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Determining acute ischemic stroke (AIS) etiology is fundamental to secondary stroke prevention
efforts but can be diagnostically challenging. We trained and validated an automated classification
tool, StrokeClassifier, using electronic health record (EHR) text from 2039 non-cryptogenic AIS
patients at 2 academic hospitals to predict the 4-level outcome of stroke etiology adjudicated by
agreement of at least 2 board-certified vascular neurologists’ review of the EHR. StrokeClassifier is an
ensemble consensusmeta-model of 9 machine learning classifiers applied to features extracted from
discharge summary texts by natural language processing. StrokeClassifierwas externally validated in
406 discharge summaries from the MIMIC-III dataset reviewed by a vascular neurologist to ascertain
stroke etiology. Comparedwith vascular neurologists’ diagnoses,StrokeClassifier achieved themean
cross-validated accuracy of 0.74 andweightedF1of 0.74 formulti-class classification. InMIMIC-III, its
accuracy and weighted F1 were 0.70 and 0.71, respectively. In binary classification, the two metrics
ranged from 0.77 to 0.96. The top 5 features contributing to stroke etiology prediction were atrial
fibrillation, age, middle cerebral artery occlusion, internal carotid artery occlusion, and frontal stroke
location. We designed a certainty heuristic to grade the confidence of StrokeClassifier’s diagnosis as
non-cryptogenic by the degree of consensus among the 9 classifiers and applied it to 788 cryptogenic
patients, reducing cryptogenic diagnoses from 25.2% to 7.2%. StrokeClassifier is a validated artificial
intelligence tool that rivals the performance of vascular neurologists in classifying ischemic stroke
etiology. With further training,StrokeClassifiermay have downstream applications including its use as
a clinical decision support system.

Identifying the etiology of an ischemic stroke is a clinically challenging and
consequential task. In the United States, there are nearly 676,000 cases of
ischemic stroke per year1, a quarter of whom have had a prior stroke2.
Among stroke survivors, another stroke can lead to death or further dis-
ability. The causative mechanism or etiology of an ischemic stroke can be
heterogeneous, including large artery atherosclerosis, cardioembolism,
small vessel disease, and other rare, determined etiologies3. Nearly 20–30%

of ischemic stroke patients in the U.S. are considered cryptogenic with no
etiology determined after evaluation4–11. The risk of recurrent stroke after a
cryptogenic stroke is heightened at 5.6% at 3 months and between 14 and
20% at 2 years12,13. In one study, at 21 months, cryptogenic strokes were
associated with a higher risk of recurrent stroke in comparison with car-
dioembolic (HR 1.83, p = 0.028) and non-cardioembolic stroke patients
with known source (HR 2.4, p = 0.046). An analysis of the NOR-FIB study
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demonstrated an annual risk of stroke recurrence of 7.7% versus 2.8%
among individuals with cryptogenic versus non-cryptogenic strokes,
respectively14. In the Athens Stroke Registry, the stroke recurrence rate in
patients with cryptogenic stroke was 29% over a mean of 30.5 months,
significantly higher comparedwith all non-cardioembolic stroke subtypes15.

The diagnosis of ischemic stroke etiology determined by a patient’s
treating clinician may partly contribute to the differential rates of stroke
recurrence by etiology, as each diagnosis prompts a specific secondary
stroke prevention treatment plan. Evidence-based, etiology-specific treat-
ments that are proven to reduce the risk of recurrent stroke to varying
degrees include carotid revascularization for symptomatic severe carotid
stenosis, anticoagulation for atrial fibrillation or left ventricular thrombus,
dual antiplatelet therapy after intracranial stenosis-related stroke, and
patent foramen ovale closure when it is implicated, among others16 (Sup-
plementary Notes). Despite high-level evidence supporting the efficacy of
such therapies to prevent recurrent stroke, secondary stroke prevention
treatments are significantly underutilized both in the U.S. and globally after
an ischemic stroke17–20. This implementation gap may underlie the obser-
vation that the majority of recurrent strokes are from the same etiology as
the index stroke21. Furthermore, a cryptogenic stroke diagnosis precludes
the institution of any guideline-recommended therapy that targets specific
stroke mechanisms and reduces the risk of recurrent stroke from culprit
sources16. The ability to tailor and implement secondary stroke prevention
strategies fundamentally hinges on the diagnosis of the culprit mechanism
of an ischemic stroke.

To determine the causative mechanism of an ischemic stroke, clin-
icians synthesize a vast array of data, including clinical history and physical
examination, laboratory data, cardiac rhythm interrogation, cardiac ima-
ging, and neuroradiologic studies. Utilization of diagnostic tools has
increased with time. Nevertheless, a significant proportion of patients
remain cryptogenic22.Diagnostic uncertainty arises due to (1) an inadequate
or incomplete workup with further results pending after discharge, (2) a
complete workup yielding no known stroke etiology, or (3) multiple,
competing possible etiologies, resulting in a diagnosis of stroke of unde-
termined etiology3. An exacerbating factor may be the lack of widespread
neurovascular experts specifically trained to collect and examine data to
ascertain stroke etiology. A study has demonstrated that compared to
evaluation by a non-vascular neurologist, evaluation by a vascular neurol-
ogist was associated with a more comprehensive diagnostic investigation
thatmay changemanagement23. There is a shortage of vascular neurologists
in theUnitedStates,withonly one in every 6 ischemic strokepatients treated
by a board-certified vascular neurologist23. In this context, there is an
opportunity for an automated, artificial intelligence solution to standardize
the process of diagnosing the causative mechanism of stroke.

Artificial intelligence has been heavily adapted for clinical use to help
determine patient eligibility for acute stroke therapies such as thrombect-
omy to abort a stroke, but only minimally for the purpose of stroke
prevention24–26. There have been several studies of machine learning clas-
sifiers to predict stroke etiology.However, these have been limitedby the use
of manually curated discrete features, single-center samples, insufficient
adjudicationof stroke etiologyoutcomes, exclusionof patientswithmultiple
potential etiologies, reliance on a singular model, lack of model explain-
ability, or broad, heterogeneous categorization of stroke etiology27–35. In this
multi-center study, we aim to develop and externally validate a multi-level,
automated ischemic stroke etiology classifier by applying natural language
and innovative machine learning tools applied directly to semi-structured
text data from the EHR compiled during the AIS hospitalization.

Results
Study participants
The study sample consisted of 3,262 discharge summaries with AIS
diagnoses (N = 1269 at YNHH from 2015 to 2020; N = 1493 at MGH
from 2016 to 2019; N = 500 at BIDMC from 2001 to 2012). The char-
acteristics of the three cohorts are presented in Table 1. The derivation
cohorts of YNHH and MGH as input for model development (Fig. 1)

were similar, with some exceptions. The YNHH cohort was significantly
older (median age 71 years [IQR 59–82]) compared with the MGH
cohort (median age 69 [IQR 59–79]) (p = 0.013). Themedianword count
of the YNHH discharge summaries (1639 words [IQR 1274–2064]) was
significantly lower than in the MGH discharge summaries (2058 words
[IQR 1593–2554]) (p = 1.21e−35). The YNHH cohort was significantly
more likely than the MGH cohort to have hyperlipidemia (32.9% versus
11.5%, p = 0.001) and coronary artery disease (17.8% versus 4.0%,
p = 0.003). The YNHH and MGH cohorts had similar distributions of
stroke etiologies adjudicated by vascular neurologists: large artery
atherosclerosis (19.8% versus 21.0%), cardioembolism (32.9% versus
29.9%), small vessel disease (15.3% versus 10.7%), other determined
etiology (8.9% versus 9.6%), and cryptogenic etiology (23.1% versus
28.8%). The degree of completeness of extracted featureswas comparable
between YNHH and MGH with respect to UMLS CUIs (extracted from
95.7% versus 94.5%), neuroimaging features (extracted from 94.1%
versus 92.0%), cardiac features (95.4% versus 93.0%), clinical history
(90.3% versus 91.5%), and laboratory features (90.0% versus 92.3%).

Characteristics of the combined derivation cohortwere comparedwith
those of the external validation MIMIC-III cohort. The external validation
cohort was comparable in age to the combined derivation cohort. The
median word count of the external validation cohort discharge summaries
was significantly lower (1712 words [IQR 1160–2294], p = 0.002). The
external validation cohort was more likely to have heart failure (27.3%
versus 12.5%, p = 0.019). The distribution of stroke etiologies differed sig-
nificantly between the derivation and external validation cohorts
(p = 0.001). Large artery atherosclerosis (8.8% versus 20.5%, p = 0.031) and
small vessel disease (3.6% versus 12.8%, p = 0.023) were significantly less
frequent in the external validation cohort, while cardioembolism was sig-
nificantly more frequent (51.2% versus 31.3%, p = 0.028). The derivation
and external validation cohorts were similar in terms of feature complete-
ness (p = 0.638–0.979) (Table 1; Fig. 2a).

Data post-processing and principal component analysis
Of the 2039 non-cryptogenic stroke samples in the YNHH and MGH
cohorts, 1932 samples were successfully post-processed by MetaMap (see
“Methods”) as input formodel development (Fig. 1). Imputation ofmissing
entries in categorical and numerical features was performed usingMICE in
the derivation cohort of 1932 samples and Random Forests-based impu-
tation in the external validation cohort (see “Methods”; Supplementary
Table 3). The levels ofmissingness for the categorical andnumerical features
were 91.9% (76.8% to 99.9%) and 73.4% (2.3% to 99.9%) on average,
respectively. Imputation of several features failed, and they were excluded
subsequently. All subsequent analyses were performed on the imputed
datasets.

For the derivation cohort analyzed for model development, we per-
formed PCA on all of the 2027 features, either discretized or not, to reduce
dimensionality or noise. We then selected the top PCs for each of the ten
thresholds of the total variance (see “Methods”) for alternative model
development (Fig. 1). We found that 99% of the total variance could be
explained by less than half of all features, the first principal component with
about 4.5% variance discriminating between the two cohorts (Fig. 2b, c).

