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Abstract
Purpose Digistain Index (DI), measured using an inexpensive mid-infrared spectrometer, reflects the level of aneuploidy 
in unstained tissue sections and correlates with tumor grade. We investigated whether incorporating DI with other clinico-
pathological variables could predict outcomes in patients with early breast cancer.
Methods DI was calculated in 801 patients with hormone receptor-positive, HER2-negative primary breast cancer and 
≤ 3 positive lymph nodes. All patients were treated with systemic endocrine therapy and no chemotherapy. Multivariable 
proportional hazards modeling was used to incorporate DI with clinicopathological variables to generate the Digistain 
Prognostic Score (DPS). DPS was assessed for prediction of 5- and 10-year outcomes (recurrence, recurrence-free survival 
[RFS] and overall survival [OS]) using receiver operating characteristics and Cox proportional hazards regression models. 
Kaplan–Meier analysis evaluated the ability of DPS to stratify risk.
Results DPS was consistently highly accurate and had negative predictive values for all three outcomes, ranging from 0.96 
to 0.99 at 5 years and 0.84 to 0.95 at 10 years. DPS demonstrated statistically significant prognostic ability with signifi-
cant hazard ratios (95% CI) for low- versus high-risk classification for RFS, recurrence and OS (1.80 [CI 1.31–2.48], 1.83 
[1.32–2.52] and 1.77 [1.28–2.43], respectively; all P < 0.001).
Conclusion DPS showed high accuracy and predictive performance, was able to stratify patients into low or high-risk, and 
considering its cost and rapidity, has the potential to offer clinical utility.
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Abbreviations
AUC   Area under the ROC curve
CI  Confidence interval
DI  Digistain Index
DPS  Digistain Prognostic Score
ER  Estrogen receptor
H&E  Hematoxylin and eosin

HER2  Human epidermal growth factor receptor 2
HR  Hormone receptor
LN  Lymph node
NPI  Nottingham Prognostic Index
NPV  Negative predictive value
OS  Overall survival
PPV  Positive predictive value
RFS  Recurrence-free survival
ROC  Receiver operator characteristics

Introduction

Several risk scoring methods are available to support 
decision-making for adjuvant therapy in breast cancer to 
assess which patients could be spared or would benefit from 
adjuvant cytotoxic therapy, to avoid over- and under-treat-
ment, respectively. Risk scoring tools in hormone receptor 
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(HR)-positive and human epidermal growth factor receptor 
2 (HER2)-negative early breast cancer are either based on 
a combination of clinicopathological factors and immuno-
histochemically detected tumor markers (e.g., the Notting-
ham Prognostic Index [NPI] and PREDICT) [1] or involve 
multigene expression profiles to complement pathological 
assessment and provide risk classification (e.g., Oncotype 
DX® and MammaPrint®) [2, 3]. Testing for risk prediction 
versus no testing is cost-effective and imparts both clinical 
and economic benefits [4, 5].

Genomic tests show relatively low between-test concord-
ance due to the fact that they have been designed to evaluate 
the expression of different gene sets and have been clinically 
validated in different settings [6, 7]. Importantly, the use of 
genomic tests in the management of breast cancer remains 
relatively moderate, even in well-resourced healthcare sys-
tems [8]. Key questions remain regarding their predictive 
value; for example, some genomic tests do not provide 
prognostic information for certain subgroups of patients 
e.g., premenopausal women [3]. Pricing and reimbursement 
issues, as well as turnaround time are barriers to the wider 
use of genomic testing, both in the community setting and 
in countries with underfunded healthcare systems [9–11]. 
Timely assessment is particularly important given the signif-
icant inverse association between the initiation of adjuvant 
chemotherapy and survival in breast cancer [12, 13]. From a 
patient perspective, waiting for test results and for decisions 
regarding treatment only adds to patients’ anxiety and stress, 
critically underscoring the need for more rapid testing [11].

As a potential alternative or addition to genomic assays, 
the use of mid-infrared spectroscopy has been explored as 
a way to measure the concentration of specific chemical 
moieties present in unstained formalin-fixed tumor biopsy 
samples. Indeed, recent reports indicate that mid-infrared 
spectroscopy has significant merit in the detection of cancer 
with high diagnostic sensitivity and specificity [14–16].

