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Abstract

There is an important need for methods to process myocardial perfusion imaging (MPI) single-

photon emission computed tomography (SPECT) images acquired at lower-radiation dose and/or 

acquisition time such that the processed images improve observer performance on the clinical 

task of detecting perfusion defects compared to low-dose images. To address this need, we build 

upon concepts from model-observer theory and our understanding of the human visual system to 

propose a detection task-specific deep-learning-based approach for denoising MPI SPECT images 

(DEMIST). The approach, while performing denoising, is designed to preserve features that 

influence observer performance on detection tasks. We objectively evaluated DEMIST on the task 

of detecting perfusion defects using a retrospective study with anonymized clinical data in patients 

who underwent MPI studies across two scanners (N = 338). The evaluation was performed at 

low-dose levels of 6.25%, 12.5%, and 25% and using an anthropomorphic channelized Hotelling 

observer. Performance was quantified using area under the receiver operating characteristics 

curve (AUC). Images denoised with DEMIST yielded significantly higher AUC compared to 
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corresponding low-dose images and images denoised with a commonly used task-agnostic deep 

learning-based denoising method. Similar results were observed with stratified analysis based 

on patient sex and defect type. Additionally, DEMIST improved visual fidelity of the low-dose 

images as quantified using root mean squared error and structural similarity index metric. A 

mathematical analysis revealed that DEMIST preserved features that assist in detection tasks while 

improving the noise properties, resulting in improved observer performance. The results provide 

strong evidence for further clinical evaluation of DEMIST to denoise low-count images in MPI 

SPECT.
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single-photon emission computed tomography (SPECT)

I. INTRODUCTION

Single-photon emission computed tomography (SPECT) myocardial perfusion imaging 

(MPI) has an established and well-validated role in evaluating patients with known or 

suspected coronary artery disease [1]. For diagnosis of this disease, the clinical task 

performed on MPI-SPECT images is the detection of focally reduced tracer uptake 

(perfusion defects) reflecting reduced blood flow in the myocardial wall. Typically, in 

clinical MPI-SPECT protocols, patients are administered a radiopharmaceutical tracer, such 

as Tc-99m sestamibi or Tc-99m tetrofosmin, under stress and rest conditions. For a protocol 

involving a Tc-99m radiopharmaceutical with rest and stress imaging performed on a single 

day, the administered activity can be as high as 48 mCi [2]. Thus, developing protocols 

to reduce this administered dose are well poised for a strong clinical impact [3], [4]. 

Additionally, current MPI-SPECT acquisition protocols can take up to around 12–15 min, 

during which time, the patient is required to be stationary. This is a challenge, especially 

for older patients, which are a large fraction of the patient population [5]. Thus, methods 

to reduce acquisition time can make MPI-SPECT more comfortable for patients, less 

susceptible to patient motion, and can also lead to increased clinical throughput and reduced 

cost of imaging. However, reducing this dose and/or acquisition time results in a lower 

number of detected counts in the projection data, which, when reconstructed, yields images 

with deteriorated image quality in terms of the ability to reliably detect perfusion defects. 

Thus, there is an important need to develop methods to process low-count MPI-SPECT 

images for improved performance on detection tasks.

In recent years, deep learning (DL)-based methods have shown promise in processing 

MPI-SPECT images [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], particularly in image 

denoising for predicting normal-dose images from low-dose images [12], [13], [14], [15]. 

Typically, these denoising approaches are trained by minimizing a loss function based on 

image fidelity, such as pixel-wise mean squared error (MSE), between the actual normal-

dose image and low-dose image predicted by the deep network. These methods have 

usually been evaluated with fidelity-based metrics, such as root MSE (RMSE) and structural 

similarity index metric (SSIM), where the results have indicated that the methods provide 

Rahman et al. Page 2

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improved performance compared to low-dose images. However, it is well recognized that 

for clinical translation, DL-based denoising methods need to be evaluated on performance 

in clinically relevant tasks [16], [17], [18], [19]. At an early stage of translation, model 

observers provide a mechanism to perform such evaluation [20]. However, of the various 

DL-based denoising methods proposed for MPI SPECT, those that have been evaluated 

on the clinical task of detecting perfusion defects have not shown improved performance 

[19], [21]. Recent studies in other imaging modalities have also yielded similar findings 

[22], [23]. While it is well recognized that any image-processing method cannot improve 

the performance of ideal observers due to data-processing inequality [18], for suboptimal 

observers, such as human observers, improving detection performance may be possible. 

Further, the detection task on MPI-SPECT images is clinically performed by human 

observers. Thus, in this manuscript, we investigate the development of denoising methods 

that explicitly demonstrate improved performance on the task of detecting perfusion defects 

in MPI-SPECT images with an anthropomorphic model observer that has been shown to 

emulate human observer performance on this task [24], [25].