Base models with optimized hyperparameters and model
performances
We performed 96 hyperparameter optimizations (HPOs) for the 4 super-
vised machine-learning algorithms of LR, SVC, RF, and XGB and 24
training datasets (Table 2A and Supplementary Table 4; Figs. 1 and 3a).
Based on the AUCROC rankings in the fivefold CV (Supplementary Table
5), we denote the best model for each of the four strategies as LR*, SVC*,
RF*, andXGB*, respectively, hereafter. All four bestmodelswere built using
the full features with discretization (age+ sex+CUI+RAD+HRT+
HEXd+ LABd, denoted by combn1d.age.sex.v1 or Λ1) (Table 2A).
AUCROC and mean cross-validated accuracy were 89.8% and 74.7% for
LR*, 90.1%and71.9% for SVC*, 91.3%and74.6% forXGB*, and90.5%and
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69.1% for RF*. Similar performances were observed with PCA of the full
features (denoted byΛ1_pca), except for RF* (Table 2A). Fit times for XGB*
with Λ1 were particularly longer (>235 s) than those for the other three
models (Table 2A).Wealso observe thatXGBandRF tend to overfit (Fig. 3b
andSupplementaryFig. 2).CUIs contributedmost tomodel performance as
measured by AUCROC, while the radiologic features ranked second. The
decrease in performance was the largest for each model when CUIs were
excluded from the full feature group. On the other hand, excluding the LAB
and HEX features tend to improve the performance. There was no per-
formance improvement with those samples of high-feature information
defined by the presence of at least four feature groups.

Next, we evaluated the performance of each optimizedmodel for the
full cohort of the 1932 samples. We also built and examined the SVC2
model, which calculates alternative prediction probabilities as a different
calibration approach using the optimized hyperparameters from SVC*

(see “Methods”). The runtimes for the 5 models of LR*, SVC*, RF*,
XGB*, and SVC2 were 114ms, 10.8 s, 258ms, 475ms, and 10.8 s,
respectively, and their accuracies were 90.4%, 86.2%, 92.4%, 97.6%, and
88.1%. The numbers of samples correctly predicted byN = 1, 2, 3, 4, and 5
models (i.e., supports) are 59 (3.1%), 74 (3.8%), 92 (4.8%), 108 (5.6%), and
1574 (81.5%), respectively. In other words, 91.9% of all samples were
correctly predicted by at least 3 models. The remaining 25 samples (1.3%)
were incorrectly predictedby all the 5models. The [numbers, percentages]
of 1,002MGH and 930 YNHH samples withN = 0 to 5 supports are [(13,
12), (1.3%, 1.3%)], [(32, 27), (3.2%, 2.9%)], [(31, 43), (3.1%, 4.6%)], [(44,
48), (4.4%, 5.2%)], [(57, 51), (5.7%, 5.5%)], and [(825, 749), (82.3%,
80.5%)], respectively. When we analyzed those 59 samples correctly
predicted by a single model (N = 1), RF*was found to correctly predict 49
(83.1%) samples, in particular for TOAST 1 and 2 (22 and 16 samples or
37.3% and 27.1%, respectively).

Table 1 | Description of study cohorts

Data for model development Data for external
validation

P-value

YNHH (N = 1269) MGH (N = 1493) YNHH+MGH
(N = 2762)

MIMIC from
BIDMC (N = 500)

YNHH
vs. MGH

YNHH+MGH
vs. MIMIC

Age (median [IQR Q1-Q3]) 71 [59–82] 69 [59–79] 70 [59–80] 73 [61–82] 0.01295 0.45335

Male sex 636 (50.1%) 812 (54.4%) 1448 (52.4%) 232 (46.4%) 1 1

Race (White; Black or African
American; Others)

891 (70.2%); 273
(21.5%); 105 (8.3%)

1095 (73.3%); 107
(7.2%); 291 (19.5%)

1986 (71.9%); 380
(13.8%); 396 (14.3%)

NA 0.94280 NA

Admission Year 2015–2020 2016–2019 2015–2020 2001–2012 NA NA

Characters in discharge sum-
mary texts (median [IQR
Q1-Q3])

11294 [8865–14033] 13338 [10366–16508] 12255 [9530–15590] 11436 [7650–15184] 2.57E−18 0.00457

Words in discharge summary
texts (median [IQR Q1-Q3])

1639 [1274–2064] 2058 [1593–2554] 1846 [1410–2365] 1712 [1160–2294] 1.21E−35 0.00214

NIHSS (median [IQR Q1-Q3];
%N)

5 [1–11]; 68.7% 6 [2–15]; 34.3% 5 [2–13]; 50.1% 16 [10–20]; 9.2% NA NA

Co-morbidities (CUI freq.) 0.00721 0.31430

Hypertension 1006 (82.1%) 1118 (78.5%) 2124 (80.2%) 384 (77.0%) 0.77635 0.79867

Hyperlipidemia 403 (32.9%) 164 (11.5%) 567 (21.4%) 98 (19.6%) 0.00132 0.78388

Diabetes 571 (46.6%) 505 (35.4%) 1076 (40.6%) 214 (42.9%) 0.21615 0.80278

Atrial fibrillation 476 (38.9%) 739 (51.9%) 1215 (45.8%) 215 (43.1%) 0.17248 0.76954

Cigarette use 1 (0.1%) 0 (0%) 1 (0.04%) 0 (0%) 0.75183 0.84597

Drug use 14 (1.1%) 32 (2.2%) 46 (1.7%) 10 (2.0%) 0.54483 0.88972

Coronary artery disease 218 (17.8%) 57 (4.0%) 275 (10.4%) 104 (20.8%) 0.00312 0.06109

Heart failure 174 (14.2%) 157 (11.0%) 331 (12.5%) 136 (27.3%) 0.52383 0.01919

Stroke etiology 0.80070 0.00103

Large artery atherosclerosis (1) 251 (19.8%) 314 (21.0%) 565 (20.5%) 44 (8.8%) 0.84461 0.03066

Cardioembolism (2) 418 (32.9%) 446 (29.9%) 864 (31.3%) 256 (51.2%) 0.69881 0.02846

Small vessel disease (3) 194 (15.3%) 160 (10.7%) 354 (12.8%) 18 (3.6%) 0.37006 0.02310

Other determined (4) 113 (8.9%) 143 (9.6%) 256 (9.3%) 88 (17.6%) 0.87554 0.10953

Cryptogenic (5) 293 (23.1%) 430 (28.8%) 723 (26.2%) 94 (18.8%) 0.42780 0.26997

Degree of feature
completeness

0.99900 0.97650

UMLS CUIs (CUI) 1215 (95.7%) 1425 (94.5%) 2626 (95.1%) 499 (99.8%) 0.92854 0.73506

Neuroimaging (RAD) 1194 (94.1%) 1373 (92.0%) 2567 (92.9%) 484 (96.8%) 0.87606 0.77930

Cardiac data (HRT) 1210 (95.4%) 1389 (93.0%) 2599 (94.1%) 492 (98.4%) 0.86597 0.75654

Clinical History (HEX) 1146 (90.3%) 1366 (91.5%) 2512 (90.9%) 453 (90.6%) 0.92989 0.97936

Laboratory data (LAB) 1142 (90.0%) 1378 (92.3%) 2520 (91.2%) 425 (85.0%) 0.86443 0.63842

MetaMap

Processing time on aver-
age (min)

5.0 3.3 4.1 0.8

N.B. chi-squared tests for categorical variables and Student’s t-tests for numerical variables. Those p-values < 0.05 are highlighted in bold.
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Performance of ensemble models and consensus meta-model,
StrokeClassifier
We aggregated the 4 optimized models built using the full features and
samples,Χ(Λ1), alongwith SVC2, into four ensemblemodels with four pre-
specified summary statistics (see “Methods”). The fivefold CV performance
metrics associated with these ensemble models are shown in Table 2B. We
observed performance improvement using the ensemble models by up to
0.7% on average (F1 score) in MEAN across the 7 metrics compared to the
individual base models. No single ensemble model performed better than
the rest inpredicting eachTOASTclassification; therewas variability among
models that predicted each TOAST classification most accurately (Sup-
plementary Tables 5–7). Spearman correlation and Cohen’s kappa values
among the 9 base classifiers range from 0.78 and 0.81 (between RF* and
SVC2) to 0.96 and 0.97 (betweenMEAN andMEDIAN), respectively. This
observation supported our inclination toutilize a consensus ensemblemeta-
model, designated as StrokeClassifier, to harness the varying predictive
capacities of the 9 classifiers while diluting the bias introduced by individual
models, bolstering the robustness and generalizability of themodel’s output.

StrokeClassifier demonstrated the following performancemeasures on
average for predicting the 4-level outcome of non-cryptogenic stroke
etiology: accuracy of 0.744, balanced accuracy of 0.710,weightedF1of 0.740,
and Cohen’s kappa of 0.629 (Table 2B), indicating substantial agreement
with vascular neurologist-adjudicated stroke etiology. Themeanaccuracy of
StrokeClassifier for each specific etiology versus not as a binary outcome
ranged from 0.829 for TOAST 2 to 0.913 for TOAST 4 (Table 3).

Performance validation using 300 repeated multi-fold CV splits
Since cross-validation strategies such as the 5-fold CV used for HPO are
anchored to a particular seed number, which is subjective, we used 300
training-validation data splits by repeated multi-fold CV, RMFCV300, to
derive better estimates ofmodel performance and generalization errors.We
performed RMFCV300 for the four best models optimized by the HPO,
focusing onmodel performances by AUCROC and AUPRCmetrics (Fig. 4
and Supplementary Fig. 3; Supplementary Tables 8–10). While there was

variability in the magnitude of model performance measures for each
TOAST class among the four models, all four models performed best in
predicting TOAST three in terms of AUCROC, while they performed best
in predicting TOAST two in terms of AUPRC, regardless of the number of
CV folds employed. For each TOAST class, the means and standard
deviations of both AUCROC and AUPRC for the CV fold repetitions
consistently increased with the increasing CV folds across the four models.

