
CORRESPONDENCE OPEN

Impact of the kinetics of circulating anti-CD19 CAR-T cells and
their populations on the outcome of DLBCL patients
© The Author(s) 2024

Blood Cancer Journal           (2024) 14:83 ; https://doi.org/
10.1038/s41408-024-01065-z

Dear Editor,
CAR-T cell therapy has led to a significant advance in the

treatment of refractory/relapsed diffuse large B-cell lymphoma
(DLBCL) [1]. However, only less than half of all CAR-T-treated
DLBCL patients achieve long-term disease control [2–4]. Among
other parameters, the efficacy of CAR-T therapy in DLBCL has
been associated with the patients’ immune system, the
composition of the CAR-T product [5], the magnitude of the
in vivo expansion and persistence of CAR-T cells [6]. Here, we
used next-generation flow cytometry to investigate the kinetics
of circulating anti-CD19 CAR-T cells and their populations in
blood, and to determine their potential utility for predicting
response to therapy. For this purpose, we studied 58 relapsed/
refractory DLBCL patients (36 men and 22 women; median
[range] age, 62 [32–79] years) treated with anti-CD19 axicabta-
gene ciloleucel (axi-cel, Kite, Gilead, Santa Monica, CA) or
tisagenlecleucel (tisa-cel, Novartis, Bâle, Switzerland) CAR-T cells
(Tables S1, S2; Supplementary Data 1).
Globally, anti-CD19 CAR-T cells peaked at day +7 (50%) or

day +14 (43%) post-infusion with a median (range) number at
the peak of 68 (0.5–1771) CAR-T cells/µL and consisted of >75
distinct populations, from which 12/75 CAR-T cell subsets were
highly prevalent (Figure S1A). CAR-TCD4+ cells predominated
(median: 40 cells/µL) over CAR-TCD8+ cells (26 cells/µL), with a
balanced (median) distribution of 45% vs. 54%, respectively
(Table S3). Overall, central memory (CM) T-cells predominated
both among CAR-TCD4+ (17 cells/µL) and CAR-TCD8+ cells (18
cells/µL), followed by CAR-TCD8+ transitional memory (TM) (4.3
cells/µL) and CAR-TCD4+ effector memory (EM) cells (3.8 cells/
µL). In turn, CAR-T helper 1 (Th1) cells (11 cells/µL), CAR-Th1/Th2
(4.9 cells/µL), and regulatory (2.2 cells/µL) CAR-T cells (Tregs)
were the most expanded functional CAR-TCD4+ populations;
other CAR-T cell populations typically comprised (median
values of) <1 cell/µL (Figure S1B; Table S3). Interestingly,
significantly different numbers of CAR-T cell subsets were also
observed at their peak, depending on the commercial product
used (Tables S4, S5). Thus, axi-cel CAR-T cells (n= 33) tended to
reach their maximum expansion (Cmax) earlier than tisa-cel
(n= 25) CAR-T cells (day+7 vs. day +14, respectively) (Table S6;
Figure S2A), with significantly higher median CAR-T cell counts
(113 vs. 34 cells/µL for axi-cel vs. tisa-cel; p= 0.01) (Table S6;
Figure S2B) and a significantly different composition, but similar
median CAR expression levels/cell (Tables S4–S6; Figure S2C-D).
As expected, an inverse correlation was observed along the

whole monitoring period between the number of CAR-T cells in
blood and that of both circulating lymphoma cells (CLC)
(r=−0.2; p < 0.001) and normal residual B-lymphocytes
(r=−0.3; p < 0.001), a sustained recovery from B-cell aplasia

after the CAR-T decline being observed in only 8/58 (14%)
patients (Figure S3A–D). In another 10/58 patients (17%),
transient emergence of <5 normal residual B-lymphocytes/µL
(median: 0.4 vs. 72 B-cells/µL for patients who lost B-cell aplasia;
p < 0.001), followed by a recovery/increase in circulating CAR-T
cell counts, in the absence of a maintained recovery of normal
B-lymphocytes, was detected (Figure S3E, F).
Each patient was followed for ≥3 months post-infusion,

