p = 8.18 x 10-12) and MDD (rg = 0.35, SE = 0.03, p < 0.001 vs. rg = -0.04, SE = 0.03, p 470 

= 0.22; Z = 9.19, p = 3.84 x 10-20).  471 

African Ancestry. The psychiatric disorders factor was genetically correlated with all 11 472 

traits examined, and the SUD factor was significantly correlated with all except PTSD. There 473 

were minimal differences between the genetic correlations for the first-order factors, likely due 474 

to the large variance in estimates resulting from low statistical power (Supplementary Figure 31). 475 

The second-order SUD and psychiatric factor correlated significantly with all traits except 476 

PTSD, and the strongest correlations were with smoking trajectory, OUD, depression, and 477 

maximum alcohol consumption (Supplementary Figure 32). 478 

Trans-ancestry. The EUR SUD factor was significantly genetically correlated with the 479 

AFR SUD factor (rg = 0.730, SE = 0.094, p = 0.004). Similarly, the AFR psychiatric disorders 480 

factor was genetically correlated with both the EUR psychotic factor (rg = 0.471, SE = 0.216, p = 481 

0.014) and the EUR mood disorders factor (rg = 0.571, SE = 0.204, p = 0.035).  482 

[Figure 5 here] 483 

PheWAS in Penn Medicine BioBank 484 

European Ancestry. Among participants in PMBB, the SUD factor was associated with 485 

TUD, tobacco-related illnesses (lung and other respiratory system cancers and chronic airway 486 

obstruction), and mood/anxiety disorders (Supplementary Figure 33 and Supplementary Table 487 

29). The psychotic disorders factor was significantly associated only with psychiatric traits, 488 

including BD and mood/anxiety disorders (Supplementary Figure 34 and Supplementary Table 489 

30). In contrast, although the mood disorders factor was most strongly associated with the 490 
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presence of various mood and anxiety disorders, it was also associated with physical health 491 

conditions like pain, sleep disorders, and obesity (Supplementary Figure 35 and Supplementary 492 

Table 31). 493 

The second-order SUD and psychotic disorders factor was significantly associated with 494 

tobacco and alcohol-related disorders, with a nonsignificant association with BD (Supplementary 495 

Figure 36 and Supplementary Table 32). Although the PheWAS of the SUD and mood disorders 496 

factor revealed the strongest associations with substance use and psychiatric disorders, it also 497 

showed significant associations with pain, type 2 diabetes, ischemic heart disease, hypertension, 498 

and sleep disorders, amongst other physical health conditions (Supplementary Figure 37 and 499 

Supplementary Table 33). 500 

PheWAS further highlighted the enhanced specificity of the GWAS-by-subtraction 501 

models. Although the TUD Common factor was associated with multiple SUDs, the TUD 502 

Independent factor demonstrated greater specificity, having the highest associations with TUD 503 

and related medical conditions, such as chronic airway obstruction (Supplementary Figure 38). 504 

PheWAS for SCZ Common factor showed broad associations with mood disorders, including 505 

BD, but there were no significant associations for SCZ Independent (Supplementary Figure 39). 506 

PheWAS of both the BD Common and Independent PRS showed significant associations with 507 

BD and other mood disorders, but the association with depression was only significant for BD 508 

Independent (Supplementary Figure 40). 509 

African Ancestry. Although there were no statistically significant phenotypic associations 510 

among AFR individuals in PMBB, the top hits generally aligned with the factor being examined. 511 

For example, the SUD factor was most strongly associated with TUD, followed by SUDs 512 

broadly (Supplementary Figure 41 and Supplementary Table 34). Among the top associations for 513 
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the psychiatric factor were generalized anxiety disorder and the “other mental disorder” 514 

phenotype (Supplementary Figure 42 and Supplementary Table 35). Similar results were seen for 515 

the second-order SUD and psychiatric factor, which included TUD, alcohol-related disorders, 516 

and mood disorders within the top associations (Supplementary Figure 43 and Supplementary 517 