Analysis of age-sex-race strata
To evaluate whether there was heterogeneity in model performances based
on patient age, sex, and race, we assessed model performances in age-sex-
race subgroups using the RMFCV300 validation sets (Table 4 and Supple-
mentary Tables 11–14). We observed that StrokeClassifier tended to per-
form worse in the stratum of males/age ≥ 65, in particular for predicting
TOAST 3 and 4 (lowest mean F1 of 64.6% and 36.3% across all strata,
respectively). The stratum of Black or African Americans also showed a
relatively worse performance for TOAST 1 (lowest mean F1 of 63.8%). In
contrast, StrokeClassifier performed better in the stratum of females/age <
65, in particular for predicting TOAST 3 and 4 (highest mean F1 of 80.6%
and 68.7% across the strata, respectively). We note that all mean perfor-
mance values were greater than 60%, except F1 scores in TOAST 4 for the
4 strata of male (51.4% ± 8.1%), age ≥ 65 (50.8% ± 10.4%), male/age ≥ 65
(36.3% ± 16.9%), male/age < 65 (56.1% ± 8.9%), white (59.9% ± 6.5%),
Black or African American (53.4% ± 21.7%), and others (57.7% ± 13%).

Feature importance analysis
We examined feature importance or the contribution of features to predict
TOAST classification by SHAP analysis for each of the four optimized base
models. The top ten features in terms of mean absolute SHAP values for
each model are shown in Fig. 5a. The top feature for all four models is AF.
The second feature is either the frontal location of the infarct noted on
radiography or the patient’s age. For PCA, the top two features are PC1 and
PC3 (the second and fourth principal components, respectively; 0-indexed).
The largest impact of both AF and PC1 is on TOAST 2. We also examined

Fig. 1 | Workflow overview. Icons were created with BioRender.com.
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Fig. 2 | Exploratory data analysis. a Percentage comparison of discharge summary
records with radiology-related features among the three cohorts. bNumbers of PCs
for each PCA total variance cutoff for 2027 YNHH andMGH features in the case of
non-discretized features with all standardized continuous features, discretized

features with the standardized age feature, and discretized features with no stan-
dardization. c Scatter plots of PC1 and PC2 for the three cases in b by class and by
cohort.dTop features that are present in >50%of non-cryptogenic stroke records for
each TOAST class and their significance by chi-squared tests.
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the top ten features for each class for each model, as shown in Fig. 5b. The
features that contribute themost to the prediction ofTOAST1by allmodels
were AF, carotid occlusion, and atherosclerosis; for TOAST 2 were AF,
patient age, and frontal location of infarct; for TOAST 3 were frontal
location of infarct, occluded middle cerebral artery, AF, and thalamus
locationof infarct; and forTOAST4,patient age,AF, andhypercoagulability
or thrombophilia. For the PCA-based optimized models, we examined the
top five PCs and the top tenmost contributing features for each PC for each
class (Supplementary Fig. 4; Supplementary Table 15). Similar important
features were observed, including age, sex, and NIHSS. This method iden-
tified multiple unique features contributing to stroke etiology classes. For
example, the following six features in PC11 were unique to TOAST 2 by
threemodels (SVC*, XGB*, and RF*): blood pressure (HEX), mass of body
region (C0577573), Macrophage Activation Syndrome (C1096155), cyclic
neutropenia (C0221023), sinus (HRT), and hemorrhagic (RAD). The fol-
lowing four features in PC10 are unique to TOAST 3 by threemodels (LR*,
SVC*, and XGB*): left ventricular hypertrophy (HRT; C0149721), peri-
cardial effusion (C0031039), and agitation (C0085631). The top features by
the model-agnostic Kolmogorov–Smirnov test and Student’s t-test are lar-
gely in agreement, the correlations between |t| or D statistics (or their p-
values) and means of absolute SHAP values averaged over the four models
for the four classes ranging between 0.43 and 0.89 (Supplementary Fig. 5).

Analysis of misclassification
Weexaminedmisclassified samples for each class and the top ten features of
the highest frequency among those misclassified samples. We analyzed
classification resultsbyStrokeClassifier for both training andvalidation from
the merged RMFCV300 results. The misclassification or error rates
( = 1− accuracy; Supplementary Table 10) for training were 4.5 ± 0.6%,
5.3 ± 0.7%, 2.5 ± 0.4%, and 2.0 ± 0.4% for the 4 classes, respectively, and
those for validation were 16.2 ± 1.4%, 16.8 ± 1.7%, 9.4 ± 1.2%, and
9.4 ± 1.2% for the 4 classes, respectively. The top 10 most frequent features
amongmisclassified samples for each class in each training or validation set
are found to be present in ≥54.8% of those samples (Supplementary Table
16). Frequencies of those top 10 features in the 300 trainingor validation sets
for each misclassified class are shown in Table 5 and Fig. 6. There are 6
features that are among the top 10 in all of the 300 training or validation sets:
cerebrovascular accident, ejection fraction, body substance discharge,
respiratory rate, sodium, and infantile neuroaxonal dystrophy.

Model generalizability by 5-way cross-hospital and longitudinal
validation
To test themodel generalizability,we applied the9basemodels (withΧ(Λ1))
to the curatedMIMICdischarge summaries (Table 6).Weused3 versionsof
the MIMIC data as external validation: (1) MIMIC0 = 375 non-cryptogenic
samples with 1406 features in common with YNHH and MGH, (2)
MIMIC1 = 405non-cryptogenic samples imputed byRandomForests using
MICE, and (3) MIMIC2 = 405 non-cryptogenic samples imputed by ran-
dom sampling using MICE. For MIMIC1, AUCROC ranged from 0.834 to
0.860 (0.847 ± 0.009), accuracy from 0.667 to 0.711 (0.691 ± 0.014), and F1
from 0.587 to 0.717 (0.690 ± 0.039) by the 9 base classifiers, while Stroke-
Classifier showed AUCROC of 0.809, AUPRC 0.719, accuracy of 0.699, F1
of 0.708, and kappa 0.467 (Table 6A). Performances in MIMIC0 and
MIMIC2 or those by the PCA-based models were similar (Supplementary
Table 17).Overall, theperformanceofStrokeClassifier in the external dataset
was reduced by less than 5% in comparison with the internal 5-fold CV
(Table 2B).Wealso examined class-wideperformances of StrokeClassifier in
MIMIC1. Prediction of TOAST 1 was associated with the lowest PPV of
37.0%, the lowest kappa of 0.377, and the highest false positive rate (FPR) of
11.4%; Prediction of TOAST 2 was associated with the lowest accuracy of
78.0%, the lowest F1of 78.2%, thehighest false negative rate (FNR)of 12.3%,
the highest PPV of 84.1%, and the highest kappa of 0.535; Prediction of
TOAST 3 was associated with the highest accuracy of 94.1%, the highest F1
of 94.6%, the lowest FPR of 4.0%, and the lowest FNR of 2.0%; performance
measures for predicting TOAST 4 were moderate (Table 6B). SimilarT
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performances are observed for MIMIC0 and MIMIC2 (Supplementary
Table 18).

For an additional test of generalizability with Χ(Λ1), we trained and
optimized the four basemodels the sameway as above using theMGHdata
of 1002 non-cryptogenic samples and applied to the YNHH and MIMIC
data for external validation (Table 6B and Supplementary Table 18). The 4
best models, LR*MGH, SVC*MGH, XGB*MGH, and RF*MGH, yielded mean
cross-validated AUCROC of 91.0%, 90.9%, 92.3%, and 91.1%, respectively,
and accuracy of 74.4%, 73.6%, 76.8%, and 68.1%, respectively. The external
validation of the YNHH andMIMIC1 data by StrokeClassifier resulted in an
accuracy of 68.9% and 70.9%, respectively. Similarly, we next tested the
models using the YNHH data of 930 non-cryptogenic samples for training
and the MGH and MIMIC data for external validation (Table 6B and
Supplementary Table 18). The 4 best models, LR*YNHH, SVC*YNHH,
XGB*YNHH, and RF*YNHH, yielded mean cross-validated AUCROC of
86.8%, 86.5%, 87.6%, and 87.3%, respectively, and accuracy of 69.4%, 68.6%,
69.4%, and 60.6%, respectively. The external validation of the MGH and
MIMIC1data byStrokeClassifier resulted in anaccuracy of 70.3%and66.4%,
respectively. Performances in MIMIC0 and MIMIC2 were similar (Supple-
mentary Table 18).

To address the longitudinal useability of StrokeClassifier, we re-trained
and optimized the model with a new training set of discharge summaries

from 2015 to 2019 in the combined cohort of YNHH and MGH and then
longitudinally validated the optimal model using a test set from 2020. The
performances areAUCROCof 86.8%,AUPRCof 71.4%, accuracyof 74.2%,
F1 of 74.0%, and Cohen’s kappa of 0.64 for multi-class classification. For
binary classification of each of the 4 TOAST classes, accuracy and F1 range
from 83.2% to 90.6% (Table 6B).

Predicting etiologies of cryptogenic stroke using
StrokeClassifier
We next aimed to classify a potential etiology of strokes in a cohort of
adjudicated cryptogenic strokes using a variety of certainty heuristics as
proof-of-concept. In the pooled cohort of YNHH, MGH, and MIMIC1

datasets, there were a total of 788 stroke patients (285, 409, and 94,
respectively), which were deemed to be cryptogenic strokes by vascular
neurologists (Table 7).Theheuristic thatwe employed in this studywasbuilt
on a threshold of the first quartile (25% or moderate confidence) of the
number of consensus supports among the 9 base classifiers for each TOAST
classificationbasedon theMIMIC1 external validation results: 7 supports for
TOAST 1, 9 for TOAST 2, 7.2 for TOAST 3, and 7 for TOAST 4 (Supple-
mentary Table 19). If the number of supports for a particular sample was
greater than or equal to the prespecified TOAST class threshold, the
ischemic stroke was classified as the corresponding TOAST class. If the

b LR* SVC* XGB* RF*

a

Fig. 3 | Model performances. a Performances and fit times of each optimized model for each feature group by fivefold CV. b AUCROC and fit times of the PCA-based
optimized models with combn1d.age.sex.v1 (Λ1). The error bars represent the mean ± standard deviation (SD) of the fivefold CV.