except for those 7 cases who failed to respond to CAR-T cell
therapy and died prior to that time point with an overall
response (OR) rate of 67% (95% CI, 54–79%): 33/58 (57%, 95%
CI, 43–70%) patients achieved complete response (CR) after a
median of 30 days and 6/58 (10%) showed partial response (PR),
whereas 19/58 (33%) patients did not respond (NR) and had
progressive disease (Figure S4). The median duration of
response was not reached and a sustained CR of up to 4.5
years was documented in 30 patients after a median follow-up
of 2 years post-infusion. At the study closure, the majority of
DLBCL patients (30/58, 52%) showed durable CR, 25 (43%) did
not reach CR, and 3 (5.2%) had CR followed by disease
recurrence after 4, 8 and 10 months, respectively. Consistent
with previous reports [7, 8], CR patients more frequently
achieved the CAR-T peak at an earlier time point (day +7:
55% vs. 48%, respectively) (Fig. 1A) and showed a greater
expansion of CAR-T cells vs. PR/NR cases (132 vs. 29 cells/µL,
respectively; p= 0.002) (Fig. 1B, C; Table S7). This translated into
a significantly prolonged median CAR-T cell lifespan in blood in
CR vs. PR/NR patients (8.3 vs. 1 months, respectively; p < 0.001)
(Fig. 1D) with detectable CAR-T cells in blood even for >3 years
post-infusion in the former group (Fig. 1A). Importantly,
patients who maintained detectable CAR-T cells (≥0.01 cells/
µL) after achieving CR, also showed significantly higher rates of
sustained CR (Fig. 2A). These findings translated into a higher
median expansion of CAR-T cells between days +1 to +28 post-
infusion in CR vs. PR/NR cases, calculated as the area under the
curve (AUC0–28): 1505 vs. 270 days x cells/µL, respectively
(p= 0.001). Likewise, CR patients also showed greater numbers
in blood of most CAR-T cell populations vs. PR/NR DLBCL,
including higher median numbers (cells/µL) of CAR-TCD4+ (46
vs. 15; p= 0.006), CAR-TCD8+ (53 vs. 9.2; p= 0.001) and CAR-
Tγδ+ (0.2 vs. <0.001; p < 0.001)%–and their maturation-
associated CAR-TCD4+CM (25 vs. 5.3; p= 0.002), CAR-TCD8+CM

(33 vs. 4.4; p= 0.002) and CAR-Tγδ+CM (0.2 vs. <0.001; p < 0.001)
subsets-, in addition to greater CAR-TFH (0.2 vs. <0.001;
p < 0.03), CAR-Th1 (22 vs. 4.3; p < 0.001) and CAR-Th1/Th2 (9.9
vs. 1.8; p= 0.02) functional subset counts, among other minor
CAR-T cell populations (Fig. 1C; Tables S7, S8).
Interestingly, 8/8 patients who experienced B-cell recovery

after CAR-T therapy achieved CR (vs. 0/25 PR/NR cases;
p= 0.007), one of them showing disease relapse 8 months
post-infusion (Figure S5). Conversely, the presence of CLC at
apheresis, or right before infusion, did not affect treatment
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Fig. 1 Differences in CAR-T-cell kinetics and composition at the CAR-T peak in blood of partial responder plus non-responder vs.
complete responder DLBCL patients and its impact on progression-free survival. A Comparison between the kinetics of circulating anti-
CD19 CAR-T cells in blood of (color-coded) individual patients grouped according to response to therapy (partial responders plus non-
responders vs. complete responders) studied at predefined time points during follow-up. Number (B), composition (C) and persistence (D) of
anti-CD19 CAR-T cells circulating in blood of DLBCL patients grouped according to response to CAR-T therapy (partial responders plus non-
responders vs. complete responders). D day, M month, Y year, CM central memory, TM transitional memory, EM effector memory, TE terminal
effector, TFH T follicular helper cells, Th T helper cells, Tregs T regulatory cells.
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response (Figure S4). Noteworthy, axi-cel-treated patients
showed higher CR rates (p= 0.02 vs patients infused with
tisa-cel), although, significant differences were restricted to
older (≥60 years) patients (p= 0.004) (Table S6; Figures
S4 and S6).
Multivariate analysis identified the combination of the disease