Malignant tumors are associated with an abnormal karyo-
type with multiple structural and numerical aberrations of 
chromosomes, which can lead to aberrant mitosis and errors 
in chromosomal segregation. This numerical chromosomal 
instability or ‘aneuploidy’ has been shown to be a marker of 
aggressive behavior, drug resistance, and a negative prog-
nostic factor in several tumor types, including breast cancer 
[17–21]. However, sample preparation challenges, sample 
quality control and expensive equipment have hindered the 
adoption of ploidy measurements using flow cytometry in 
the routine clinical setting [22].

The ‘Digistain Index’ (DI) has been developed that 
reflects the level of aneuploidy within a tumor [23, 24]. 
The method uses mid-infrared spectroscopy to measure 
the concentrations of chemical moieties, such as phos-
phate and amide, to determine the nuclear-to-cytoplasmic 
chemical ratio in the cellular content of malignant tissue. 

Using proprietary software, DI provides a rapid, reproduc-
ible, quantitative score of aneuploidy-related changes as an 
objectively obtained physical measurement from cells in 
unstained formalin-fixed tumor biopsy sections at the same 
time as routine hematoxylin and eosin (H&E) staining, with-
out tissue maceration or other special handling (Fig. 1) [24, 
25]. We have previously demonstrated that the DI univari-
ately correlates with tumor grade (P = 0.0007) and shows 
promise for risk stratification when a preliminary defined 
cut-off is applied (P = 0.02 log-rank test) in patients with 
breast cancer [25].

Here we describe the validation of Digistain Prognostic 
Score (DPS), developed by incorporating DI with clinico-
pathological features, to predict 5- and 10-year recurrence-
free survival (RFS), recurrence and overall survival (OS) 
in a well-characterized cohort of patients with early HR-
positive HER2-negative breast cancer who had received 
systemic adjuvant endocrine therapy, but no chemotherapy.

Methods

Patients

In this retrospective study, 801 randomly selected non-con-
secutive patients aged ≤ 70 years, with HR-positive HER2-
negative primary operable breast cancer and ≤ 3 positive 
lymph nodes (LN) were identified through multidisciplinary 
team records at Nottingham City Hospital (UK) where they 
were treated between 1998 and 2006. All tumors were less 
than 5 cm diameter on clinical/pre-operative measurement. 
All patients were treated with systemic endocrine therapy 
(tamoxifen). Patients with NPI > 3.4 also received goser-
elin for ovarian function suppression if premenopausal. No 
patients received adjuvant or neoadjuvant chemotherapy. All 
patients received some form of adjuvant radiotherapy post-
surgery and in place of axillary clearance for node-positive 
patients. Patients were excluded in the case of no tumor or 
ductal carcinoma in situ, if chemotherapy or neoadjuvant 
therapy was received, if estrogen receptor (ER) status was 
unknown or negative, and if no long-term follow-up was 
available.

Sample preparation and Digistain procedure

Tissues samples were processed and analyzed as described 
previously [23, 25] and in the Supplementary Information. 
Briefly, samples were de-identified and two adjacent sec-
tions, each ~ 4 μm thick, were cut from each tissue microar-
ray block. One section was H&E stained and graded accord-
ing to the Elston–Ellis method for NPI scoring. The second 
serial section was mounted on an infrared-transmitting cal-
cium fluoride microscope slide and, after deparaffinization, 



351Breast Cancer Research and Treatment (2024) 205:349–358 

was placed in a Bruker Vertex70 Infrared Spectrometer 
equipped with a Hyperion 2000 microscope. The micro-
scope aperture was set to sample an area of 500 μm by 
500 μm (smaller than the area of the core). The aperture 
was centered over each core and an average of 64 interfero-
grams was then recorded for each unstained core section 
on the slide. The resulting averaged interferogram for each 
sample was Fourier Transformed and thus converted to an 
absorption spectrum using Bruker’s OPUS software. DI was 
quantified using proprietary software written in MATLAB 
version R2022b (Fig. 1).