Table 3 | Performance of StrokeClassifier for each TOAST classification

Physician diagnosis Accuracy BA PPV F1 Kappa FPR FNR

Large artery athero-
sclerosis (1)

0.836 ± 0.015 0.785 ± 0.033 0.718 ± 0.029 0.834 ± 0.017 0.580 ± 0.049 0.073 ± 0.015 0.091 ± 0.021

Cardioembolism (2) 0.829 ± 0.014 0.830 ± 0.011 0.781 ± 0.027 0.830 ± 0.013 0.654 ± 0.025 0.100 ± 0.018 0.071 ± 0.007

Small vessel disease (3) 0.909 ± 0.010 0.854 ± 0.010 0.733 ± 0.049 0.910 ± 0.008 0.693 ± 0.024 0.050 ± 0.015 0.041 ± 0.006

Other determined (4) 0.913 ± 0.006 0.764 ± 0.037 0.685 ± 0.038 0.909 ± 0.008 0.568 ± 0.046 0.033 ± 0.010 0.054 ± 0.010

N.B. The values aremean ± SD for five validation sets of fivefoldCV.BAbalanced accuracy = (sensitivity+ specificity)/2,PPVpositive predictive value = precision = 1− false discovery rate,KappaCohen’s
kappa, FPR false positive rate = 1− true negative rate (or specificity), FNR false negative rate = 1− true positive rate (or sensitivity or recall). The best and worst values for each performance metric are
highlighted in bold.
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number of supports was less than any of the pre-specified TOAST class
thresholds, the etiology was classified as persistently cryptogenic. Table 7
shows distributions of predicted TOAST classifications of cryptogenic
patients for each cohort and the pooled cohort. Figure 7a also depicts the
distributions of TOAST classification of the full cohort as adjudicated by
vascular neurologists versus StrokeClassifier. Predictions for 46.3%, 54.5%,
and 37.2% of the cryptogenic samples of YNHH,MGH, andMIMIC1 were
agreed by all the 9 base classifiers, respectively. The prediction agreement by
at least 8 base classifiers was observed for 69.8%, 72.6%, and 61.7% of the
cryptogenic samples of YNHH,MGH, andMIMIC1, respectively. Themost
frequently predicted etiology was TOAST 2 for YNHH and MGH (32.6%
and 37.9%, respectively) and TOAST 1 for MIMIC1 (27.7%), whereas the
least frequently predicted etiology was TOAST 4 for YNHH and MGH
(6.7% and 5.9%, respectively) and TOAST 3 for MIMIC1 (5.3%) (Table 7).
The percentages of persistently cryptogenic samples for YNHH,MGH, and
MIMIC1 were 30.9%, 27.1%, and 27.7%, respectively (Table 7). In other
words, 28.6% of all cryptogenic samples (225 out of 788) were not predicted
with high confidence by StrokeClassifier and remain cryptogenic. This

reduced the percentage of cryptogenic patients from 25.2% to 7.2% in the
full cohort of 3125strokepatients inYNHH,MGH, andMIMIC (Fig. 7a). In
contrast, when we used a certainty heuristic of the third quartile number of
consensus supports (high confidence), 9.9% of cryptogenic patients (309
cryptogenic patients of the full cohort; Supplementary Table 19) remained
persistently cryptogenic.

Finally, we generated a repertoire of EHR signatures of predicted
TOAST classes for cryptogenic strokes (excluding the 225 persistently
cryptogenic strokes) using feature frequencies from StrokeClassifier. We
focused on those features that were present in >50% of the cryptogenic
stroke samples in each predicted class. We identified 26 such features (Fig.
7b). Six of these 26 features were class-specific with p-value < 0.01 by chi-
squared tests: hypercoagulability/thrombophilia (high-frequency for
TOAST4; p = 1.19e−15), AF (high-frequency for TOAST2; p = 2.69e−12),
basal ganglia (high-frequency for TOAST 3; p = 2.93e−12), age >65 (low-
frequency for TOAST 4; p = 1.68e−05), frontal (low-frequency for TOAST
3; p = 8.60e−05), and hypertensive disease (low-frequency for TOAST 4;
p = 5.66e−03).

ROC

b

a
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*
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X
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B
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*
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*

X
G
B
*

R
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PR

Fig. 4 | Model validation by RMFCV300. a ROC and PR curves for each optimized model and each CV fold by the RMFCV300 strategy. AUCROC and AUPRC are shown
for each class vs. the rest. b Distributions of multiple performance metrics for each optimized model and each class (vs. the rest) as well as (weighted) averages.
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Discussion
Wedeveloped and validated an accurate automated tool, StrokeClassifier, to
predict AIS etiology using EHR text-based data collected during stroke
hospitalization. StrokeClassifier is a meta-classifier of a majority voting
ensemblebuilt fromninebase classifiers trainedusing adjudicatedoutcomes
curated from institutions with vascular neurology expertise. Standardized
CUI features extracted from unstructured or semi-structured text corpora
by anNLPmethodwere particularly powerful predictors.We found that the
predictive capacity of StrokeClassifierwas generalizable in five-way external
validation cohorts as well as a longitudinal analysis.While limited in several
ways, this work is a promising multi-cohort and multi-class study of stroke
subtype classification. The external and longitudinal validation accuracies
were about 70% and 74%, respectively, for multi-class classification, while
theywere 77–96% for binary classification. These accuracies are higher than
the minimum accuracy of 70% desired by a convenience sample of 13
international clinicians who care for stroke patients to adopt an AI stroke
etiology diagnostic tool into clinical practice (8 vascular neurologists, 3 non-
vascular neurologists, and 2 internists who we interviewed during the
National Science Foundation Innovation Corps Regional Program, Sum-
mer 2023). By applying StrokeClassifier to a cohort of cryptogenic stroke
patients to predict non-cryptogenic stroke etiologies with a certainty
heuristic, the proportion of ischemic stroke patients in the full cohort with a
persistently cryptogenic diagnosis was 7.2%, which was 71% lower than the
rate adjudicated by vascular neurologists. With further training in repre-
sentative cohorts, StrokeClassifiermay aid stroke etiology diagnosis during
the stroke hospitalization and timely administration of secondary stroke
prevention therapies. It may also inform future clinical and population
research investigations.

There are three published manuscripts and one abstract describing
machine learning classifiers for ischemic stroke TOAST classification sub-
typing with various limitations that we aimed to overcome27,28,32. Inclusion
criteria for specific stroke etiologies varied in these studies with downstream
implications. The studies by Garg et al. and Turner et al. trained models to
classify all 5 TOAST subtypes27,32, while the study by Wang et al. excluded
cryptogenic strokes altogether29. Sung et al. explored multiple machine
learning classifiers and MetaMap for multi-class classification of the 4
Oxfordshire Community Stroke Project subtypes of ischemic stroke using
admission clinical notes from a single cohort, but none of their classifiers
exceeded an accuracy of 60%34. Kamel et al. trained a binary classifier using
non-cryptogenic stroke samples and then applied the classifier to crypto-
genic stroke samples28. We utilized a stepwise approach, with the goal of
ultimately classifying subtypes. We did not consider cryptogenic samples
during training because they were comprised of a mixture of potential
etiologies36. Instead, we investigated distributions of the 4 predicted non-
cryptogenic etiologies for cryptogenic samples. We then developed various
certainty heuristics to predict the probability of stroke etiologies, both non-
cryptogenic and persistently cryptogenic. This scalable property of Stroke-
Classifier is promising since thepatients it is tasked to classifywill not bepre-
specified as cryptogenic or non-cryptogenic. All published stroke etiology
classifiers were trained and tested at a single center, which may not gen-
eralize to other centers in the U.S. or globally27–29,32. StrokeClassifier was
tested in separate hospital cohorts with various EHR systems, and robust-
ness was demonstrated. Each classifier, with the exception of the one
developed by Garg et al., relied on hard-coded fields and did not have the
capacity to utilize unstructured text data. Although the classifier generated
by Garg et al. applied natural language processing to text-based data, it
lacked an established ontological framework that could map phraseologies
to consistent clinical concepts. We leveraged the UMLS conceptual fra-
mework developed by the National Library of Medicine to ensure the
operability of StrokeClassifier irrespective of clinician and computer envir-
onment. For computational efficiency, we utilized PCA to capture multi-
dimensional contributions of a wide array of features. We uniquely trained
StrokeClassifier on adjudicated stroke etiologies upon review by at least two
board-certified vascular neurologists. Since there was variability among
individual optimized models in predicting each etiology, the 4 optimizedT
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models, alongwith SVC2, were aggregated into ensemblemodels, which are
also architecturally simple and efficient. Although ensemble modeling was
utilized by Kamel et al.28 it did not include the diversity of models that
StrokeClassifier’s meta-model represents with summary-statistic-based
ensemble models. We took several measures to minimize bias. To address
overfitting, we investigated sub-optimalmodels within 1 standard deviation
of the optimized models in terms of AUCROC, showing performance
reductionbyup to4%acrossdifferentmetrics andCV folds.Additionally, in
an effort to offset bias introduced by relying on a single choice of CV folds

and a particular random seed, our RMFCV300 strategy analysis offers a
more robust framework to assess model performance and generalization
errors. Finally, we performed SHAP analyses to assess the degrees to which
features contributed to stroke etiology prediction. The features contributing
to the prediction of each stroke etiology were biologically plausible, lending
validity to StrokeClassifier.