Table 36). 518 

Discussion 519 

 Leveraging the largest available GWAS in European- and African-ancestry individuals, 520 

we combined complementary multivariate methodologies to examine the shared genetic 521 

architecture across SUDs, psychotic, mood, and anxiety disorders. We also examined genetic 522 

effects that operate independent of the shared genetic risk to influence disorders. By integrating 523 

transdiagnostic and disorder-level gSEM, we identified potential biological mechanisms that 524 

contribute to comorbidity across disorder classes and those that distinguish commonly co-525 

occurring conditions. Our findings revealed both pervasive pleiotropy across SUDs and other 526 

psychiatric disorders and trait-specific associations, while also highlighting the need to increase 527 

representation of non-European ancestry individuals in genetic studies of mental health. 528 

Identification of SUDs, Psychotic, and Mood Disorder Factors 529 

 Consistent with other psychiatric genetic findings,19,70 we identified common genetic 530 

factors underlying disorders that exhibit shared features. As expected, MDD and anxiety, which 531 

are highly comorbid and share similar symptoms, loaded onto the same factor. Additionally, 532 

across ancestries, common genetic risk partially accounted for the shared features of BD and 533 

SCZ. Other gSEM studies have also showed that SCZ and BD load onto the same genetic 534 

factor,18,70-72 highlighting their strong shared etiology despite belonging to different diagnostic 535 

classes. Although smaller samples and greater genetic diversity limited statistical power to 536 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24307111doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307111
http://creativecommons.org/licenses/by-nc-nd/4.0/


replicate the EUR factor structure in AFR individuals, there were significant commonalities 537 

across genetic ancestry groups. For example, in both AFR and EUR models, SUDs loaded onto a 538 

single factor that was highly genetically correlated with a previously identified genetic addiction 539 

factor.19 Additionally, trans-ancestry genetic correlations highlighted the consistency of the 540 

genetic influences on the AFR psychiatric disorders factor with both the EUR psychotic and 541 

mood disorders factors. 542 

In AFR individuals, we identified a lead SNP (rs1944683) associated with SUDs that had 543 

not been previously GWS or in LD with GWS SNPs in AFR substance-related GWAS. This 544 

locus has, however, been previously implicated in alcohol, tobacco, cannabis, and opioid-related 545 

traits in EUR and cross-ancestry GWAS.64-66 Our ability to identify this lead SNP was facilitated 546 

by the use of gSEM, which allowed us to leverage power across multiple SUDs. In doing so, we 547 

were able to overcome some of the limitations posed by the relatively low statistical power of 548 

existing GWAS in AFR populations. However, despite statistical advancements, our study 549 

remained underpowered in AFR individuals. 550 

 In EUR individuals, we detected two significant loci for the mood and anxiety disorders 551 

factor that had not been previously significant in GWAS of mood or anxiety disorders. 552 

Performing chromatin interaction mapping on the lead SNPs for these loci implicated genes 553 

involved in immune and stress responses (BTLA and NECTIN3, respectively) and a gene related 554 

to hippocampal development (FOXP1).58,60,62,73 The identification of BTLA, which encodes the 555 

B- and T-lymphocyte attenuator protein, is consistent with other research highlighting the role of 556 

immune dysregulation in psychiatric pathogenesis.74-76 NECTIN3 encodes a cell adhesion 557 

molecule that is involved in synaptic plasticity, enriched in hippocampal neurons, and implicated 558 

in stress-related disorders.61,62,77 FOXP1, a transcription factor that plays a crucial role in 559 
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hippocampal development, has also been implicated in the regulation of synaptic plasticity.58 560 

Further highlighting the potential role of immune functioning, these loci have previously been 561 

implicated in GWAS of lymphocyte and leukocyte counts, as well as autoimmune conditions, 562 

such as inflammatory bowel disease. Thus, dysfunctions in synaptic plasticity and immune 563 

regulation may underlie a range of psychiatric conditions, including MDD and anxiety.78,79 564 