Considering that DNA aneuploidy has been shown to cor-
relate with a high malignancy grade, frequent mitoses and 
a high degree of nuclear pleomorphism, as well as the dif-
ficulties in assessing aneuploidy in tissue sections, we used 
pleomorphism as a surrogate for aneuploidy and examined 
its relationship to DI.

Statistical analysis

An analysis of variance model (type III tests of fixed effects) 
was used to assess the relationship between DI and pleo-
morphism, where the degree of nuclear pleomorphism was 
reported as a subcomponent score in the histological grading 
of the tumor samples.

Following best practices [26], the DPS was generated 
for each tissue sample using a multivariable proportional 

hazards model constructed from the following covariates: 
patient age at diagnosis, LN status, tumor grade and tumor 
size, and DI (see Supplementary Information). To define 
the continuous relationship between DPS and each clinical 
outcome (risk of recurrence, probability of RFS and OS), 
the data were fitted by a time-varying, piecewise, log-hazard 
ratio model with all covariables. All clinical outcomes were 
defined according to the STEEP criteria for adjuvant trials 
where recurrence is defined to include distant, local, and 
ipsilateral recurrence. For each clinical outcome, data were 
analyzed from the date of surgery to the time of the first 
event or date on which data were censored. To eliminate 
bias, patient follow-up data were released by the Nottingham 
Tissue Bank after the Digistain procedure and were analyzed 
by an independent statistician.

Classification of patients into two groups (high versus 
low-risk) was made using DPS cut-offs that were chosen 
prospectively to correspond with a 10% rate of recurrence, 
disease-specific death or death. A multivariable logistic 
model modelling the event (as defined by the STEEP 
Criteria: recurrence, disease-specific death or death, and 
death) after 5 or 10 years was generated. This was done 
using the Cox model and examining the predicted risk of 
an event against outcomes at defined time horizons of 5 
and 10 years. Receiver operator characteristics (ROC) 
curves were constructed and area under the ROC curve 
(AUC) calculated, with an AUC of 1 representing perfect 

Fig. 1  Flow diagram of the Digistain protocol. Digistain proce-
dure:  (1) Tissue slides are prepared from formalin-fixed paraffin 
embedded tumor biopsies following standard processes as for H&E 
staining and sections are mounted onto an infrared-transmitting cal-
cium fluoride microscope slide. (2) After deparaffinization,  slides 
are placed under the microscope for optical imaging. Light signals 
are converted  into electric signals through  a  mercury cadmium tel-
luride detector  generating an interferogram. (3) The interferogram 

is  then  converted  into an absorption spectrum, a plot of absorb-
ance versus wavenumber, through Fourier Transformation per-
formed by OPUS software. (4) Analysis of the peaks and baselines 
of absorbance defines the Digistain Index  (DI), which is quantified 
using  MATLAB code. (5) The Digistain Prognostic Score (DPS) is 
derived from the DI and data extracted from a standard histopathol-
ogy report
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prediction and 0.5 representing random prediction (i.e., 
a test of no value). Given the cohort was of relatively 
low inherent risk, there were a limited number of events 
and therefore K-fold cross validation [27, 28] was used 
to validate the performance metrics of the high/low-risk 
classification. This allowed the model to train on multiple 
training sets and avoid overfitting, where the validation 
set originated from the same institution as the training set.

To examine the ability of DPS to predict clinical out-
come, separate analyses tested the hypotheses that the pro-
portion of patients with better clinical outcomes i.e., (a) 
free of recurrence, (b) not recurred and alive, or (c) are 
still alive at 10 years would be higher in the low-risk group 
than in the high-risk group. The Kaplan–Meier log-rank 
test was used to evaluate if the difference between the two 
risk classifications was statistically significant.

Statistical analyses were conducted for the total patient 
group and four subgroups: patients with 0 or 1–3 positive 
LN, and pre- and post-menopausal patients since these fac-
tors have an impact on adjuvant treatment decisions. Age 
below 50 years and above 60 years was used as a surrogate 
for determining menopausal status to mitigate inclusion of 
perimenopausal patients and data from patients between 
these ages were excluded from the subgroup analyses due 
to indeterminate menopausal status. The model param-
eters were kept consistent in evaluating the performance 
for each subgroup.