There are multiple potential applications of a trained, automated,
accurate, and computationally efficient stroke etiology classifier. It can be
implemented in health systems to perform the complex task of synthesizing
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Table 5 | Top ten features of the highest frequency for misclassification by StrokeClassifier

Misclassified etiology Training Validation

Top ten most frequent features Frequency Top ten most frequent features Frequency

Large artery atherosclerosis (1) C0038454 | STROKE (Cerebrovascular accident) 300 C2926602|Discharge (Discharge, body substance) 300

HRT|Ejection_fraction 300 C0038454 | STROKE (Cerebrovascular accident) 300

C2926602|Discharge (Discharge, body substance) 300 LAB|Sodium 300

HEX|Respiratory_Rate 300 HRT|Ejection_fraction 300

LAB|Sodium 300 C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 299

C0020538 | HTN (Hypertensive disease) 299 C0020538 | HTN (Hypertensive disease) 299

C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 297 HEX|Respiratory_Rate 298

HRT|Vegetation 296 HRT|Vegetation 285

C1535939 | PCP (Pneumocystis jiroveci pneumonia) 261 C1535939 | PCP (Pneumocystis jiroveci pneumonia) 283

C0012634|condition (Disease) 162 C0012634|condition (Disease) 182

LAB | HDL 150 LAB | HDL 91

HEX|Blood_Pressure 13 Sex 39

Sex 12 YNHH 7

RAD|Frontal 4 RAD|Frontal 5

C0004238|AFib (Atrial Fibrillation) 3 HEX|Blood_Pressure 3

MGH 2 HEX | NIHSS 3

LAB|Hemoglobin 1 C3714552 | WEAKNESS (Weakness) 2

C1457887 | SYMPTOMS (Symptoms) 2

MGH 2

Cardioembolism (2) C2926602|Discharge (Discharge, body substance) 300 C2926602|Discharge (Discharge, body substance) 300

C0038454 | STROKE (Cerebrovascular accident) 300 C0038454 | STROKE (Cerebrovascular accident) 300

LAB|Sodium 300 LAB|Sodium 300

HRT|Ejection_fraction 299 C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 300

C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 298 HEX|Respiratory_Rate 299

HEX|Respiratory_Rate 298 HRT|Ejection_fraction 299

HRT|Vegetation 298 C1535939 | PCP (Pneumocystis jiroveci pneumonia) 294

C1535939 | PCP (Pneumocystis jiroveci pneumonia) 292 HRT|Vegetation 288

C0020538 | HTN (Hypertensive disease) 286 C0020538 | HTN (Hypertensive disease) 284

LAB | HDL 236 LAB | HDL 169

C0012634|condition (Disease) 64 C0012634|condition (Disease) 98

C0004238|AFib (Atrial Fibrillation) 12 Sex 32

Sex 7 HEX | NIHSS 11

HEX|Blood_Pressure 3 C0004238|AFib (Atrial Fibrillation) 5

HEX | NIHSS 2 RAD|Frontal 5

MGH 2 LAB|Hemoglobin 4

YNHH 2 HEX|Blood_Pressure 2

LAB|Hemoglobin 1 C3714552 | WEAKNESS (Weakness) 2

LAB | ALT 2

YNHH 2

C1457887 | SYMPTOMS (Symptoms) 1

C0028738 | NYSTAGMUS (Nystagmus) 1

LAB | AST 1

MGH 1

Small vessel disease (3) C0038454 | STROKE (Cerebrovascular accident) 300 C2926602|Discharge (Discharge, body substance) 300

C2926602|Discharge (Discharge, body substance) 300 C0038454 | STROKE (Cerebrovascular accident) 300

LAB|Sodium 298 LAB|Sodium 299

HRT|Ejection_fraction 297 C0020538 | HTN (Hypertensive disease) 296

C0020538 | HTN (Hypertensive disease) 294 C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 295

C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 292 HEX|Respiratory_Rate 295

LAB | HDL 281 C1535939 | PCP (Pneumocystis jiroveci pneumonia) 293
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Table 5 (continued) | Top ten features of the highest frequency for misclassification by StrokeClassifier

Misclassified etiology Training Validation

Top ten most frequent features Frequency Top ten most frequent features Frequency

C1535939 | PCP (Pneumocystis jiroveci pneumonia) 275 HRT|Ejection_fraction 291

HEX|Respiratory_Rate 248 HRT|Vegetation 259

C0012634|condition (Disease) 230 LAB | HDL 168

HRT|Vegetation 147 C0012634|condition (Disease) 113

YNHH 10 Sex 33

HEX|Blood_Pressure 9 C1457887 | SYMPTOMS (Symptoms) 23

Sex 7 YNHH 13

C1457887 | SYMPTOMS (Symptoms) 6 C3714552 | WEAKNESS (Weakness) 7

C0028738 | NYSTAGMUS (Nystagmus) 4 C0028738 | NYSTAGMUS (Nystagmus) 4

C0004238|AFib (Atrial Fibrillation) 1 HEX|Blood_Pressure 2

C3714552 | WEAKNESS (Weakness) 1 MGH 2

HRT|sinus 2

HEX | NIHSS 1

LAB|Hemoglobin 1

HRT|Thrombus 1

C3542022 | SOFT 1

C0085631 | AGITATED (Agitation) 1

C0085631 | AGITATED (Agitation) 1

Other determined (4) C2926602|Discharge (Discharge, body substance) 300 C0038454 | STROKE (Cerebrovascular accident) 300

C0038454 | STROKE (Cerebrovascular accident) 300 HRT|Ejection_fraction 300

HEX|Respiratory_Rate 300 LAB|Sodium 300

LAB|Sodium 300 C2926602|Discharge (Discharge, body substance) 300

HRT|Ejection_fraction 299 C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 299

C1535939 | PCP (Pneumocystis jiroveci pneumonia) 295 HEX|Respiratory_Rate 297

C0270724 | PLAN (Infantile Neuroaxonal Dystrophy) 295 HRT|Vegetation 295

HRT|Vegetation 294 C1535939 | PCP (Pneumocystis jiroveci pneumonia) 274

LAB | HDL 180 C0020538 | HTN (Hypertensive disease) 173

C0012634|condition (Disease) 108 LAB | HDL 110

Sex 98 Sex 106

RAD|Frontal 46 C0012634|condition (Disease) 103

HEX|Blood_Pressure 45 MGH 38

C0020538 | HTN (Hypertensive disease) 43 HEX|Blood_Pressure 25

MGH 38 LAB|Hemoglobin 19

LAB | ALT 19 HEX | NIHSS 11

LAB|Hemoglobin 15 RAD|Frontal 7

YNHH 5 C0028738 | NYSTAGMUS (Nystagmus) 6

HEX | NIHSS 4 C3714552 | WEAKNESS (Weakness) 6

C3714552 | WEAKNESS (Weakness) 3 LAB | LDL 6

LAB | PTT 3 YNHH 5

C1457887 | SYMPTOMS (Symptoms) 2 LAB | ALT 5

HRT|Thrombus 2 LAB | AST 4

LAB | LDL 2 LAB|Hematocrit 2

LAB | AST 2 HRT|Thrombus 2

LAB|Hematocrit 1 C1457887 | SYMPTOMS (Symptoms) 2

C0085631 | AGITATED (Agitation) 1 LAB | PTT 2

C0085631 | AGITATED (Agitation) 1

HRT|Mass 1

C0398623|Hypercoagulable (Thrombophilia) 1
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the copious, semi-structured data collected during an AIS hospitalization
and rapidly classifying the underlying stroke etiology in an automated
manner formillions of patients.Most proximally, automated stroke etiology
prediction can cue a treating clinician to consider instituting a targeted
treatment by reducing diagnostic uncertainty and diagnostic errors due to
human cognitive biases, oversight, and therapeutic inertia37. In healthcare
settings where vascular neurology expertize is sparse or unavailable, Stro-
keClassifiermay be especially valuable23. A classifier such as StrokeClassifier
can be harnessed by informaticians to create nudges or progress notes
indicating predicted etiologies and guideline-recommended therapies for
individual patients. Stroke etiology data fields collected by manual extrac-
tion are currently incomplete in registries in the U.S. at all levels and, when
populated, are often inaccurate as seen in our study. Stroke etiology pre-
dictions can be linked to institutional, regional, and country-wide registries
to facilitate quality improvement, clinical trials, public health, and health
services research efforts. Finally, it may identify patients with established
stroke etiologies and risk factors whichmay render them eligible for clinical
trials studying alternative secondary stroke prevention therapies.

While the StrokeClassifier was trained with the task of classifying
etiology at the time of discharge, the predictive factors identified may be
collectedat an earlier timepointduring thehospitalization.The classifierwas
trained using data collected during the course of theAIS hospitalization and
populated into the discharge summary, which is typically finalized at the
completion of the hospital encounter. We observed that the sources of
information that contributed most to the model’s diagnostic performance
individually and in our leave-one-out analysis in descending order as pre-
sented in Table 2 were (1) concept unique identifiers or CUIs (AUCROC
range: 0.87–0.89), (2) radiologic features of neuroanatomic location of the
ischemic stroke, vessel patency, and hemorrhagic transformation
(AUCROC range: 0.76–0.77), and (3) cardiac features from electrocardio-
graphic and echocardiographic reports (AUCROCrange: 0.61–0.63).While
CUIs represent a baselinemedical history, conventional neuroimaging such
as computed tomography with angiography and electrocardiograms are
collected at the time of presentation during an acute stroke code, other data
such as diagnoses accrued during the stroke hospitalization encounter,
advanced neuroimaging such as magnetic resonance imaging, and cardiac
imaging including echocardiography are typically obtained during later
timepoints, if at all, dependingon the resources and level of expertize housed
within a healthcare setting. Future studies are necessary such as transfer
learning of StrokeClassifier to a new task of classifying stroke etiology using
solely data collected on the day of stroke presentation. One potential
implication of the heavy reliance ofmodel performance onCUIs, radiologic

features, and cardiac features is that a clinical decision support tool may be
designed to prompt a recommendation to order diagnostic evaluations
associated with missing feature categories to improve stroke etiology
prediction.

The capacity to predict an underlying etiology of cryptogenic strokes
using StrokeClassifier is promising. The predicted etiology among crypto-
genic patients in the YNHH and MGH cohorts was predominantly cardi-
oembolism, varying from 33% to 38%, followed by large artery
atherosclerosis in 19% to 22%. Secondary analysis of theNAVIGATEESUS
study demonstrated that among ESUS patients, there were multiple
potential etiologies, including atrial cardiopathy (37%), left ventricular
disease (36%), and arterial atherosclerosis (29%), with no potential etiology
found in only 23% of patients andmore than 1 potential etiology in 41% of
patients36. Given that many cryptogenic stroke patients have multiple
potential sources, applying an algorithm such as StrokeClassifier can be
especially fruitful because its supervised learning of features that may non-
linearly associate with etiologies may be transferable. StrokeClassifier is a
majority-voting consensus prediction tool frommultiple base classifiers.We
harness this property to address the uncertainty that arises when a patient
has multiple competing potential sources of stroke. This is represented by
the StrokeClassifier assigning confidence levels in terms of the degree of
agreement among the base classifiers, a construct we denote as a certainty
heuristic.When the number of individual classifiers voting for two potential
etiologies is equal for a patient, the patient’s etiology is classified as cryp-
togenic due to uncertainty. This computational decision-making process is
analogous to the diagnostic process used by human clinicians, who deeman
etiology to be cryptogenic when the probabilities of multiple etiologies are
equally likely3. To provide interpretability in instances when an etiology is
deemed cryptogenic due to multiple potential sources, the output of Stro-
keClassifier can include voting results of the individual classifiers so that the
user is informed about the percentage of classifiers that voted for a particular
etiology (e.g., SupplementaryTable 20 for theMIMICdata). Furtherwork is
needed with probabilistic techniques to parse out stroke etiopathogenesis in
patients with multiple etiologies. It also remains to be determined whether
implementing therapies targeting all likely etiologies at the time of an AIS
hospitalization may be superior to the standard of care.