To investigate the limited performance of DL-based denoising methods on detection tasks 

in MPI SPECT, Yu et al. [21] conducted a mathematical analysis with a commonly used 

DL-based denoising method that used pixel-wise MSE as the loss function. They analyzed 

the detection performance of a numerical observer that has been observed to emulate 

human-observer performance in MPI SPECT. Their analysis revealed that the method 

was improving the noise characteristics of the images, which, in isolation, would have 

improved observer performance. However, the analysis also revealed that the method was 

discarding features used to perform the detection task, which eventually translated to no 

improvement in observer performance. These observations indicate that a denoising method 

that can preserve detection-task-specific features may improve observer performance on 

detection tasks. Recently, in the context of X-ray CT, a few DL-based denoising methods 

have been proposed with the aim of preserving features that assist in the detection task 

[26], [27], [28]. These methods typically incorporate a hybrid loss consisting of image 

fidelity and task-specific terms, where the latter term has been incorporated in the form 

of signal-to-noise ratio (SNR) [26], binary cross-entropy loss associated with a DL-based 

observer [27], and perceptual loss obtained from features extracted by a pretrained Visual 

Geometry Group network [28]. Results from these studies support the idea that preserving 

task-specific features may assist with improving performance on detection task. However, 

the methods proposed have limitations to the applicability to the SPECT denoising problem, 

such as assuming 2-D images, defect-known-exactly setups, use of ground-truth phantom as 

the target/label, and limited interpretability of the task-specific loss term. Additionally, the 

methods have been evaluated using stylized studies. For clinical applicability, evaluation of 

such methods with clinical data and on clinically relevant tasks is needed.

Motivated by these observations from prior studies, we propose a DL-based task-specific 

denoising method for 3-D MPI SPECT. The method builds upon concepts from the 

literature on model observers and our understanding of the human visual system to preserve 

detection-task-specific features while performing denoising. We objectively evaluate the 

proposed method on the task of detecting perfusion defects using a retrospective study with 

anonymized clinical MPI-SPECT data. Additionally, we evaluate the effect of population 
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characteristics, including patient sex and perfusion defect types, on the detection-task 

performance. Preliminary results of this work have been presented previously [29].

II. PROPOSED TASK-SPECIFIC DENOISING METHOD

A. Theory

1) Problem Formulation: We propose the method in the context of reducing radiation 

dose in MPI SPECT, although the methodology can be applied in the context of reducing 

acquisition time. This is because reducing either dose or acquisition time eventually leads 

to a reduction in detected counts and the underlying objective of the proposed method is to 

denoise the low-count images.

Consider a SPECT system imaging a tracer distribution (object) within the human body, 

described by a vector f(r), where r ∈ ℝ3 denotes the 3-D coordinates, and yielding 

projection data, denoted by the M-dimensional vector g. Consider that the object and 

projection data lie in the Hilbert space L2 ℝ3  and the M-dimensional Euclidean space 

EM, respectively. Here, L2 ℝ3 . enotes the space of all square-integrable functions on ℝ3. 

Thus, the SPECT system operator ℋ maps object in L2 ℝ3  to projection data in EM. The 

Poisson-distributed system-measurement noise is denoted by the M-dimensional vector n. 

The images are then reconstructed using the reconstruction operator, denoted by ℛ, yielding 

the reconstructed images, denoted by the N3D-dimensional vector f , where the hat symbol 

denotes that this is a reconstruction of the object f. Thus

f = ℛg = ℛ(ℋf + n),

(1)

where, without loss of generalization, we refer to the object as infinite-dimensional vector 

f to model that the radiotracer distribution is a continuous function. From the reconstructed 

images, an observer performs the task of detecting perfusion defects. More precisely, the 

task is to classify the image into defect-absent H0  or defect-present H1  case. Denote 

the defect-absent object as fb and the defect signal as fs. The two hypotheses for the 

defect-detection task are given by

H0: f = ℛg = ℛ ℋfb + n .

(2a)

H1: f = ℛg = ℛ ℋ fb + fs + n .

(2b)

In MPI SPECT, the perfusion-defect signal is a cold signal, so fs is negative-valued term.
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In a low-dose protocol, the tracer uptake is lower compared to normal-dose protocols. 

Thus, the projection data, and the corresponding reconstructed images are noisier at low 

dose, impacting observer performance on the defect-detection task. Denote the reconstructed 

images at normal dose and low dose by fND and fLD, respectively. Our goal is to design a 

technique to denoise these low-dose images such that the denoised images yield improved 

performance on the defect-detection task.

2) Proposed DL-Based Task-Specific Denoising Method: We consider the use 

of DL to design this denoising technique. Consider a deep network parameterized by the 

parameter vector Θ, denote the denoising operator by DΘ and the pred predicted normal-dose 

image as fND
pred

, where the subscript ND refers to the target of the prediction. The denoising 

operation can be mathematically expressed as follows:

fND
pred = DΘ fLD .

(3)

To preserve the features that assist in the detection task while denoising, we propose a 

hybrid loss function for this deep network that consists of two terms. The first term penalizes 

the error associated with image fidelity between the actual and predicted normal-dose 

images. The second term penalizes the loss of features required to perform detection task 

in the predicted normal-dose images. Denote the fidelity loss term as ℒfid(Θ) and the task-

specific loss term as ℒtask(Θ). The hybrid loss function ℒ(Θ) is given by

ℒ(Θ) = ℒfid(Θ) + λℒtask(Θ),

(4)

where λ denotes a hyperparameter that controls the weights of these loss functions.

Denote the total number of training samples as J and the jth sample of the low-dose image 

and normal-dose image by N3D-dimensional vectors fLD
j

 and fND
j

, respectively. Also, denote 

the normal-dose image predicted by the denoising network as fND
pred, j

 when the low-dose image 

fLD
j

 is given as the input to the network. Thus,

fND
pred, j = DΘ fLD

j .