A P value of less than 0.05 (two-sided) was considered 
to be a significant result. All statistical analyses were per-
formed with Python version 3.9.

Results

Study cohort, clinicopathological data 
and outcomes

Of the 801 patients, 548 (68.41%) were LN-negative, 244 
(30.46%) were premenopausal and 296 (36.95%) were 
postmenopausal by age (Table 1). For the total popula-
tion, median age at diagnosis was 53 years and median 
tumor size was 1.6 cm. Most patients had a ductal tumor 
(85.02%), while much smaller proportions had lobular 
tumors (10.36%) or special-type cancers (4.37%). At the 
time of diagnosis, 46.32% had a good NPI score (> 2.4 and 
≤ 3.4), 46.32% had a moderate NPI score (> 3.4 and ≤ 5.4), 
and 7.24% had a poor NPI score (> 5.4) (with data miss-
ing for one patient). The median length of follow-up from 
diagnosis to last follow-up was 12.7 years (range, 0.9 to 
19 years), with 90% of patients experiencing no recurrence 
in the 10 years from diagnosis.

DI distribution and pleomorphism

The mean DI value was 0.9 (standard deviation, 0.09; 
median, 1.0) with a minimum value of 0.58 and a maximum 
of 1.31. The distribution of DI values was slightly more 
skewed than would be expected from a variable showing 
normal distribution, even when log or inverse transforma-
tion was applied. Nevertheless, mean and median DI were 
very close and further analyses considered DI as a normally 
distributed variable. Most tumors were pleomorphism grade 
3 (59.55%) or grade 2 (37.45%), with a small proportion of 
grade 1 (2.12%) (Fig. 1). DI showed a borderline statisti-
cally significant relationship with pleomorphism (F = 2.92, 
P = 0.053).

Accuracy of DI‑based risk prognostication

In a Cox model, there were significant associations (all 
P < 0.001) between OS and tumor grade (hazard ratio 
1.81; 95% CI 1.46–2.30), tumor size (1.37; 1.19–1.57), age 
(1.04; 1.03–1.06), and LN stage (1.78; 1.34–2.36). How-
ever, DI exhibited the highest hazard ratio of 4.49 (95% CI 
1.08–18.67), albeit with a P value of 0.039 (Table 2). Similar 
findings were noted for RFS (Table 2). Direct comparison is 
possible as the data sets were normalized with respect to the 
mean and standard deviation of each variable (Supplemen-
tal Information). It is worth noting that although grading is 
generally associated with high levels of interobserver error 
in this cohort, the Cox model indicated a statistically signifi-
cant link with recurrence (data not shown).

When DI was combined with the other variables to gener-
ate the DPS, the AUC values for the ROC curves obtained at 
the 5-year analysis for all three clinical outcomes examined 
and across all patient groups was consistently high for DPS 
(Table 3). The AUC values for the ROC curves obtained at 
the 10-year analysis were lower than those at 5 years but 
remained at a high predictive level across all clinical out-
comes. AUC values were highest in the total population than 
any of the four subgroups examined. In the total population, 
the AUC for RFS and recurrence were the same, 0.81 and 
0.75 at 5 and 10 years, respectively, with AUCs for OS of 
0.77 and 0.69 at 5 and 10 years, respectively (Table 3, Fig-
ure S1). In the four subgroups, AUC values were similar for 
all outcomes ranging from 0.67 to 0.80 and 0.60 to 0.75 for 
5 and 10 years, respectively (Table 3, Figures S2–S5).

Across all groups and for all clinical outcomes, there 
were similar trends of low (< 0.21) positive predictive values 
(PPV) and high (> 0.84) negative predictive values (NPV) 
(Table 3). At 5 years, PPV ranged from 0.02 to 0.09. At 
10 years, they were somewhat higher ranging from 0.10 
to 0.24. NPV were high across all three clinical outcomes, 
ranging from 0.96 to 0.99 at 5 years and 0.84 to 0.95 at 
10 years. Importantly, among the subgroups analyzed, risk 
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stratification accuracy with DPS was significant with an 
NPV of 0.95 for the prediction of 10-year recurrence and 
0.95 for 10-year RFS in the LN-negative subgroup.