We derived EHR signatures corresponding to the predicted etiology of
cryptogenic stroke patients. It begins to provide a conceptual and workflow
framework for strokes traditionally deemed cryptogenic. For instance,
cryptogenic patients with predicted etiology of large artery atherosclerosis
by StrokeClassifier tend to be older and have frontal infarct, hypertension,
and no AF. Thus, predicted stroke etiology classification of patients with

Fig. 6 | Top ten features of misclassification. Top ten features of misclassified samples for each class by the consensus model from RMFCV300.
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these features during stroke hospitalization may prompt deeper, stream-
lined inquiry into thispotentialmechanism, suchasmore advancedvascular
imaging to assess the characteristics of a sub-stenotic carotid plaque. It may
also obviate the need for broad, unnecessary testing that leads to health care
expenditure. Predictionsmay alsomake clinicians uncertain about which of
multiple competing etiologies led to the stroke in a singular direction. This
information and subsequent diagnostic investigation may then lead to the
initiation of evidence-based targeted secondary stroke prevention therapy.
Finally, in an era of biomarker-based clinical studies, the potential stroke
etiology signatures yielded by classifiers such as StrokeClassifier may
advance research by identifying an enriched population of cryptogenic

ischemic stroke patients who may benefit from specific trial interventions
for secondary stroke prevention.

Our study has limitations. The scope of this study was limited by its
cross-sectional design; our future goal is to further train StrokeClassifier in
longitudinal cohorts to enable it to predict the eventual etiologic diagnosis in
patients initially deemed cryptogenic. While the gold standard method of
discerning stroke etiology is based on pathologic confirmation, an invasive
procedure such as a brain biopsy is exceedingly rare. Thus, our outcome
measure, while adjudicated by vascular neurology specialists, is ultimately
probabilistic. Although training occurred using data from two academic
institutions which are Comprehensive Stroke Centers, there was notable

Table 6 | Model generalizability

(A) Global performances (weighted averages over all classes) on MIMIC by individual models

Model AUCROC AUPRC ACC BA PRC F1 KAPP

LR* 0.834 0.750 0.679 0.614 0.735 0.694 0.444

SVC* 0.844 0.767 0.699 0.605 0.726 0.703 0.454

XGB* 0.860 0.783 0.711 0.614 0.752 0.717 0.483

RF* 0.843 0.779 0.667 0.461 0.725 0.587 0.251

SVC2 0.835 0.759 0.679 0.603 0.722 0.695 0.452

MAX 0.853 0.783 0.699 0.613 0.731 0.711 0.476

MIN 0.850 0.771 0.689 0.603 0.738 0.692 0.444

MEAN 0.854 0.781 0.701 0.613 0.734 0.710 0.471

MEDIAN 0.849 0.778 0.691 0.593 0.721 0.699 0.448

Mean 0.847 0.772 0.691 0.591 0.732 0.690 0.436

SD 0.009 0.012 0.014 0.049 0.010 0.039 0.071

StrokeClassifier 0.809 0.719 0.699 0.608 0.735 0.708 0.467

(B) Cross-hospital and longitudinal class-wide performances by StrokeClassifier

Training data Testing data Class Accuracy PPV F1 Kappa FPR FNR

YNHH+MGH (N = 1932) MIMIC-RF (N = 405) 1 0.844 0.370 0.860 0.377 0.114 0.042

2 0.780 0.841 0.782 0.535 0.096 0.123

3 0.941 0.385 0.946 0.424 0.040 0.020

4 0.842 0.689 0.831 0.475 0.047 0.111

MGH (N = 1002) MIMIC-RF (N = 405) 1 0.849 0.369 0.862 0.357 0.101 0.049

2 0.768 0.814 0.768 0.500 0.119 0.114

3 0.956 0.500 0.956 0.477 0.022 0.022

4 0.844 0.688 0.835 0.490 0.049 0.106

YNHH (N = 930) 1 0.804 0.615 0.805 0.493 0.102 0.094

2 0.803 0.760 0.804 0.600 0.108 0.089

3 0.875 0.710 0.872 0.589 0.051 0.074

4 0.891 0.533 0.891 0.465 0.053 0.056

YNHH (N = 930) MIMIC-RF (N = 405) 1 0.820 0.296 0.837 0.267 0.123 0.057

2 0.765 0.845 0.768 0.511 0.089 0.146

3 0.923 0.314 0.935 0.379 0.059 0.017

4 0.820 0.606 0.810 0.414 0.064 0.116

MGH (N = 1002) 1 0.813 0.718 0.808 0.527 0.069 0.118

2 0.821 0.767 0.822 0.637 0.105 0.074

3 0.878 0.588 0.882 0.564 0.075 0.047

4 0.888 0.589 0.886 0.502 0.051 0.061

Year 2015–2019 (N = 1688) Year 2020 (N = 244) 1 0.852 0.733 0.851 0.611 0.066 0.082

2 0.832 0.78 0.832 0.651 0.09 0.078

3 0.893 0.727 0.895 0.687 0.061 0.045

4 0.906 0.655 0.904 0.569 0.041 0.053

N.B. misclassification or error rate = 1− accuracy; PPV = 1− FDR (false discovery rate).
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variability in clinical documentation anddegree of testing by site aswell as in
prediction performances (Tables 1 and 6B). Nevertheless, training Stroke-
Classifier in this heterogeneous environment ensured generalizability across
clinician training and documentation styles, EHR systems, and formatting.
Further training in other cohorts is needed to increase the capture of more
features. The epidemiology of stroke etiology may differ by geographic
region, race, or ethnicity, and prevalence may impact predictive accuracy38.
This study spanned the time period before and during the COVID-19
pandemic. We demonstrated previously that the distribution of TOAST
subtypes of ischemic stroke etiology was similar before and during the
COVID-19 pandemic at YNHH39. Finally, despite the identification of
optimal models via HPO, there remains room for further exploration of
other hyperparameters.

In conclusion, we present StrokeClassifier, a validated diagnostic tool
developed using an innovative modeling strategy that allows automated,
real-time classificationof stroke etiology in an accurate and computationally
efficient manner with EHR text data inputs. Its immediate application may
be as a clinical decision support tool to aid in the diagnosis of stroke etiology,
prompting targeted secondary stroke prevention therapies in a timely
manner. Furthermore, the StrokeClassifiermay facilitate the abstraction of
stroke etiology in population-based registries to aid epidemiologic, health
policy, and clinical research efforts.

Methods
Study population and data sources
The derivation cohort consisted of hospitalizations at two academic Com-
prehensive Stroke Centers of Yale New Haven Hospital (YNHH) and Mas-
sachusetts General Hospital (MGH) from 2015 to 2020. Institutional Review
Board approval was obtained from both YNHH and MGH. The external
validation cohort was a subgroup of hospitalizations at the academic Com-
prehensive StrokeCenter of Beth IsraelDeaconessMedicalCenter from2001
to 2012. Access to this cohort’s data was obtained through the MIMIC-III
(Medical Information Mart for Intensive Care) warehouse, which contains
records of 46,520hospitalizations from2001 to 2012 at Beth IsraelDeaconess
MedicalCenter.MIMIC-III is a publicly available, de-identified health record
repository that was developed and approved by the Beth Israel Deaconess
MedicalCenter andMassachusetts Institute ofTechnology IRBs40. Twoof the
authors (H.L. and R.S.) were approved to have access to this database for
research after passing the requisite training course40,41.

Acute ischemic stroke hospitalizations at YNHH and MGH were
identified by each institution’s Get-with-the-guidelines stroke database. Get-
With-The-Guidelines (GWTG)-Stroke database is a quality improvement
initiative in which participating hospitals enter clinical and radiographic data
of all patientshospitalizedwithan ischemic strokediagnosis42.Acute ischemic
stroke patients are identified by administrative billing codes (International
Classification of Diseases (ICD), 10th Revision). Data abstraction, entry, and
adjudicationareperformedby trainedstudypersonnel.There are logic checks
and form controls to minimize data entry errors. The database was queried
for all ischemic stroke patients ≥18 years admitted from January 2015 to
December 2020 atMGHandYNHH to assemble the ischemic stroke cohort.

The EHR platform for both institutions is Epic (Epic Systems Corporation),
the most prevalent EHR system in the United States. Stroke hospitalizations
from the GWTG databases were linked with corresponding semi-structured
discharge summaryplainASCII textfiles, resulting in a total of 1269 and1493
records from YNHH and MGH, respectively.

The MIMIC-III dataset was queried for the ICD-9 codes of 433.X and
434.X that are associated with ischemic stroke, resulting in a total of 2563
hospitalization records from patients ages >18 years admitted to BIDMC
from 2001 to 2012. A subset of these, a convenience sample of the first
consecutive 500 records, were included in this study for external validation
and their discharge summary plain ASCII text files were analyzed. BIDMC
utilizes its own customized, hospital-wide EHR system. A description of the
study populations from the three institutions represented in this analysis is
provided in Table 1.

Outcomes
The primary study outcome was stroke etiology as defined by the five
mutually exclusive causative mechanisms of stroke per the TOAST classifi-
cation system: 1—large artery atherosclerosis, 2—cardioembolism, 3—small
vessel disease, 4—other determined etiology, and 5—undetermined etiology
(cryptogenic)3. Stroke etiology was determined by the agreement of two
board-certified vascular neurologists. The first vascular neurologist was the
discharging treating clinician, when applicable, who documented a stroke
etiology impression in the EHR. The second vascular neurologist was the
study co-author (R.S.), who reviewed the entire stroke hospitalization record
andviewed theneuroimaging.Wheneither therewasdisagreement about the
stroke etiology between the two vascular neurologists or the discharging
treating clinician was not a vascular neurologist (4% and 2% of the YNHH
andMGHcohort, respectively), a third vascular neurologist at eachof the two
institutions (A.D. andA.C.T. at YNHHandMGH, respectively) reviewed the
entire stroke hospitalization record and provided stroke etiology diagnosis
impressions. The final stroke etiology diagnosis was the etiology ascribed by
the majority. If there was no majority, the stroke etiology diagnosed by the
senior-most vascular neurologist was utilized. In the external validation
cohort, the co-author, R.S., reviewed the text of each discharge summary and
designated a TOAST classification based on the data recorded in the text
corpus.