(5)

A typical choice to measure the fidelity between the actual and predicted normal-dose 

images, including in MPI SPECT, is the MSE between these images [30], [31]. Thus, we 

chose this distance measure as our fidelity-loss term. Consider that we have J patient images 

in our training set. Denote the number of voxels in each image slice by N2D and the number 

of slices as Z, so that N3D = N2DZ. Then, the fidelity-loss term is given by
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ℒfid(Θ) = 1
JN2DZ ∑j = 1

J fND
j − fND

pred, j

2

2
.

(6)

To obtain an expression for the task-specific loss term ℒtask(Θ) in (4), we recognize that 

the detection task on MPI-SPECT images is performed by human observers. Thus, a 

mathematical term that preserves features used by human observers while performing 

detection tasks will intuitively assist in improving performance on the detection task. In 

this context, there is substantial literature on mathematical model observers that emulate 

human-observer performance [32], [33], [34], [35], [36]. Further, multiple experiments in 

human vision have shown that the human visual system processes data using frequency-

selective channels [18]. By processing the features extracted from these channels, referred to 

as anthropomorphic channels, studies have shown that model observers can mimic human-

observer performance [32], [37], [38]. Of most relevance to this article, this has also been 

validated in studies with MPI SPECT on the task of detecting perfusion defects [24], [25]. 

Thus, a denoising technique that preserves features extracted by these channels may assist 

with improving observer performance on detection tasks.

Motivated by these studies, we design the task-specific loss term to preserve features that 

are derived by applying these anthropomorphic channels to the images. Typically, these 

channels are applied to the 2-D image slices. Thus, first, the profiles of the channels are 

centered on the defect location and the inner product of the channels and the to-be-processed 

2-D image slices are computed to yield the feature value. Mathematically, denote an image 

slice by the N2D-dimensional vector f 2D, denote the number of channels by C and the 

N2D-dimensional column vector corresponding to the ctℎ channel by uc. By concatenating the 

C. chanl vectors, we obtain an N2D × C matrix U. Denote the shift operator that centers the 

channel profiles to the signal location by S. The shift operation on U can be represented by 

a multiplication of shift matrix S with the channel matrix U. The application of the shifted 

channel matrix on the centered image slice yields a C-dimensional vector, referred to as the 

channel vector and denoted by v

v = (SU)T f 2D .

(7)

The task-specific loss term ℒtask(Θ) penalizes the MSE between the channel vectors of the 

actual and predicted normal-dose image. To obtain the channel vector for the jth patient 

sample, we first perform acyclic 2-D shifting for each channel so that the center of the 

channel profile and centroid of the defect coincide. Sce different patients will have defects 

at different locations, denote the shift matrix for the jth patient as Sj. Also, denote the sth
slice of the normal-dose image fND

j
 and the predicted normal-dose image fND

pred, j
 by fND, 2D, s

j
 and 

fND, 2D, s
pred, j

, respectively. The task-specific loss term ℒtask(Θ) is then given by
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ℒtask(Θ) = 1
JC s2 − s1 + 1

× ∑j = 1
J ∑s = s1

s2 SjU T fND, 2D, s
j − fND, 2D, s

pred

2

2
,

(8)

where s1 and s2 denote the index of the start and end slices where the channels are applied, 

respectively.

B. Implementation

We developed an encoder–decoder architecture to minimize the loss function given by (4). 

The encoder–decoder architecture with multiple resolution levels was chosen motivated by 

the architectures previously proposed for denoising low-dose MPI-SPECT images [21], [30]. 

The schematic of the architecture is shown in Fig. 1. The details of the network architecture 

are provided in the Supplementary material and in Rahman et al. [39]. The input and 

output to the network are the low-dose short-axis volume, fLD and the denoised (predicted 

normal-dose) short-axis volume, fND
pred

, respectively. The encoder extracts local spatial features 

from the low-dose image and generates a set of lower-dimensional latent features, which 

are used to reconstruct the denoised low-dose volume. Skip connections were used to add 

features learned in the encoder to the features generated by the decoder. Dropout was used 

to prevent overfitting. We trained the network by minimizing the hybrid loss in (4) using the 

ADAM algorithm [40].

III. EVALUATION

We objectively evaluated the proposed method in an Institutional Review Board (IRB)-

approved retrospective study conducted on clinical MPI-SPECT studies. We followed best 

practices for the evaluation of AI algorithms in nuclear medicine (RELIANCE guidelines) 

[41].

A. Data Collection and Curation

We collected data from MPI studies (N = 4118) conducted at clinical normal-dose level at 

Washington University School of Medicine between January 2016 and January 2021. The 

clinical protocol was a one-day stress/rest protocol and the mean injected activity for the 

stress images was 10 mCi in patients weighing under 250 pounds and 12 mCi for those 

weighing over 250 pounds at normal-dose level. 1295 MPI studies contained the binned 

SPECT projection data and CT images along with patient sex and anonymized clinical 

reports. The access to projection data allowed us to simulate the low-dose acquisition using 

binomial sampling, following a similar approach as in [42], which preserved the Poisson 

distribution in the low-dose projections [18]. More specifically, to obtain the low-dose 

count in a projection bin, we conducted independent Bernoulli trials for accepting each 

of the n normal-dose counts in that projection bin with probability p, where p denotes 

the fraction corresponding to the low-dose level. Essentially, this is equivalent to sampling 

from a Binomial distribution ℬ(n, p). For Binomial sampling, we used MATLAB’s default 
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Mersenne Twister algorithm for pseudo-random number generation. We considered low-

dose levels of 25%, 12.5%, and 6.25%. In generating the low-dose levels, we assumed that 

the fractional myocardial tracer uptake is linearly related to the injected dose. Thus, the 

count levels in myocardial wall were 25%, 12.5%, and 6.25% of normal-dose count level. 