DPS and clinical outcomes

In the total population, after classifying patients into high 
and low-risk using a prospectively chosen cut-off point 
for DPS, the Kaplan–Meier estimate for the proportion of 

patients in the low-risk category who were free of recurrence 
at 10 years after diagnosis was 49.6%, while the proportion 
of patients in the low-risk category who had not recurred 
and who were still alive was 49.2% and 86.7%, respectively 
(Table 4, Fig. 2). For the clinical outcomes studied, approxi-
mately half of the patients in all four groups were classi-
fied as low-risk. As expected, the percentage of the low-risk 
patients was slightly higher in the LN-negative subgroup for 
recurrence and RFS (Table 4). For OS, 55.7% of patients 

Table 1  Summary of patient and tumor characteristics in the total population and by subgroup

Total population Lymph node negative Lymph node positive Age ≤ 50 years 
(premenopausal)

Age ≥ 60 years 
(postmenopausal)

Median age (IQR), years 56 (49–63) 57 (50–64) 53 (47–61) 45 (41–48) 65 (62–68)
Median tumor size (IQR), cm 1.6 (1.2–2.2) 1.4 (1.1–1.9) 2.1 (1.5–2.7) 1.8 (1.4–2.5) 1.5 (1.1–2.0)
Tumor type, n (%)
 Ductal (including mixed) 681 (85.02) 464 (84.67) 217 (85.77) 215 (87.40) 247 (82.61)
 Lobular 83 (10.36) 54 (9.85) 29 (11.46) 22 (8.94) 38 (12.71)
 Mixed no special type and lobular 1 (0.12) 1 (0.18) 0 (0.00) 0 (0.00) 1 (0.33)
 Special type 35 (4.37) 29 (5.29) 6 (2.37) 8 (3.25) 13 (4.35)
 Tubular 1 (0.12) 0 (0.00) 1 (0.40) 1 (0.41) 0 (0.00)

Tumor grade, n (%)
 1 168 (20.97) 134 (24.45) 34 (13.44) 34 (13.82) 75 (25.08)
 2 395 (49.31) 267 (48.72) 128 (50.59) 106 (43.09) 148 (49.50)
 3 238 (29.71) 147 (26.82) 91 (35.97) 106 (43.09) 76 (25.42)

Lymph node status, n (%)
 Negative 548 (68.41) 548 (100.00) 0 (0.00) 148 (60.16) 226 (75.59)
 1–3 positive 253 (31.59) 0 (0.00) 253 (100.00) 98 (39.84) 73 (24.41)

Pleomorphism, n (%)
 1 17 (2.12) 14 (2.55) 3 (1.19) 3 (1.22) 9 (3.01)
 2 300 (37.45) 219 (39.96) 81 (32.02) 63 (25.61) 131 (43.81)
 3 477 (59.55) 309 (56.39) 168 (66.40) 176 (71.54) 157 (52.51)
 Missing data 7 (0.87) 6 (1.09) 1 (0.40) 4 (1.63) 2 (0.67)

Nottingham prognostic index, n (%)
 Good prognostic score 371 (46.32) 346 (63.14) 25 (9.88) 79 (32.11) 159 (53.18)
 Moderate prognostic score 371 (46.32) 202 (36.86) 169 (66.80) 138 (56.10) 125 (41.81)
 Poor prognostic score 58 (7.24) 0 (0.00) 58 (22.92) 28 (11.38) 15 (5.02)
 Missing data 1 (0.12) 0 (0.00) 1 (0.40) 1 (0.41) 0 (0.00)

Recurrence
 No 642 (80.15) 459 (83.76) 183 (72.33) 190 (77.24) 240 (80.27)
 Yes 159 (19.85) 89 (16.24) 70 (27.67) 56 (22.76) 59 (19.73)

Table 2  Cox proportional 
hazard model for estimating 
the contribution of variables 
to predict overall survival and 
recurrence-free survival in the 
total population (N = 801)