status prior to apheresis (OR: 11.3; 95% CI: 1.7–74), and the number of
CAR-Tγδ+ cells/µL (OR: 8.8; 95% CI: 1.9–41) and CAR-Th1TM cells/µL
(OR: 6.2; 95% CI: 1.4–29) at the peak, as independent predictors for
CR (Fig. 2B–D and S4). Based on these three variables, a scoring
system was constructed to predict for CR in which the presence of

refractory disease at apheresis scored 2 points, lower CAR-Tγδ+
counts (<0.06 cells/µL) at the peak scored 1.5, and CAR-Th1TM
numbers <1.4 cells/µL scored 1 point (vs. 0 for the other cases).
Subsequently, DLBCL patients were stratified at the CAR-T cell peak
into low-risk (score: 0–1, 14 patients [24%]), intermediate (score 1.5–3,
20 patients [35%]) and high-risk (score ≥3.5, 24 patients [41%])
DLBCL, with decreasing CR rates of 100%, 70% (OR: 0.5; 95% CI:
0.4–0.7) and only 21% (OR: 0.3; 95% CI: 0.1–0.6), respectively
(p< 0.001) (Fig. 2E–F).
At the study closure, median PFS was 10 months with a 2-year

PFS rate of 45% (95% CI: 33–60%). Most patients who achieved
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CR showed sustained response (30/33, 91%), resulting in 2-year
and 4-year CR rates of 90% (95% CI: 81–100%). One patient
relapsed with CD19-negative cells, another with CD19-positive
cells, and in the third case, a relapse was detected by PET scan,
but could not be confirmed histologically. Extranodal involve-
ment at lymphodepletion emerged as the sole factor impacting
disease recurrence among CR patients, since all three CR
patients who experienced a relapse had extranodal involve-
ment at lymphodepletion, whereas none of those without it
relapsed (0/19) (p= 0.03) (Fig. 2G). At study closure, 27/58
(47%) patients had died due to disease progression (23/27,
85%) and infection (4/27, 15%), with a median OS of 2.5 years
and a 2-year OS rate of 52% (95% CI: 40–66%). As expected,
those parameters associated with CR, also emerged as prog-
nostic features for both PFS and OS (Fig. 2E–F and S6, S7).
CR was the sole independent predictor for PFS and OS

(p < 0.001 for both) (Fig. 2H–I and S6, S7), with significant
differences in the kinetics and composition of CAR-T cells at
their peak in blood of CR patients vs. the other cases.
Importantly, the number of CAR-Tγδ+ and CAR-Th1TM cells,
together with the disease status at apheresis, emerged early (at
the CAR-TCD19 peak) as independent predictors for the
identification of DLBCL patients at high risk of treatment failure
(vs. CR). These results highlight the relevance of CAR-T cell
monitoring in the management of CAR-T-treated DLBCL for
guiding early therapeutic decisions, and point out for the first
time, a critical role of CAR-Tγδ+ cells—currently depleted from
the leukapheresis-derived CAR-T cell products [9]—in response
to therapy. The clinical relevance of TCRγδ+ cells in CAR-T cell-
treated DLBCL patients might be not only due to their potent
cytotoxic ability and proven antitumor activity [10], even in the
absence of HLA-mediated antigen presentation [11, 12], but
also to their ability to migrate from blood to peripheral tissues
where extranodal involvement by lymphoma cells frequently
occurs in relapsed/refractory DLBCL [13, 14]. Additionally, unlike
standard anti-CD19 CAR-Tαβ+ cells, CAR-Tγδ+ cells have
demonstrated reactivity in vitro and in vivo against both
CD19-positive and CD19-negative tumor cells [15], suggesting
that CAR-Tγδ+ cells might target CD19 tumor cells even after
antigen loss, and retain specificity via their TCR.
Our findings highlight the complexity and diversity of T-cell

responses following CAR-T therapy, which may not solely depend
on CAR-Tαβ+ cells. Thus, selection or depletion of specific CAR-T
cell populations (e.g., CAR-Tγδ+ cells) during the manufacturing
process, and thereby also from the CAR-T cell product, might
contribute to an increase treatment success vs. failure, which
emphasizes the value of the ex vivo characterization and
monitoring of CAR-T cells in blood together with the disease
status at apheresis, for early identification of DLBCL patients at risk
of treatment failure.
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