At these low-dose levels, the performance on detection task is significantly different than 

normal-dose images [21], and task performance is dominated by system noise compared to 

anatomic variability in patient populations [43]. Thus, choosing these dose levels provided 

a regime to study the efficacy of the proposed method in improving task performance over 

low-dose images.

For training and evaluation of the proposed method, both the knowledge of presence of 

defect and the defect centroid were needed. Although presence of defect could be read from 

the clinical reports, findings in these reports often suffer from reader variability. Moreover, 

the defect centroid is typically unavailable. To address this issue, we only used the normal 

(defect-absent) MPI studies (N = 795) and inserted synthetic defects using a defect-insertion 

approach described later (Section III-A1) to create the defect-present images. For defect 

insertion, segmentation of the left ventricle (LV) wall was needed, but this wall could not 

be segmented reliably for some cases. Also, in some other cases, the images contained 

artifactual (apparent) defects. In clinical practice, these artifactual defects are typically ruled 

out using other patient data, such as the rest scans, polar maps, and projection scans. 

However, in our observer study, only the stress images are used for the detection task. Thus, 

we excluded these two sets of cases (N = 457) and only used the remaining normal cases 

(N = 338). The datasets were from two scanners, namely, the GE Discovery 670 Pro NaI 

and the GE Discovery 670 CZT. These two systems have different detectors, namely, NaI 

and CZT, each of which have different energy and position resolutions (as listed in the 

supplementary material and in [39]). The data-collection process is illustrated in Fig. 2.

1) Defect Insertion Approach: To insert the defect, we first segmented the LV wall 

using the reoriented short-axis normal-dose image using SEGMENT software [44], [45]. 

From the centroid of the LV wall, a 2-D cone region with a specific extent was located. 

For anterior-wall defect, the cone region was between 80° and (80 − θ)° where θ denotes 

the defect extent and was assigned values of 30° and 60°. For determining the angles, the 

x-axis was assumed to be along the rows of the reoriented image and the origin was the 

centroid of the LV wall. For inferior-wall defect, the cone region was between −80° and 

(−80 + θ)°. In the slice containing the LV centroid, the LV wall that lies inside this cone 

region was considered as the defect mask. The same cone region was used in adjacent slices 

to create the 3-D defect. A 42-mm defect in the long-axis direction (apex-to-base direction) 

was considered. We used the mean LV uptake as reference to define defects with specific 

severities. The defect signal, with specific severity and extent, was then subtracted from the 

reconstructed image of the defect-absent case to create an initial defect-present image. Next, 

to create the hybrid dataset with inserted defects, we employed a strategy similar to that 

proposed by Narayanan et al. [46]. Briefly, we used SIMIND, a well-validated Monte-Carlo 

simulation software [47], [48] to generate the intermediate projection data corresponding to 

the defect-absent image and the initial defect-present image. These intermediate projection 

data were then used to calculate a scale factor. The clinical projection data from defect-
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absent cases were scaled using this scale factor to create the final defect-present projection 

data. The scale factor was in general unity apart from the regions near the heart, and even 

there, for low-severity signals, the scale factor were close to one.

2) Reconstruction and Post-Processing: We used a clinical reconstruction protocol 

based on the ordered subset expectation maximization (OSEM) algorithm implemented with 

CASTOR [49] to reconstruct the normal-dose and low-dose images. The reconstruction 

compensated for attenuation and collimator-detector response. Scatter compensation was not 

performed. The number of subsets and the iterations in the OSEM algorithm was selected 

based on the protocol used in the clinic. 3-D Butterworth filtering with filter order of 5 and 

cutoff frequency of 0.44 cycles/cm was applied to the low-dose and normal-dose images, 

which were then reoriented to the short axis using linear interpolation. From this reoriented 

image, we extracted a 48 × 48 × 48 volume where the center of the volume coincided with 

the center of LV. For better-dynamic range, we set the range of the pixel values to [0, xLV] 

where xLV is the maximum value inside the LV wall.

B. Network Training

The training set consisted of 2944 cases. These were obtained from 184 normal MPI studies. 

A total of 12 synthetic defect types were generated for each normal study, where the defect 

types were defined in terms of their extent, severity, and position in the LV wall. The defects 

were inserted in the anterior and inferior walls, had extents of 30° and 60°, and severities 

of 10%, 17.5%, and 25%. We inserted these 12 defect types in each of the 184 normal 

studies to generate the defect-present population (N = 2208). The defect-absent population 

was obtained by replicating the 184 normal studies a total of four times, corresponding to 

the four different defect extents and locations. Thus, the defect-absent population consisted 

of N = 184 × 4 = 736 samples. These two populations, totaling N = 2944 cases, were used to 

train the network.