Targeting these common biological pathways could lead to the development of therapeutics with 565 

broader efficacy profiles. 566 

 In EUR individuals, both the SUD and psychotic disorder factors showed a significant 567 

association with genes expressed in brain tissue during prenatal development. Although no 568 

developmental stage reached significance for mood disorders or in AFR individuals, the top 569 

associations were consistently prenatal periods. This underscores the importance of early 570 

neurodevelopmental processes, including neurogenesis, synaptogenesis, and the formation of 571 

neurotransmitter systems, in shaping the susceptibility to SUDs and psychiatric disorders. 572 

Furthermore, prenatal development may represent a sensitive window during which genetic and 573 

environmental factors interact to influence long-term mental health outcomes.80 Epigenetic 574 

mechanisms, such as those modulated by maternal stress and other environmental conditions,81,82 575 

may play a crucial role in mediating gene expression patterns and contributing to the 576 

developmental origins of psychiatric disorders. The specifics of these epigenetic mechanisms and 577 

other non-coding regulatory processes remain largely unclear. However, statistical and 578 

technological advances, such as next-generation sequencing and multi-omics analysis, show 579 

promise for furthering knowledge in this area.83 580 

SUDs Share Genetic Liability with Psychotic and Mood Disorders  581 
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Evaluating shared genetic variance across the common factors revealed higher-order 582 

dimensions of liability to psychopathology, including genetic risk shared between SUDs and 583 

psychotic disorders and between SUDs and mood/anxiety disorders. A PheWAS in the PMBB 584 

showed broad phenotypic manifestations of these dimensions of genetic liability. Notably, in 585 

EUR individuals, SUD and mood/anxiety disorders exhibited significant associations with 586 

various physical health conditions, including obesity, type 2 diabetes, chronic pain, chronic 587 

airway obstruction, heart disease, hypertension, and sleep disorders. Because the PheWAS was 588 

underpowered in AFR individuals, there were no significant associations, though the top 589 

associations included relevant phenotypes, such as alcohol-related disorders, TUD, and mood 590 

disorders. 591 

Genetic correlations further underscored the pervasive impact of genetic risk for 592 

psychiatric comorbidities and SUDs. The second-order factors (i.e., SUD and mood disorders 593 

and SUD and psychotic disorders) were genetically correlated with adverse outcomes that 594 

included lower cognitive performance, elevated HDL cholesterol, chronic pain, long-standing 595 

illness, and miserableness. In AFR individuals, the second-order factor, representing shared 596 

genetic effects across SUDs and psychiatric disorders, was significantly genetically correlated 597 

with pain intensity and various substance use and psychiatric phenotypes. Thus, genetic risk for 598 

co-occurring SUDs and psychiatric disorders has far-reaching implications for both mental and 599 

physical health. 600 

In addition to shared variance, in EUR individuals there was substantial unique genetic 601 

variance for both psychotic (0.63, SE = 0.05) and mood/anxiety disorders (0.56, SE = 0.04). The 602 

residual genetic variance in SUDs was also significant, albeit smaller, after accounting for 603 

genetic variance shared with psychotic and mood/anxiety disorders (0.19, SE = 0.04). In EUR 604 
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individuals, more of the genetic variance in SUDs was shared with mood/anxiety than psychotic 605 

disorders. This suggests that there are different degrees of genetic convergence between SUDs 606 

and their common psychiatric comorbidities. Evaluating these patterns of genetic overlap and 607 

heterogeneity can help distinguish highly comorbid psychiatric disorders and pinpoint both 608 

shared and distinct etiological mechanisms.  609 

Specificity of Genetic Effects for Tobacco Use Disorder, Schizophrenia, and Bipolar 610 

Disorder  611 

To evaluate transdiagnostic and disorder-level liability, SNPs for TUD, SCZ, and BD 612 

were parsed into effects that: (1) operated through their respective common factors or (2) were 613 

uncorrelated with the common factor. Thus, we were able to distinguish biological mechanisms 614 

and genetic correlates that contribute to comorbidity across disorders from those that show 615 

greater specificity. This hierarchical approach can yield genetic knowledge across levels of 616 

psychopathology and identify patterns of convergence and divergence across disorders. 617 