Variable Overall survival Recurrence-free survival

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Grade 1.81 (1.46–2.30) < 0.001 1.60 (1.30–1.95) < 0.001
Size 1.37 (1.19–1.57) < 0.001 1.27 (1.12–1.43) < 0.001
Age 1.04 (1.03–1.06) < 0.001 1.03 (1.01–1.04) < 0.001
Digistain Index 4.49 (1.08–18.67) 0.039 4.41 (1.36–14.27) 0.013
Lymph node stage 1.78 (1.34–2.36) < 0.001 1.48 (1.14–1.97) < 0.001
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were classified as low-risk compared with 18.07% in the LN-
positive subgroup. As may be expected, the premenopausal 
younger patients had higher rates of recurrence compared 
with the postmenopausal older patients; 53.3% of patients 
were classified as high-risk in the younger patient subgroup 
compared with 42.6% in the older patient subgroup.

In the total population, the hazard ratio for DPS was 
statistically significant (P < 0.001) for low- versus high-
risk classification for all three clinical outcomes (1.80, 

1.83 and 1.77 for RFS, recurrence and OS, respectively) 
(Table 4, Fig. 2). In the subgroups analyzed, DPS showed 
statistically significant risk prognostication for RFS and 
recurrence in the LN-negative subgroup, and for all three 
outcomes in the premenopausal and postmenopausal sub-
groups (Table 4, Figure S6). In general, stratifying the 
menopausal subgroups further by LN stage did not pro-
duce significant results, which may be due to the low num-
ber of events and patients (Table S1).

Table 3  Digistain accuracy (NPV, PPV, and AUC under ROC curve) for prediction of risk scoring for 5-year and 10-year clinical outcomes in 
the total population and by subgroup

AUC  area under the curve, NPV negative predictive value, OS overall survival, PPV positive predictive value, RFS recurrence-free survival, ROC 
receiver operating characteristics curve

Total population Lymph node negative Lymph node positive Age ≤ 50 years (pre-
menopausal)

Age ≥ 60 years (post-
menopausal)

5 years 10 years 5 years 10 years 5 years 10 years 5 years 10 years 5 years 10 years

AUC 
 RFS 0.81 0.75 0.71 0.70 0.77 0.73 0.74 0.62 0.71 0.74
 Recurrence 0.81 0.75 0.71 0.69 0.77 0.73 0.75 0.61 0.72 0.75
 OS 0.77 0.69 0.67 0.62 0.75 0.73 0.80 0.60 0.70 0.66

NPV
 RFS 0.99 0.94 0.99 0.95 0.98 0.89 0.98 0.91 0.98 0.92
 Recurrence 0.99 0.94 0.99 0.95 0.98 0.91 0.99 0.91 0.98 0.92
 OS 0.97 0.90 0.97 0.90 0.98 0.87 0.97 0.92 0.96 0.84

PPV
 RFS 0.06 0.15 0.02 0.10 0.11 0.20 0.08 0.15 0.05 0.14
 Recurrence 0.07 0.15 0.02 0.11 0.11 0.20 0.09 0.14 0.06 0.14
 OS 0.08 0.18 0.03 0.12 0.14 0.24 0.07 0.16 0.08 0.21

Table 4  Hazard ratio for recurrence-free survival, recurrence, and overall survival in the total population and subgroups according to Digistain 
Prognostic Score-based risk multivariable model high-low classification

Total population Lymph node negative Lymph node positive Age ≤ 50 years 
(premenopausal)

Age ≥ 60 years 
(postmenopau-
sal)

Hazard ratio (95%CI)

Recurrence-free survival 1.80 (1.31–2.48)
P < 0.001

1.63 (1.08–2.48)
P = 0.021

1.48 (0.81–2.71)
P = 0.202

1.91 (1.11–3.28)
P = 0.019

1.99 (1.18–3.34)
P < 0.001

 N–low-risk 391 (49.18%) 335 (61.14%) 56 (22.49%) 116 (47.54%) 166 (56.08%)
 N—high-risk 404 (50.82%) 211 (38.64%) 193 (77.51%) 128 (52.46%) 130 (43.91%)
 Recurrence 1.83 (1.32–2.52)