In the training phase, to extract the channel vectors from defect-present images, as per (8), 

we shifted each channel profile in U to be centered to the defect centroid. The channel 

vectors for the corresponding defect-absent images were obtained by shifting the channel 

profiles in U to the centroid of the location where the synthetic defect was inserted. With 

these shifted channel profiles, we extracted the corresponding channel vectors from both 

predicted and normal-dose images and used these vectors to calculate the task-specific loss 

term in (8). We performed a four-fold cross-validation to optimize the network. The training 

was performed on an NVIDIA TESLA V100 GPU with 32 GB of RAM. We trained separate 

networks for each dose level and a range of λ values. To select the optimized λ value for 

each dose level, we used a separate validation set obtained from 40 normal cases. Using the 

same strategy as for the training set, 20 of these cases were used to create the defect-present 

population of 20 × 12 = 240 samples. For a specific low-dose level, we denoised the images 

in the validation set using pretrained networks corresponding to different λ values. Using 

observer studies, as will be described in Section III-C, for each dose level, the value of λ
that maximized performance on the detection task in a validation dataset was selected as the 

optimal λ.
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C. Testing Procedure

The test set consisted of N = 2052 cases. These were generated using N = 114 normal MPI 

studies. Of these, 61 normal studies were used as the defect-absent population. To create 

the defect-present population, synthetic defects were inserted in the 53 normal studies. In 

addition to the 12 defect types, we also introduced six new defects with 45° extent to create 

out-of-distribution defect types in the test set. These new defects had severities and locations 

as the usual defects. Therefore, the test set consisted of 18 types of defects. Thus, for the 

observer study, the test defect-absent population consisted of 61 × 18 = 1098 samples and 

the test defect-present population consisted of 53 × 18 = 954 samples.

We evaluated the performance of the proposed method on the clinical task of detecting 

perfusion defects and using task-agnostic fidelity-based figures of merit. Performance was 

compared to low-dose images that were not denoised. We refer to this as the low-dose 

protocol. To assess the impact of using our task-specific denoising strategy, we also 

compared performance to images that were denoised using a commonly used DL-based 

denoising method [30] that was trained with a loss function that used only the fidelity term 

(setting λ = 0 in (4)). We refer to this method as the task-agnostic DL-based denoising 

(TADL) method. Comparing DEMIST with TADL method allowed assessing the impact of 

incorporating the task-specific term into the loss function on observer performance.

To objectively evaluate the proposed method on the task of detecting perfusion defects, we 

considered an anthropomorphic channelized Hotelling observer (CHO) [37] as a surrogate 

for the human observer. For clinical application, ideally the performance of the proposed 

method on the defect-detection task should be evaluated using human-observer studies by 

trained radiologists. However, such studies are time-consuming, expensive, and tedious. To 

address this challenge, model observers, such as the CHO [37], have been developed. Most 

importantly, CHOs with rotationally symmetric frequency channels have been validated to 

emulate human-observer performance on the task of detecting location-known perfusion 

defects in MPI SPECT [24], [25]. Thus, we used the CHO with these channels as our 

observer. We follow the same procedure as in [25] to define the rotationally symmetric 

frequency channels. Briefly, the start frequency and bandwidth of first channel was 0.1838 

cycles/cm. The subsequent channels were adjacent to the previous one and had double the 

start frequency and bandwidth as the previous one.

We selected the 2-D short-axis slice and two adjacent slices from each MPI-SPECT image 

that contained the defect centroid for conducting the observer studies. From the centroid-

containing slice, consistent with previous studies [38], we extracted a 32 × 32 region such 

that the defect centroid was at the center of the extracted region. This same 2-D region 

was also extracted from the two adjacent slices. Pixels values of each extracted region were 

mapped to the range [0, 255]. We then applied anthropomorphic rotationally symmetric 

frequency channels to each slice to compute the channel vectors. The channel vectors of 

defect-present and defect-absent populations were used to learn the template of the CHO 

using a leave-one-out approach. Following that, the test statistics were computed and used to 

perform the ROC analysis. Stratified analyses based on sex, defect severity, defect extent and 

scanner type were also performed. A schematic describing the process to obtain the CHO 

test statistic is shown in Fig. 3.
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D. Figures of Merit

ROC analysis was performed on the test statistics derived with the CHO using the pROC 

package in R [50]. The area under the empirical ROC curve (AUC) was used as the 

figure of merit. Confidence intervals were calculated using Delong’s method [51], which 

accounts for variability across cases. The AUC values were computed for the normal-dose 

and low-dose images and those denoised with DEMIST and TADL. To test the statistical 

significance of difference in AUC values between two methods, we used Delong’s test as 

implemented within the pROC package [50]. To account for multiple hypothesis testing 

(DEMIST versus low-dose, DEMIST versus TADL and TADL versus low-dose), we used 

Bonferroni correction [52]. A corrected p value < 0.05 was used to infer a statistically 

significant difference. For quantitative evaluation based on image fidelity, we considered two 

widely used fidelity-based figures of merit: 1) RMSE and 2) SSIM.

IV. RESULTS

A. Evaluation on the Task of Perfusion Defect Detection

Fig. 4 shows the AUC values obtained with the low-dose protocol, DEMIST, and TADL 

methods at all the considered low-dose levels, and with the normal-dose protocol. At all 

dose levels, DEMIST significantly outperformed low-dose protocol as well as the TADL 

method. The p-values of all the statistical tests presented in these results are included 

in the Supplementary material and in Rahman et al. [39]. We do note that the proposed 

method yields inferior performance on detection task compared to normal-dose protocol, an 

observation that we will discuss in the Discussions section.

Fig. 5 qualitatively shows the impact of the DEMIST and TADL methods on four 

representative cases. We observe in these cases that with the TADL method, even though the 

background looks less noisy compared to low-dose protocol, the defect tends to wash out. 