Covariates
(a)Demographic variables. Using regular expressions, we extracted age and
sex from the discharge summary text. The YNHH dataset did not contain
sex information in a structured format in the discharge summary, unlike the
MGH data. To identify sex information from the YNHH data, we used a
customized R code to search for “her” or “his” in the EHR texts to assign
female ormale to eachEHR, respectively.We compared the accuracy of this
extraction with the age and sex fields hardcoded in the corresponding
institutional GWTG-stroke registry. We intentionally did not include the
proxy variable of race as a covariate for model training and testing because
our datasets lack measures of the social environment which may be more
relevant indicators of stroke etiology than ancestry alone43.

(b) Clinical variables derived from MetaMap. We applied natural
language processing tools to the corpus of discharge summary texts to
engineer clinical variables that may be associated with stroke etiology.
Firstly, discharge summaries were processed by the natural language pro-
cessing (NLP) or text mining tool, MetaMap, developed by the National
Library of Medicine (NLM) to extract terms from text and link them to
standard biomedical concepts in the Unified Medical Language System
(UMLS) Metathesaurus44,45. Each discharge summary is a semi-structured
text that can be processed byMetaMap to detect unique concepts or concept
unique identifiers (CUIs) from the UMLS, which contains over 1 million
biomedical concepts in an automatedmanner.We appliedMetaMap to the
discharge summary text of each hospitalization and extracted CUIs that
belong to the following three types or categories: “Disease or Syndrome”,
“Neoplastic Process”, and “Sign or Symptom” (Supplementary Table 1).
The rationale for selecting MetaMap CUIs was that it was designed to

Table 7 | Application of StrokeClassifier to cryptogenic stroke
patients

TOAST predicted YNHH MGH MIMIC (RF-
imputed)

Merged

1 55 (19.3%) 89 (21.8%) 26 (27.7%) 170 (21.6%)

2 93 (32.6%) 155 (37.9%) 24 (25.5%) 272 (34.5%)

3 30 (10.5%) 30 (7.3%) 5 (5.3%) 65 (8.2%)

4 19 (6.7%) 24 (5.9%) 13 (13.8%) 56 (7.1%)

Persistently
cryptogenic

88 (30.9%) 111 (27.1%) 26 (27.7%) 225 (28.6%)

Total 285 (100%) 409 (100%) 94 (100%) 788 (100%)
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Fig. 7 | Prediction of cryptogenic samples and highly frequent features for each
predicted class. a The bar graphs show a prediction distribution of all cryptogenic
patients by StrokeClassifier (left) and a resultant prediction distribution of all of non-
cryptogenic and cryptogenic patients (right). b The bar plots show class-wide

frequency distributions of highly frequent features. There are 26 features which are
present in >50% of those cryptogenic samples of any predicted TOAST class. The
significance was tested by chi-squared tests.
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retrieve medical concepts by lexical analysis and tokenization. MetaMap
allows for abbreviations, acronyms, negations, and parts-of-speech tagging.
It facilitates lookups in the SPECIALIST system that is supported by the
UMLS Metathesaurus and Semantic Network, a repository of biomedical
concepts and their interrelationships46 that is updated quarterly and
incorporates SNOMEDCTcontentwhich is routinely utilized in SNOMED
CT-enabled EHR systems to enablemeaning-based retrieval of information
and maps to ICD-9 and ICD-10 coding systems47. MetaMap also performs
word sense disambiguation by which concepts are favored if semantically
consistent with the surrounding text. There is also flexibility in input and
output data formats permissible by MetaMap. Finally, MetaMap has been
rigorously tested in various biomedical research applications48,49. Compared
with other clinical entity extraction tools, MetaMap was demonstrated to
have the highest recall and F1 score when tasked with identifying clinical
concepts such as obesity-related symptoms50. In one study, MetaMap
extracted biomarker types from pathology reports with >95% accuracy51.

(c) Other variables. By employing customized regular expressions, we
curated four other categories of features from discharge summaries (Sup-
plementaryTable 2). First,we extracted clinical informationnot capturedby
CUIs, including social history (tobacco, ethanol, and illicit drug use),
National Institutes of Health Stroke Severity scale, and vital signs, which we
designate as six HEX features. Second, we extracted 40 radiologic features
(RAD) from studies performed during the stroke hospitalization, including
information about the neuroanatomical location of the ischemic stroke, the
presence of moderate or severe stenosis or occlusion of specific head and
neck arteries, and the occurrence of intracranial hemorrhage encoded as a
binary variable. The accuracy of our automated method of radiology data
extraction in a random sample of 100 selected for each variable was 98% for
neuroanatomic location and 99% for vessel abnormality52. Third, we also
extracted 36 cardiac features (HRT) from electrocardiography and echo-
cardiography reports in the discharge summary. Finally, we extracted 18
laboratory features (LAB). All lab values were generated during the stroke
hospitalization encounter. In a random sample of 5 YNHH and 5 MGH
patients, the accuracy of the HRT and LAB features that were extracted was
100%. In order to reduce measurement noise or error, we discretized the
continuous values of the HEX and LAB features into clinically relevant
categories. Ejection fraction was dichotomized as <40% which is defined as
severely reduced versus ≥40%53, NIHSS was dichotomized as <6 defining a
minor stroke versus ≥654, sodium level < 136mmol/l which is defined as
hyponatremia55 versus >= 136mmol/liter, BUN > = 24mg/dL which is the
upper limit of its normal range56 including in the elderly versus < 24mg/dL
and per the clinical laboratories of Yale andMGH, ALT and AST < 36U/L
versus ≥36U/L per the clinical laboratory of Yale (https://www.ucsfhealth.
org/medical-tests/alanine-transaminase-(alt)-blood-test#), white blood cell
count < 11 × 1000/µl versus ≥11 × 1000/µl which defines leukocytosis57 and
per the clinical laboratories of Yale andMGH, hematocrit < 35% (anemia),
35–45% (normal), ≥46% (erythrocytosis) per Yale and MGH clinical
laboratories, hemoglobin in females < 11.7 (anemia), 11.7–15.5 (normal),
and >15.5 (erythrocytosis) per Yale’s clinical laboratory, hemoglobin in
males <13.2 g/dL (anemia), 13.2–17.1 g/dL (normal), and >17.1 g/dL (ery-
throcytosis) per Yale’s clinical laboratory, triglyceride ≥ 200mg/dL which
defines hypertriglyceridemia58 and per Yale and MGH clinical laboratory
versus <200mg/dL, HDL mg/dL < 4059 versus ≥40mg/dL, LDL ≥ 100mg/
dL60 versus <100mg/dL, TSH < 4.2micro IU/mL versus ≥4.2micro IU/
mL61, PTT < 29.9 versus ≥30 s per Yale clinical laboratory, and hemoglobin
A1c ≥ 6.5% which defines diabetes62 versus <6.5%. We denote the dis-
cretized feature groups by HEXd and LABd.We assess model performance
based on each of the five feature groups, all the five groups, or those five
combinations excluding each group. We assess the completeness of the
investigation for stroke etiology during hospitalization based on values
available for each of these groups.

Imputation of missing data
We deployed a multiple imputation method, MICE (multivariate imputa-
tion by chained equations)63,64, from the mice package in R to impute

missing values in categorical and numerical features of the YNHH and
MGH data using the built-in method of predictive mean matching (pmm)
with the default parameters. We also imputed the missing MIMIC features
using the built-in method of Random Forests (rf; with the default para-
meters), which we found was better for dealing with larger fractions of
missing values than pmm or other built-in imputation methods.

Dimensionality reduction of features by principal component
analysis
Since the number of features totaled 2027, we explored the relationship
between dimensionality reduction of features and model training and per-
formance. We chose principal component analysis (PCA) to reduce the
feature dimensionality because of its clear interpretation of each principal
component as a linear combination of all features. We applied PCA to all
features and selected the top PCs for each of the following 10 thresholds of
the total variance: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, and
99%. Validation and test datasets were transformed based on PCA of
training datasets.

Machine learning model development and evaluation
We analyzed non-cryptogenic ischemic stroke hospitalization records of
discharge summaries fromthemergedYNHHandMGHdatasets formodel
training and internal cross-validation. Figure 1 shows an overview of our
workflow. Records from non-cryptogenic ischemic stroke hospitalizations
in the MIMIC dataset were used as the test dataset (i.e., for external vali-
dation). We built models using the following 20 different feature groups
individually: CUIs; RAD; HRT; HEX; HEXd; LAB; LABd; RAD+HRT+
HEX+ LAB, CUIs+HRT+HEX+ LAB, CUIs+RAD+HEX+ LAB,
CUIs+RAD+HRT+ LAB, CUIs+RAD+HRT+HEX, CUIs+
RAD+HRT+HEXd, CUIs+RAD+HRT+HEX+ LAB, and CUIs+
RAD+HRT + HEXd + LABd. For the last two groups, we also applied
filtering of samples based on maximum information (MaxInfo) ≥ 4 (the
number of feature categories present) and the 11 PCA-based feature groups
described above.