As an example of the utility of this approach, GWAS-by-subtraction findings provided 618 

insights into the underlying structure of psychotic disorders. SCZ and BD shared a common 619 

genetic core, consistent with their shared psychotic features and in line with empirical 620 

nosological models.84 However, the genetic risk for each disorder that was independent of this 621 

common psychotic core showed different patterns of associations with other complex traits. For 622 

example, SCZ Independent was more negatively genetically correlated with measures of 623 

cognition and educational attainment than BD Independent, which was more strongly associated 624 

with risk-taking behaviors and affective disorders. Our results are highly consistent with the 625 

expanded psychosis continuum hypothesis, which proposes that although SCZ and BD share a 626 

psychotic core, cognitive and affective domains differentiate the disorders.85 Specifically, SCZ is 627 
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characterized by greater cognitive impairments and BD by greater affective impairments. Our 628 

findings lend genetic support to this hypothesis, previously investigated using only psychological 629 

and neural evidence.85  630 

PheWAS results further showcased the enhanced specificity of findings when 631 

independent PGS for TUD, SCZ, and BD were compared with transdiagnostic liability. For 632 

example, TUD Independent exhibited several associations not observed for the TUD Common 633 

factor, including ischemic heart disease, atherosclerosis, obesity, and skin conditions. This may 634 

reflect a combination of unhealthy lifestyle factors, direct physiological effects of tobacco use, 635 

and shared biological pathways underlying these conditions. This finding is also consistent with 636 

epidemiologic and genetic research supporting tobacco use as one of the strongest risk factors for 637 

cardiovascular disease.86-88 Differential patterns also emerged for SCZ and BD, with SCZ 638 

Common and BD Independent showing broader associations with mood disorders than their 639 

respective components. Recent research comparing transdiagnostic and disorder-specific genetic 640 

effects across 11 psychiatric disorders similarly observed substantial differences in genetic 641 

associations,89 as has research parsing alcohol-specific risk from broader externalizing liability.90 642 

Thus, hierarchical genetic approaches can facilitate a more nuanced understanding of patterns of 643 

comorbidity and heterogeneity across co-occurring conditions.  644 

These findings also pave the way for developing more refined PGS than are currently 645 

available. For example, depression PGS show little specificity, accounting for a similar amount 646 

of variance in mood disorders, anxiety disorders, ADHD, and SUDs.91 Similarly, an evaluation of 647 

16 PGS for psychiatric phenotypes found that most were associated with general 648 

psychopathology rather than the specific domain for which they purported to measure risk.92 649 

Although PGS have shown clinical utility in predicting some non-psychiatric disorders,93,94 650 
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prediction performance for psychiatric phenotypes remains limited.95 This may be due in part to 651 

a lack of specificity of currently available psychiatric PGS. Existing PGS are useful for 652 

providing a broad overview of genetic predispositions to psychiatric disorders. However, when 653 

the focus shifts to exploring associations of a given psychiatric disorder without the confounding 654 

influence of co-occurring conditions, a more granular PGS is needed. Efforts to develop more 655 

precise PGS, including via the combined application of transdiagnostic and disorder-level 656 

genetic methods, may ultimately enhance their clinical utility. 657 

Conclusions 658 

 Using a combination of multivariate approaches across multiple ancestral groups, we 659 

examined the common and independent genetic effects on SUDs, psychotic, mood, and anxiety 660 

disorders. In doing so, we identified potential biological mechanisms contributing to comorbidity 661 

both within and across classes of disorders, while also identifying pathways that may distinguish 662 

commonly co-occurring conditions. Isolating transdiagnostic genetic risk factors from those 663 

exhibiting greater specificity may aid in enhancing the precision of genetic prediction, as we 664 

observed when comparing genetic correlations and phenotypic associations of genetic risk 665 

factors. Thus, integrating transdiagnostic and disorder-level genetic models both clarifies the 666 

biological underpinnings of psychiatric comorbidity and identifies distinct biological pathways 667 

that contribute to heterogeneity within classes of psychiatric conditions. 668 

In addition to advancing our understanding of the genetic architecture of SUDs and other 669 

psychiatric disorders, our study also highlights the importance of inclusivity in genetic research. 670 