This observation is consistent with the findings reported in previous studies [21], [26]. In 

contrast, with DEMIST, the defect is visibly clearer even as the background looks less noisy 

compared to low-dose protocol. These representative cases provide an intuitive explanation 

for the improved performance of the DEMIST method.

Fig. 6(a) and (b) show the AUC values obtained with male and female populations, 

respectively. We observed that, for both sexes, the proposed method yielded a significant 

improvement in performance on the detection task at all dose levels compared to low-

dose protocol. Moreover, in 5 out of 6 settings (3 dose levels × 2 sexes), DEMIST 

yielded significant improvement in detection-task performance compared to TADL method. 

Further, again, the TADL method generally did not improve (and in some cases degraded) 

performance compared to the low-dose protocol.

Figs. 7 and 8 show the AUC values as a function of defect extent and severity at 

different dose levels, respectively. We observe that, at all dose levels, the DEMIST method 

significantly improved observer performance for all considered defect extents and severity 

compared to low-dose protocol. Moreover, the DEMIST method significantly improved 

observer performance compared to TADL method in 15 out of 18 settings (3 dose levels × 6 
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defect types). Again, the TADL method was generally observed to not improve performance 

compared to low-dose protocol.

Fig. 9 shows the AUC values obtained for stratified analysis based on scanner models. In 

our study, data were collected across two scanners, namely, “GE Discovery NM/CT 670 Pro 

NaI” and “GE Discovery NM/CT 670 Pro CZT.” For conciseness, we refer to these two 

scanners as NaI and CZT scanner, respectively. We observe from Fig. 9 that the DEMIST 

method significantly outperformed low-dose protocol in 4 out of 6 settings (3 dose levels 

× 2 scanners) and the TADL method in 4 out of 6 settings. We also observed that the 

performance of the TADL method deteriorated by comparison with the low-dose protocol 

in some settings. These findings demonstrate the advantage of the proposed method across 

different scanner types.

B. Quantitative Evaluation Based on Fidelity-Based Figures of Merit

The SSIM and RMSE metrics based on the entire image volume are presented in Table 

I for the proposed DEMIST method, TADL method and low-dose protocol. We observed 

that DEMIST yielded improved performance compared to low-dose protocol. Moreover, in 

general, both the proposed DEMIST method and the TADL method yielded very similar 

RMSE and SSIM values.

We also computed the RMSE inside the LV wall for low-dose images and images denoised 

with DEMIST and TADL for defect-absent cases. The normal-dose images were considered 

as reference for calculating this RMSE inside LV wall. The results, as shown in Table II, 

show the improvement in RMSE in the LV wall as obtained by DEMIST compared to the 

low-dose protocol.

V. DISCUSSION

In this work, we proposed a method to denoise low-dose MPI-SPECT images while 

preserving features that assist in performing detection task by incorporating a task-specific 

loss term. We then evaluated our method on the clinical task of detecting perfusion defects 

in MPI-SPECT using a retrospective clinical study. The result in Fig. 4 shows that applying 

this method resulted in significantly improved defect-detection performance over just using 

low-dose images, as well as low-dose images denoised using the TADL method. These 

results provide evidence that incorporating this task-specific loss term can significantly 

improve observer performance beyond low-dose images and using a commonly used TADL 

method consistently across a range of defect characteristics. To the best of our knowledge, 

this is the first time that a DL-based denoising method for MPI SPECT has shown 

improved performance on the task of detecting perfusion defects in an anthropomorphic 

model-observer study.

To mathematically interpret the improved performance of the DEMIST method, we 

conducted an analysis similar to Yu et al. [21]. More specifically, we analyzed the effect 

of denoising on the first and second-order statistics of the channel vectors of the test set 

for both DEMIST and TADL. The analysis was performed for each defect type separately. 
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Denote the mean difference channel vector between defect-present and defect-absent cases 

as Δv and the channel-vector covariance matrix as Kv. The SNR of the CHO is given by

SNR2 = Δv−TKv
−1Δv .

(9)

If the test statistics of defect-absent and defect-present cases are normally distributed, AUC 

and SNR of the observer are monotonically related [18] and thus, the analysis of observer 

SNR yields insights on detection-task performance.

Consider that the reconstructed images have been reoriented and windowed with defect 

centroid at the center. Denote the mean difference reconstructed image between defect-

present and defect-absent cases by Δf . Thus, Δv = (SU)TΔf . As per (9), both the mean 

difference of the channel vector Δv and covariance matrix Kv affect observer performance. 

Eigenanalysis of the covariance matrix provides a mechanism to analyze the combined effect 

of these two terms [21] on the observer SNR. Denote the mth eigenvector and eigenvalue of 

Kv by um and γm, respectively. We can express Δv in terms of these eigenvectors as follows:

Δv = ∑m = 1
C αmum,

(10)

where the coefficient αm = um
TΔv. Further, the SNR of the CHO is given by [21]

SNR2 = ∑m = 1
C αm

2

γm

(11)

Thus, assessing the impact of denoising on αm and γm provides an interpretable approach to 

evaluate the effect of denoising on observer performance. Fig. 10 shows this analysis for 

two defect types with 6.25% dose level. We first plotted the mean difference reconstructed 

image Δf  and mean difference channel vector (Δv) between defect-present and defect-absent 

cases [Fig. 10(a)–(f)]. We observe that the DEMIST method preserved the mean difference 

originally present in the normal-dose image for this defect type. However, as in Yu et al. 