P < 0.001
1.61 (1.06–2.47)
P = 0.027

1.55 (0.83–2.89)
P = 0.168

2.06 (1.18–3.60)
P = 0.011

2.22 (1.31–3.74)
P = 0.002

 N—low-risk 394 (49.56%) 341 (62.45%) 53 (21.29%) 114 (46.72%) 170 (57.43%)
 N—high-risk 401 (50.44%) 205 (37.55%) 196 (78.71%) 130 (53.28%) 126 (42.56%)

Overall survival 1.77 (1.28–2.43)
P < 0.001

1.38 (0.92–2.07)
P = 0.124

1.67 (0.88–3.15)
P = 0.116

2.16 (1.09–4.28)
P = 0.028

1.66 (1.08–2.57)
P = 0.022

 N—low-risk 349 (43.90%) 304 (55.68%) 45 (18.07%) 100 (40.98%) 147 (49.66%)
 N—high-risk 446 (56.10%) 242 (44.32%) 204 (81.93%) 144 (59.02%) 149 (50.34%)
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Discussion

In the current study, we utilized a novel technology to 
determine prognosis in early-stage breast cancer using tis-
sue microarrays from a well-characterized series. DI pro-
vides a measure of aneuploidy [23], which has remained 
unexplored as a prognostic marker mainly due to the 
limitations of flow cytometry and lack of assays that are 
amenable to routine clinical settings [22, 29, 30]. Aneu-
ploidy-related changes have been shown to be independent 
prognostic markers in multivariable analyses of cohorts 
of cancer patients including breast cancer [19, 20, 31]. To 
support the link between aneuploidy and DI, we exam-
ined pleomorphism, which has been demonstrated to cor-
relate to aneuploidy [32], and found that DI shows a close 
to statistically significant relationship to pleomorphism. 
Digistain-based tools may have an advantage over gene-
expression analysis in that transcription does not necessar-
ily correlate with protein synthesis, and as such, genomics-
based prognostic tools may not fully assess tumor features 
and aggressiveness.

Our multivariable model incorporating DI together with 
age, tumor grade, tumor size, and LN status showed accu-
racy of risk prediction well in the range of clinical value. It 
is notable that whilst DI was significantly associated with 
both overall survival and RFS, the 95% CIs for the hazard 
ratios were wide. Digistain relies on recording an infrared 
absorption spectrum from a preselected region of inter-
est and heterogeneity effects may be partly responsible 
for the spread in CIs, as well as the relatively low event 
ratio inherent to the low-risk cohort. Wide CIs have also 
been seen with other prognostic markers, such as Mam-
maPrint where the hazard ratio was 4.6 and 95% CIs were 
2.3–9.2 [33]. The prognostic magnitude of the composite 
score (DPS) appeared to reduce compared with DI alone, 
with a final hazard ratio of 1.8 for RFS. This is expected 
based on the contribution of each of the variables, which 
are required to produce a robust prognostic model that 
accounts for occasional non-performance of any individual 
clinically relevant predictor. Inclusion of DI into a multi-
variable model resulted in a prognostic model that further 
stratified an inherently low-risk population, and is there-
fore considered to be of clinical relevance and utility.

Information on the accuracy of commercial genomic 
tools is not readily available and cross-comparisons may 
also be confounded by nuances of the patient population 
and methodology in such studies [34]. Nevertheless, a 
study conducted by the TRANSBIG Consortium to vali-
date MammaPrint in LN-negative breast cancer and where 
the Adjuvant! Software was used to initially assign risk 
groups, reported that the AUC for predicting 5-year time to 
distant metastasis was 0.68 and 0.65 for MammaPrint and 

A) Recurrence-free survival

B) Recurrence

C) Overall survival

Fig. 2  Kaplan–Meier curves indicating the event distribution over time 
for clinical outcomes based on Digistain Prognosis Score classification for 
high and low-risk in the total population
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Adjuvant! Software, respectively, and 0.64 and 0.57 for 
predicting 10-year OS, respectively [35]. In our study, risk 
prediction with DPS showed similar if not better results in 
a comparable subgroup population.