Previous gSEM studies have been limited to European-ancestry individuals,16,96,97 but as gSEM 671 

has shown the potential to uncover novel genetic associations and provide greater insights into 672 

the etiology of complex traits and diseases, it is imperative that these advances be made available 673 
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to individuals of all ancestral backgrounds. Unfortunately, in combination with smaller samples, 674 

lower LD and higher genetic diversity among African-ancestry individuals present statistical 675 

challenges for many existing analyses.98 This is further complicated by the high degree of 676 

admixture present among individuals of non-European ancestries within the United States.99 677 

Accurate consideration of population substructure via the use of large, representative reference 678 

panels is essential for advancing genetic discovery. We provide details (Supplementary 679 

Materials) on the efforts we took to ensure the inclusion of African-ancestry individuals despite 680 

present limitations in the hopes that this may aid researchers faced with similar decisions. 681 

Advancing genetic discovery across diverse populations will be key in shaping our 682 

understanding of psychiatric etiology. 683 
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Table 1. Genome-wide association studies from which summary statistics were obtained. 701 
European Ancestry 

Study Phenotype Type Cases Controls Total 

Als et al., 2023, Nature Medicine MDD Case-control 387,429 976,554 1,363,983 

Otowa et al., 2016, Molecular 

Psychiatry* 

ANX Case-control 7,016 14,745 21,761 

Levey et al., 2020, American 

Journal of Psychiatry* 

ANX Continuous   175,163 

Purves et al., 2020, Molecular 

Psychiatry* 

ANX Case-Control 25,453 58,113 83,566 

Trubetskoy et al., 2022, Nature SCZ Case-control 53,386 77,258 130,644 

Mullins et al., 2021, Nature 

Genetics 

BD Case-control 41,917 371,549 413,466 

Zhou et al., 2023, Nature 

Medicine 

AUD Case-control 113,325 639,923 753,248 

Levey et al., 2023 Nature 

Genetics 

CanUD Case-control 42,281 843,744 886,025 

Toikumo et al., 2024, Nature 

Human Behaviour 

TUD Case-control 163,734 331,271 495,005 

Kember et al., 2022, Nature 

Neuroscience 

OUD Case-control 31,473 394,471 425,944 

African-Ancestry 

Levey et al., 2021, Nature 

Neuroscience 

MDD Case-control 25,843 33,757 59,600 

Levey et al., 2021, American 

Journal of Psychiatry 

ANX Continuous   24,448 

Bigdeli et al., 2021, 

Schizophrenia Bulletin 

SCZ Case-control 7,509 8,612 16,121 

Bigdeli et al., 2021, 

Schizophrenia Bulletin 

BD Case-control 3,027 8,097 11,124 

Kember et al., 2023, American 

Journal of Psychiatry 

AUD Case-control 25,012 52,313 77,325 

Levey et al., 2023, Nature 

Genetics 

CanUD Case-control 19,065 104,143 123,208 

Toikumo et al., 2024, Nature 

Human Behaviour 

TUD Case-control 45,465 68,955 114,420 

Kember et al., 2022, Nature 

Neuroscience 

OUD Case-control 8,968 79,530 88,498 

Note: MDD = Major Depressive Disorder, ANX = Anxiety Disorders, SCZ = Schizophrenia, BD = 

Bipolar Disorder, AUD = Alcohol Use Disorder, CanUD = Cannabis Use Disorder, TUD = Tobacco 

Use Disorder, OUD = Opioid Use Disorder. See Supplementary Tables 1-4 for full description of 

cohorts. 

*Summary statistics were jointly analyzed using MTAG to enhance the statistical power of the ANX 

phenotype prior to their being used in gSEM (see Supplementary Materials). 