[21], we observed that the TADL method reduced this mean difference, negatively impacting 

observer performance. Fig. 10(g) and (h) show the values of αm and γm as a function of m, 

respectively. We observed that γm reduced for both DEMIST and TADL method compared 

to low-dose images, which would positively impact observer performance. However, with 

the TADL method, the values of αm were lower compared to low-dose images, which leads 

to limited observer performance on detection task. In contrast, with the DEMIST method, 

the values of αm do not reduce (and in some cases increase) compared to low-dose images, 

resulting in an overall improvement in performance on the defect-detection task. The γm

values in Fig. 10 are listed in the supplementary material.

Rahman et al. Page 13

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The DEMIST method consists of a hyperparameter λ. th penalizes the loss of task-specific 

features while performing denoising based on the loss function in (4). To qualitatively 

demonstrate the effect of this parameter, we present a representative result in Fig. 11. To 

generate this result, we denoised an MPI-SPECT image in the test set acquired at low-dose 

level of 6.25% with trained DEMIST networks associated with varying λ values. We observe 

that, for this example, assigning a higher weight to the task-specific loss term (as achieved 

by increasing λ) leads to improved defect visibility in the denoised image.

This improvement indicates that the incorporation of task-specific loss term preserves 

features used by human observers for performing detection tasks. These results also 

illustrate that the λ parameter can be interpreted as a term that controls the smoothness 

in the image. A lower value of λ results in an increased weight for the fidelity term, and is 

observed to lead to increased blur in the image, which then translates to the defect being 

washed out.

Stratified analysis based on patient sex, defect extent and defect severity showed that 

the proposed method continued to show improved performance compared to low-dose 

and TADL methods on the task of detecting perfusion defects (Figs. 6–8). We note here 

the difference in performance for male and female patients (Fig. 6). Since, the defect 

properties were similar across male and female patients, the difference could be attributed 

to the anatomical variations and myocardial activity uptake level. Further investigations are 

required to study these effects and this presents an area of future study.

We note in Figs. 4–8 that while DEMIST yielded improved performance on detection task 

compared to low-dose and TADL approaches, there is room for improvement compared 

to normal-dose protocol. To further improve performance, a more advanced network 

architecture [53] with the proposed task-specific loss term could be used. Also, given the 

heterogeneity in patient characteristics, increasing the amount of training data may make 

the method generalize well to test data and thus improve performance [54]. However, there 

is a possibility of fundamental information loss that might not be retrievable even if we 

increase the amount of training data. This topic requires further investigation. Moreover, 

we considered three low-dose levels but there may be other low-dose levels for which the 

proposed method may yield performance that is similar to normal-dose protocol.

In this article, we developed the task-specific denoising method in the context of cardiac 

SPECT. However, the method is general and could be applied to other medical imaging 

modalities where the task of interest is detecting abnormalities. Other applications could 

include reducing administered radiation dose in oncological PET images and reducing 

acquisition time for oncological magnetic resonance (MR) images. Another future research 

direction is to advance the underlying idea of DEMIST to tasks other than detection. 

DEMIST was developed and evaluated for detection tasks and not for other tasks, such as 

quantification or joint detection and quantification. However, the method could be advanced 

for other tasks where the task performance depends on mathematical features extracted from 

images.
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Our study has several limitations. The first limitation is that DEMIST was validated with 

model observers and not human observers. While we considered a CHO-based model 

observer that has been shown to emulate human-observer performance, conducting this 

study with human observers would provide a more rigorous validation of the method. 

Additionally, the signal location was known to the anthropomorphic observer, but in clinical 

settings, this location is not known. Furthermore, given the location-known settings, we 

could not assess the performance of the method on falsely detecting defects at other 

locations. Localization ROC studies with human observers will enable us to validate whether 

the proposed method can improve human-observer performance on the task of perfusion-

defect detection with unknown defect location. Reliable performance in a human-observer 

study would provide confidence for the clinical translation of this method. Here, we point 

out that to test the robustness of the method to different channelized observers, we also 

conducted the evaluation with another observer, namely, the channelized multi-template 

observer [55]. Our findings, which are provided in the Supplementary material and in [39], 

show that even with this observer, DEMIST significantly outperformed low-dose protocol 

and TADL method. This finding shows the robustness of the method to different observers.

A second limitation of this study is that the DEMIST method was trained with data where 

the defect-present cases contained synthetic inserted defects. This was because, during 

training, the knowledge of the presence of defect and the location of defect centroid 

in defect-present cases was required. However, due to the scaling of the defect-absent 

projection data during the defect insertion, the Poisson distribution may not be preserved 

in the final defect-present projection data. Ideally, thus, DEMIST should be trained using 

data with real perfusion defects. However, determining the ground truth regarding the 

presence of defects and their centroid is challenging. To address a similar issue of lack 

of ground truth while training a network to delineate tumors in PET images, Leung et 

al. [56] pretrained a network with multiple synthetic images where the tumor boundaries 

were known exactly, and then fine-tuned with a small number of clinical images. A similar 

strategy of pretraining DEMIST with multiple synthetic-defect images and then fine-tuning 

this network with a small number of training images where the defect centroid is obtained 

manually presents an area of future study. Another limitation was that we considered defects 

in only two regions. Increasing the number of defect locations, including septal and lateral 

walls of the LV, would provide further insights on the robustness of the proposed method. 

