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Abstract
Smoking	is	a	well-	known	risk	factor	for	non-	small-	cell	lung	cancer	(NSCLC)	and	blad-
der	urothelial	 carcinoma	 (BLCA).	Despite	 this,	 there	has	been	no	 investigation	 into	
a prognostic marker based on smoking- related genes that could universally predict 
prognosis in these cancers and correlate with immune checkpoint therapy. This study 
aimed	 to	 identify	 smoking-	related	 differential	 genes	 in	NSCLC	 and	 BLCA,	 analyse	
their roles in patient prognosis and immune checkpoint therapy through subgroup 
analyses,	and	shed	light	on	PRR11	as	a	crucial	prognostic	gene	in	both	cancers.	By	ex-
amining	PRR11	co-	expressed	genes,	a	prognostic	model	was	constructed	and	its	im-
pact	on	immunotherapy	for	NSCLC	and	BLCA	was	evaluated.	Molecular	docking	and	
tissue	microarray	analyses	were	conducted	to	explore	the	correlation	between	PRR11	
and	its	reciprocal	gene	SPDL1.	Additionally,	miRNAs	associated	with	PRR11	were	an-
alysed. The study confirmed a strong link between smoking- related genes, prognosis, 
and	immune	checkpoint	therapy	in	NSCLC	and	BLCA.	PRR11	was	identified	as	a	key	
smoking- associated gene that influences the efficacy of immune checkpoint therapy 
by	modulating	the	stemness	of	these	cancers.	A	prognostic	model	based	on	PRR11	
co-	expressed	genes	in	BLCA	was	established	and	its	prognostic	value	was	validated	in	
NSCLC.	Furthermore,	it	was	found	that	PRR11	regulates	PDL1	via	SPDL1,	impacting	
immunotherapeutic efficacy in both cancers. The involvement of hsa- miR- 200b- 3p 
in	 the	 regulation	of	SPDL1	expression	by	PRR11	was	also	highlighted.	Overall,	 the	
study	elucidates	that	PRR11	modulates	patient	immunotherapy	by	influencing	PDL1	
expression	through	its	interaction	with	SPDL1,	with	potential	upstream	regulation	by	
hsa- miR- 200b- 3p.
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1  |  INTRODUC TION

Cancer is the second most prevalent reason behind global mortality. 
The	 biology	 of	 different	 cancer	 types	 is	 greatly	 impacted	 by	 expo-
sure to risk factors.1 Understanding modifiable risk factors is crucial 
in	 managing	 cancer	 progression,	 and	 tobacco	 use	 and	 exposure	 to	
second- hand smoke stand out as major contributors to this ailment. 
As	outlined	by	the	World	Health	Organization	(WHO),	approximately	
1.1 billion	people	across	the	globe	engage	in	tobacco	consumption,	re-
sulting	in	an	estimated	6 million	deaths	linked	to	tobacco	every	year.2 
Cigarettes encompass deleterious constituents, including nicotine, 
acrolein, aromatic hydrocarbons, heavy metals and more than 7000 
additional distinct chemicals. These substances play pivotal roles in the 
inflammatory and carcinogenic consequences of smoking.3