The performance of this DI-based risk scoring tool is 
highly promising in terms of NPV, with values above 97% 
for predicting RFS, recurrence or OS at 5 years and over 
89% at 10 years. These values are similar to those reported 
for MammaPrint and other tools [36–38] where clinical indi-
cation is defined as the identification of low-risk patients 
and therefore the priority is a high NPV using a 10% risk 
cut-off. As such, the relatively low PPVs are expected and 
in line with prognostic markers validated on patient cohorts 
not treated with cytotoxic therapy. Given the fact that these 
prognostic tests are intended to mitigate overtreatment with 
chemotherapy, the high NPV allows for the identification of 
true low-risk patients who may safely de-escalate treatment.

In total, 90% of the study population experienced no 
recurrence in the 10 years from diagnosis. The study was 
performed on a cohort who received no chemotherapy and 
was a low-risk population by design. Included patients were 
treated between 1998 and 2006 and are somewhat atypi-
cal of a similar contemporary population. However, there is 
still a current need for an accessible method to ensure most 
low-risk patients are spared unnecessary treatments, given 
the unaffordability of genomic risk profiling tests and the 
fact they are generally reserved for node negative cases with 
NPI > 3.4 [39].

Using the DPS, hazard ratios for all three outcomes 
were statistically significant for low- versus high-risk clas-
sification. The ability to stratify patients with a reliable, 
rapid and accessible test across real-life clinical settings 
has the potential to help guide decision-making regarding 
subsequent adjuvant therapies as an alternative to existing 
tools or additionally in intermediate-risk patients. Unlike 
genomic assays, Digistain does not involve costly reagents 
and employs widely available and inexpensive infrared spec-
trometers. Easily incorporated into pathologists’ workflow, 
Digistain is performed on routinely processed unstained tis-
sue sections, with no special tissue handling regimens and 
reduced variability due to processing and RNA yield. Of 
note, it is not susceptible to the subjectivity issues associated 
with prognostic tools based on clinicopathological features 
[25].

In our subgroup analysis, we found that AUC values were 
lower in the subgroups than in the total population, which 
may be due to the smaller numbers of patients available at 
the 10-year time point, although AUC values remained rea-
sonably high. In the LN-negative subgroup, accuracy was 
high for the prediction of 10-year recurrence and RFS. Fur-
thermore, DPS showed significant risk prognostication in 
the LN-negative subgroup (for RFS and recurrence), and in 
premenopausal patients (all three outcomes). These initial 

results are promising given the limited use of other biomark-
ers in these underserved patient groups [3] and since cur-
rent UK guidance recommends the use of prognostic tests 
only for node negative cases [39]. Further investigations of 
DPS with larger samples are now warranted by menopausal 
status (determined not solely based on age) and in those 
receiving versus not receiving adjuvant therapies. Patients 
were included in the cohort if their tumors were reported as 
ER+ and there was no information on specific levels of ER 
reported from immunohistochemical staining. It would be 
useful to explore the prognostic potential of ER sensitivity 
e.g., ER > 9% versus 1–10% in a future study with DPS, 
although ER levels are most commonly reported as a binary 
variable, particularly in under-resourced settings. DPS per-
formance could also be analyzed in relation to TNM staging 
and staging combined with NPI or tumor grade. Additional 
multicenter studies (to avoid inclusion bias) are in progress, 
and we are currently investigating the prognostic impact of 
the number of positive LN involved. We are also explor-
ing the ability of DPS to predict chemotherapy benefit and 
conducting cost-effectiveness analyses on the value of DPS 
across different clinical characteristics and risk groups.

To conclude, we have demonstrated that DPS is able 
to classify HR-positive HER2-negative primary operable 
breast cancer and ≤ 3 positive LN into low or high-risk 
with similar accuracy and predictive performance as that 
reported for other risk stratification tools. With currently 
over-burdened healthcare systems and the need to improve 
global cancer care inequalities, the ability to provide low-
cost, rapid, and widely accessible prognostic testing sug-
gests that Digistain may have the potential for significant 
clinical utility.
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