Furthermore, in practical scenarios, there could be multiple defect locations in the same 

case. The proposed DEMIST method can be extended by extracting channel vectors from 

each of these locations. Additionally, the method was evaluated with only single-center 

data. However, the results motivate evaluation of the data across multiple centers to assess 

the generalizability of this technique across centers. Finally, the method was developed for 

nongated MPI SPECT images. Another area of future research is advancing this method to 

gated MPI SPECT [57], [58]. One challenge here is identifying the center of the defect. The 

proposed method can be advanced to account for this issue by extracting channel vectors for 

a neighborhood of possible defect centers.
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VI. CONCLUSION

A detection-task-specific deep-learning-based method (DEMIST) was proposed to denoise 

low-dose MPI-SPECT images with the goal of improving performance on the clinical 

task of detecting perfusion defects compared to low-dose images. For this purpose, 

we introduced a task-specific loss term in our loss function that penalizes the loss 

of anthropomorphic channel features. According to the RELIANCE guidelines [41], 

our evaluation study yields the following claim: a deep-learning-based detection-task-

specific denoising method for MPI-SPECT improved performance in images acquired at 

6.25%, 12.5%, and 25% dose levels on the task of detecting inserted location-known 

perfusion defects with a significance level of 5% as evaluated in a retrospective clinical 

study with single-center multiscanner data and with an anthropomorphic channelized 

Hotelling observer. The results provide strong evidence to evaluate DEMIST with human 

observers. Open-source code for the proposed method is available at https://github.com/

AshequrRahman/demist-tf.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic with details of the encoder–decoder denoising network architecture (BN = batch 

normalization and ReLU = Rectified Linear Unit).
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Fig. 2. 
Patient data collection from MPI studies and their distribution in various stages of data 

curation. Sample refers to multiple cases derived from each MPI study.
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Fig. 3. 
Schematic with the detailed process to generate test statistic using CHO with 

anthropomorphic frequency selective channels.
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Fig. 4. 
AUC values obtained for the normal-dose and low-dose images, and the images denoised 

using the DEMIST and TADL approaches at various dose levels with CHO. Error bars 

denote 95% confidence intervals.
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Fig. 5. 
Four representative tests cases derived from four different patients, qualitatively showing 

the performance of TADL method and proposed DEMIST method. The short-axis slice 

containing the defect centroid is shown in all four cases. For all cases, the low-dose level 

was set to 12.5%. In (a) and (b), defects were in anterior and inferior wall, respectively. For 

all four cases, the defects had an extent of 30° and severity of 25%. First, we note that the 

background appears less noisy compared to low-dose images with both TADL and DEMIST. 

The defect tends to become less detectable with the TADL (no task-specific loss term). 

Further, the defect was visually clearer with the proposed DEMIST method.
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Fig. 6. 
AUC values obtained for the different approaches and at various dose levels with (a) male 

and (b) female patients using CHO. Error bars denote 95% confidence intervals.
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Fig. 7. 
AUC values obtained using CHO for the various approaches as a function of different 

defect extents with (a) 6.25%, (b) 12.5%, and (c) 25% dose levels. Error bars denote 95% 

confidence intervals.
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Fig. 8. 
AUC values obtained using CHO for the various approaches as a function of different 

defect severities with (a) 6.25%, (b) 12.5%, and (c) 25% dose levels. Error bars denote 95% 

confidence intervals.
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Fig. 9. 
AUC values obtained for the considered approaches and at different dose levels with data 

from the (a) NaI and (b) CZT scanners using CHO. Error bars denote 95% confidence 

intervals
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Fig. 10. 
Mean difference reconstructed short-axis image between defect-absent and defect-present 

hypotheses for (a) normal-dose, (b) low-dose, (c) TADL, and (d) DEMIST. The images in 

(a)–(d) are windowed to a region centered to the defect centroid. (e) Line profile of the 

mean difference reconstructed image of (a)–(d). The red dashed lines in (a) represent the 

lines along which the profiles are drawn. (f) Mean difference channel vector Δv between 

defect-absent and defect-present hypotheses for various approaches. (g) Absolute value of 

coefficient αm and (h) eigenvalue spectra of noise covariance matrix. Low-dose level was set 

to 6.25% (Defect type 1: 60° extent, 25% severity and anterior wall defect. Defect type 2: 

45° extent, 25% severity and inferior wall defect).
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Fig. 11. 
From left, normal-dose (ND) image, and low-dose (LD) image acquired at 12.5% dose level 

and images denoised with proposed method with varying λ as indicated on top of the image. 

Increasing λ results in recovery of defect visibility. However, the increase in λ also results in 

a decrease in background smoothness.
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TABLE I

RMSE AND SSIM METRIC FOR DIFFERENT METHOD AT DIFFERENT DOSE LEVELS

Dose level Metric Low dose TADL DEMIST

6.25%
RMSE 6.87 5.00 5.58

SSIM 0.77 0.85 0.84

12.5%
RMSE 4.81 4.10 4.01

SSIM 0.86 0.89 0.89

25%
RMSE 3.16 2.94 2.94

SSIM 0.93 0.93 0.94
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TABLE II

MEAN RMSE INSIDE LV WALL AT VARIOUS DOSE LEVELS FOR DIFFERENT APPROACHES

Dose level Low dose TADL DEMIST

6.25% 13.23 7.10 7.93

12.5% 9.49 6.02 5.96

25% 6.23 4.78 5.00
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