  702 
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Figure Legends 703 
 704 

Figure 1. Study schema. FUMA = Functional Mapping and Annotation of GWAS, CTG-VL = 705 
Complex Trait Genetics Virtual Lab, LDSC = linkage disequilibrium score regression, PheWAS 706 
= phenome-wide association study. 707 
 708 
Figure 2. Genomic structural equation models. AUD = alcohol use disorder, CanUD = 709 
cannabis use disorder, TUD = tobacco use disorder, OUD = opioid use disorder, BD = bipolar 710 
disorder, SCZ = schizophrenia, MDD = major depressive disorder, ANX = anxiety, GAD-2 = 2-711 
item GAD questionnaire.  712 
 713 
Figure 3. Manhattan plots for common factors. The substance use disorders factor GWAS 714 
identified 143 lead SNPs, the psychotic disorders factor identified 162 lead SNPs, and the 715 
mood/anxiety disorders factor identified 112 lead SNPs. The lead SNPs for loci that were not 716 
significant in the input GWAS are annotated with yellow diamonds, and lead SNPs for loci not 717 
previously significantly associated with phenotypes related to the common factor (i.e., novel) are 718 
annotated with green diamonds. 719 
 720 
Figure 4. Hudson plots and genetic correlations of GWAS-by-subtraction models. The left 721 
panel presents Hudson plots of the GWAS-by-subtraction model results with the mapped gene 722 
for lead SNPs annotated. The right panel presents the genetic correlation results. Independent 723 
GWAS refers to the influences on a disorder that do not operate through the common factor, 724 
while the Common GWAS refers to influences on the disorder that do operate through the 725 
common factor.  726 
 727 
Figure 5. Genetic correlations for second-order common factors using Complex Trait 728 
Genetics Virtual Lab. The dashed line represents the log-transformed Bonferroni-corrected p-729 
value across the 1,437 traits included in the analysis. 730 
 731 
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Figure 1. 732 

 733 
 734 
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Figure 2. 736 
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Figure 3. 739 
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Figure 4.        742 
743 

Worry
Total PCL Score

Schizophrenia
Schizoaffective Disorder

Pain
Opioid Use Disorder

Obsessive Compulsive Disorder
Number of Sexual Partners

Neuroticism
Major Depressive Disorder

Lifetime Cannabis Use
Intelligence

General Risk Taking
Educational Attainment
Cognitive Performance

Bipolar Disorder
Automobile Speeding Propensity

Autism Spectrum Disorder
Alzheimers Disease

Alcohol Dependence
ADHD

−0.5 0.0 0.5 1.0

Worry
Total PCL Score

Pain
Opioid Use Disorder

Obsessive Compulsive Disorder
Number of Sexual Partners

Neuroticism
Major Depressive Disorder

Intelligence
General Risk Taking

Educational Attainment
Cognitive Performance

Cigarettes Per Day
Cannabis Use Disorder

Automobile Speeding Propensity
Autism Spectrum Disorder

Alzheimers Disease
Alcohol Dependence

ADHD

−0.5 0.0 0.5 1.0

Worry
Total PCL Score

Schizoaffective Disorder
Pain

Opioid Use Disorder
Obsessive Compulsive Disorder

Number of Sexual Partners
Neuroticism

Major Depressive Disorder
Lifetime Cannabis Use

Intelligence
General Risk Taking

Educational Attainment
Cognitive Performance

Cigarettes Per Day
Cannabis Use Disorder

Automobile Speeding Propensity
Autism Spectrum Disorder

Alzheimers Disease
Alcohol Dependence

ADHD

−0.5 0.0 0.5 1.0

Genetic Correlation

GWAS

Independent

Common

T
o
b
a
c
c
o
 U

s
e
 D

is
o
rd

e
r 

S
c
h
iz

o
p

h
re

n
ia

 
B

ip
o

la
r 

D
is

o
rd

e
r 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.09.24307111doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.09.24307111
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5.  744 
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