We built basemodels using four different supervisedmachine learning
algorithms to classify the four-level non-cryptogenic stroke etiology out-
come: logistic regression (LR), support vector classifier (SVC), Random
Forests (RF), and XGBoost (XGB). Each model was optimized with a grid
search of a pre-defined hyperparameter space for each of 24 training
datasets, i.e., a total of 96 ( = 4*24) hyperparameter optimization (HPO)
runs, and a stratified cross-validation (CV) strategy of 5 splits of 20% vali-
dation sets using StratifiedShuffleSplit from the scikit-learn library in
Python. We controlled the randomness of the stratified CV by setting the
parameter random_state = 1701 in this work. The best models with opti-
mizedparameterswere selected basedon themaximumAUCROC(the area
under the curve of the receiver operating characteristic). Mathematical
representations of a classifier, ψm, are as follows:

Ψm Hψm
;Xα;βl

� �
¼ ωk

Ψ ¼ Ψm : classifiers; m ¼ 1; 2; . . . ;M
� �

;M ¼ jjΨjj
Hψm

¼ h : hyperparameters
� �

Xα;βl
¼ fα 2 samples

� �
; βl ϵΛl ¼ featuresf g : α ¼ 1; 2; . . . ;N; βl ¼ 1; 2; . . . ; Llg

Λ ¼ Λl ¼ featuresf g : l ¼ 1; 2; . . . ;Q
� �

;Q ¼ jjΛjj
Ω ¼ ωk : classes or labels; k ¼ 1; 2; . . . ;K

� �
;K ¼ jjΩjj;

ð1Þ
where M = 4 classifiers (LR, SVC, RF, XGB), N = 2626 samples,
max(Ll) = 2027 features, Q = 20 feature groups, and K = 4 TOAST classes.
The detailed configurations for HPO of the 4 classifiers are as follows:

(a) LR: We used LogisticRegression from the sklearn library in Python.
The following parameter values were used for a grid search of 143 combi-
nations with penalty = ‘elasticnet’ (elastic net, lasso, or ridge regularization),
the saga solver, and 500 max iteration: C = (1e− 2, 1e− 1, 1e+ 0, 1e+ 1,
1e+ 2, 1e+ 3, 1e+ 4, 1e+ 5, 1e+ 6, 1e+ 7, 1e+ 8, 1e+ 9, 1e+ 10) and
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l1_ratio = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The optimized
parameters are C = 0.01 and l1_ratio = 0.0.

(b) SVC: We used SVC from the sklearn library in Python. The fol-
lowing parameter values were used for a grid search of 676 combinations
with decision_function_shape = ‘ovr’ (one vs. the rest), class_weight =
‘balanced’, and 1000 max iteration: C = (1e− 2, 1e− 1, 1e+ 0, 1e+ 1,
1e+ 2, 1e+ 3, 1e+ 4, 1e+ 5, 1e+ 6, 1e+ 7, 1e+ 8, 1e+ 9, 1e+ 10),
gamma = (1e− 9, 1e− 8, 1e− 7, 1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2,
1e− 1, 1e+ 0, 1e+ 1, 1e+ 2, 1e+ 3), kernel = (linear, poly, rbf, sigmoid).
Its optimizedparameters areC = 1.0 andgamma=0.01with theRBFkernel.
For prediction probabilities, the default outputs are based on Platt scaling65

using the libsvm library. As Platt scaling is controversial66, we also calculate
alternative prediction probabilities using normalized decision_function
scores implemented in sklearn based on the optimized parameters for
building downstream ensemble models and refer it to SVC2.

(c) RF: We used RandomForestClassifier from the sklearn library in
Python. The following parameter values were used for a grid search of 48
combinations with min_samples_leaf = 2 and the saga solver: n_estimators
= (200, 500, 1000);max_depth= (10, 20, 50, 100); criterion= (gini, entropy);
max_features = (sqrt, log2). Its optimized parameters are n_estimators =
1000, max_depth = 20, criterion = ‘gini’, and max_features = ‘sqrt’.

(d) XGB: We used XGBClassifier from the xgboost library in Python.
The XGBoost (XGB) framework of gradient boosting trees was the best
performing classifier in our previous works67,68 as well as in previous
studies69. The hyperparameter optimization was performed by a grid search
of 1620 combinations of the following parameter values: n_estimators =
(500, 1000); max_depth = (4, 5, 6); learning_rate = (0.01, 0.1, 0.3, 0.5, 1);
gamma = (0.0, 5.0, 10.0); reg_lambda = (0.0, 0.5, 1.0); reg_alpha = (0.0, 0.5,
1.0); subsample = (1.0, 0.75). Its optimized parameters are n_estimators =
1000, max_depth = 5, learning rate = 0.01, gamma = 0.0, reg_lambda = 0.0,
reg_alpha = 0.0, and subsample = 0.75.

For the 4 best models with the optimal parameters identified by the
above strategy, we next performed more comprehensive training and vali-
dation using a repeated multi-fold CV strategy to minimize statistical bias
and ensure robustness compared to the single 5-fold CV strategy above.We
performed 2-fold, 3-fold, 4-fold, 5-fold, and 10-fold CV with 30, 20, 15, 12,
and 6 repetitions with different random seeds, respectively (using Repea-
tedStratifiedKFold from the scikit-learn library in Python), i.e., 60 * 5 = 300
CV experiments in total. We denote this strategy as RMFCV300.

Next, we built four ensemble models using the four optimized models
along with SVC2, as base models, B ¼ LR�; SVC�; SVC2�;RF�;XGB�f g.
The rationale for building ensemble models is that ensemble learning has
demonstrated success in improving performances over single models in
reducing variance or bias70–72. From predicted probabilities, Pb, of the five
basemodelsmapping fromeach sample, si; i ¼ 1; 2; . . . ; nf g to each class or
label, l 2 1; 2; 3; . . . ; kf g, themean,median, maximum, andminimum for
each class were normalized across the four classes as four ensemble models:
MEAN; MED; MAX; and MIN, respectively, i.e.,

PMEAN lð Þ ¼
1

jjBjj
P

b2B Pb lð ÞP
j 1=jjBjjPb2BPb j

� �� � ð2Þ

PMED lð Þ ¼
med
b2B

Pb lð Þ� �
P

j med
b2B

Pb j
� �� � ð3Þ

PMAX lð Þ ¼
max
b2B

Pb lð Þ� �
P

j max
b2B

Pb j
� �� � ð4Þ

PMIN lð Þ ¼ min
b2B

Pb lð ÞP
j min
b2B

Pb j
� �� � ð5Þ

Our summary statistics-based ensemble models are a naïve variant of
stacked generalization73 without additional training. This yielded a nine-
classifier system of five optimized base and four ensemble classifiers. We
obtained consensus predictions among those nine classifiers as a meta-
classifier or a consensus-by-voting system to reduce or average out any bias
froma single classifier and improve robustness. The resulting algorithmwas
designated as StrokeClassifier:

StrokeClassifier ¼ Θ ¼ max
l

P
ψ δ max

j
Pψ j

� �
; l

� 	� 	

ψ 2 LR�; SVC�; SVC2�;RF�;XGB�;MEAN;MED;MAX;MINf g

δ x; y
� � ¼ 1; x ¼ y

0; x ≠ y


 ð6Þ

Weadditionally analyzedStrokeClassifierby (1) training on theYNHH
dataset and testingon theMGHandMIMICdatasets and (2) training on the
MGHdataset and testing on the YNHHandMIMIC datasets for a five-way
cross-hospital validation in total. For the purpose of comparison, we also
tested several ensemble models of stacked generalization with the four
optimized base models, LR�; SVC�;RF�;XGB�, for the feature group of
combn1d.age.sex.v1 (Λ1). We took 11 different combinations of the 4
optimized models as level-0 or base models and each of LR and SVC as the
level-1 or meta model. We performed 5-fold CV with seed = 1701 for this
purpose.

For model performance evaluation, we used the following 7 perfor-
mance metrics based on weighted averages for one-vs-rest classification:
AUCROC, area under the precision-recall curve (AUPRC or average pre-
cision), accuracy (i.e., weighted recall), balanced accuracy (i.e., macro recall
or the arithmetic mean of sensitivity and specificity), precision, F1, and
Cohen’s kappa. As for the qualitative interpretation of Cohen’s kappa
values, we follow the scheme by Landis and Koch74: kappa < 0 as no
agreement, 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate,
0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement.

For model interpretation and feature importance, we performed the
game-theoretic Shapley value-based SHAP (SHapley Additive exPlana-
tions) analysis using the shap package in Python75,76, as in our previous
works67,68.WeusedTreeSHAPforRFandXGBandKernelSHAP forLRand
SVCwith a k-means backgroundwith k = 100 for computational efficiency.
As an alternative approach to ascertain feature importance, we performed
classifier-agnostic Kolmogorov–Smirnov tests and Student’s t-tests for one-
vs-rest comparisons for each class and each feature.

We performed exploratory analyses to evaluate etiologic predictions by
StrokeClassifier for cryptogenic strokes adjudicated by vascular neurologists.
We examined various certainty heuristics defined computationally by
thresholds of diagnostic confidence. These diagnostic confidence thresholds
were designated by the number of consensus supports provided by the nine
individual classifiers in the ensemblemodel for each non-cryptogenic stroke
etiology.Asaproofof concept,weapplied the thresholdof thefirst quartile of
frequencies of support for each etiology from the external validation of the
MIMIC-III cohort to predict the etiologies of cryptogenic patients (788 in
total) and evaluated the distribution of predicted etiologies. Those predic-
tions with the consensus frequencies less than the thresholds were deemed
persistently cryptogenic.We also examined etiology distributions yielded by
other quartile thresholds and the means of the support frequencies. Using
the first quartile thresholds, we identified a repertoire of EHR signatures
associated with each predicted TOAST class for cryptogenic strokes by
evaluating feature frequencies from StrokeClassifier.

Finally, we performed a longitudinal analysis of StrokeClassifier by
dividing the combined cohort of YNHH and MGH into a training set of
1,688 discharge summaries from2015 to 2019 and a test set of 244 discharge
summaries from 2020. StrokeClassifier was re-trained using the training
set along with a stratified 5-fold CV and hyperparameter optimization as
above and then longitudinally validated the optimalmodel using the test set.
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All analyses were performed in Python and R using a macOS laptop
with 2.6 GHz 6-Core Intel Core i7 and 32GBmemory in the case of RF and
LR and a high-performance computing cluster with 64 cores and 1GB
memory per core in the case of XGB and SVC.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The electronic health record data of YNHH and MGH cannot be made
available publicly. Sharing this data externally without proper consent could
compromise patient privacy and would violate the Institutional Review
Board’s approval for the study.MIMIC-III data is publicly available fromthe
PhysioNet repository. We provide full prediction results for the post-
processed 499 MIMIC discharge summaries in Supplementary Table 20.

Code availability
Reasonable requests for the code can be addressed to the corresponding
authors.
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