Tobacco smoke has been established to significantly impact the 
development of lung cancer by promoting the characteristics of 
cancer	stem	cells,	while	extracts	from	cigarette	smoke	have	demon-
strated the ability to induce epithelial–mesenchymal transition in 
human bladder cancer cells through activation of the ERK1/2 path-
way.4,5 The immune landscape within the tumour microenvironment 
(TME)	has	been	widely	recognized	as	a	crucial	determinant	of	prog-
nosis and the antitumour immune response.6 Increasing evidence 
suggests that smoking cigarettes significantly affects the immune 
regulation. The remarkable anticancer impact of immune checkpoint 
blockade	 therapy	has	 expanded	 the	 treatment	 repertoire	 for	 non-	
small cell lung cancer. It has been observed that lung cancer patients 
who	 smoke	 exhibit	 a	 higher	 response	 rate	 to	 anti-	PD-	1	 therapy	
compared with non- smoking patients. Subsequent research has re-
vealed	 that	 cigarette	 smoke	 can	 influence	 the	 response	of	NSCLC	
patients	 to	 immunotherapy	 by	 modulating	 oxidative	 phosphoryla-
tion and mitochondrial biogenesis.7	 Regular	 smoking	 or	 exposure	
to second- hand smoke weakens the effectiveness of immune cells 
in	the	immune	system	due	to	toxic	substances.	This	can	lead	to	the	
development of immunosuppressive components and the creation 
of an atypical immune microenvironment, ultimately promoting tu-
mour growth.8 Lung cancer, frequently associated with smoking, is 
the	most	 common	 type	 of	 cancer,	 accounting	 for	 80%–90%	of	 all	
smoking-	related	cancer	cases.	Notably,	casual	smoking	has	been	as-
sociated with a higher risk of developing health problems, including 
lung cancer, than abstaining from all smoking practices.9 Similarly, 
smoking continues to be the main risk factor for bladder cancer 
and is associated with unfavourable clinical and cancer- related out-
comes.10	Accurate	prediction	of	prognosis	and	therapeutic	response	
is	crucial	for	optimizing	treatment	strategies	and	improving	patient	
outcomes.11	However,	 to	date,	no	research	has	examined	the	exis-
tence of a smoking- associated gene- based prognostic marker that 
could aid in the prognosis of both bladder and lung cancers, as well 
as being linked to immunotherapy for these cancers.

The rapid development of bioinformatics in recent years has sig-
nificantly improved the diagnosis and prognosis of diseases.12 This 
study aimed to use bioinformatics methods to analyse the presence 
of common immune- related prognostic genes in lung and bladder 
cancer, with a particular emphasis on smoking- related genes. We 

classified	 samples	 from	 the	 cancer	 genome	 atlas	 (TCGA)	 bladder	
urothelial	carcinoma	(BLCA)	and	non-	small	cell	lung	cancer	(NSCLC)	
datasets into two groups based on smoking habits. Our analysis re-
vealed a significant correlation between smoking- associated genes, 
immune	 infiltration,	 and	 immune	 checkpoints	 in	 both	NSCLC	 and	
BLCA.	This	suggests	that	these	smoking-	associated	genes	may	play	
a role in the regulation of immunotherapy based on subgroup typ-
ing	 and	 least	 absolute	 shrinkage	 and	 selection	 operator	 (LASSO).	
Furthermore,	 we	 identified	 PRR11	 as	 a	 common	 immune-	related	
prognostic	gene	in	patients	with	NSCLC	and	BLCA.	PRR11	regulates	
PDL1	expression	by	interacting	with	SPDL1	in	both	types	of	cancer.	
Additionally,	our	 findings	 revealed	a	negative	correlation	between	
hsa-	miR-	200b-	3p	and	the	expression	of	PRR11,	SPDL1,	and	PDL1	in	
NSCLC	and	BLCA.	This	suggests	that	hsa-	miR-	200b-	3p	is	 involved	
in	 the	 regulation	of	PDL1	by	PRR11	via	SPDL1.	 In	conclusion,	our	
study	 highlights	 the	 importance	 of	 the	 hsa-	miR-	200b-	3p/PRR11/
SPDL1	signalling	axis	 in	the	context	of	 immunotherapy	for	NSCLC	
and	BLCA,	specifically	in	the	regulation	of	PDL1.

2  |  MATERIAL S AND METHODS

2.1  |  Samples, datasets and antibody

Clinical	 information	 on	 the	 406	 BLCA	 and	 1017	 NSCLC	 samples	
and	RNA-	seq	data	were	obtained	from	the	TCGA	database	(https:// 
portal. gdc. com).	 Bladder	 and	 lung	 cancer	 tissue	microarrays	 were	
acquired	 from	 Shanghai	Outdo	 Biotech	 Company.	 Sixty	 lung	 can-
cer tissue microarrays and 41 bladder samples were included in 
this study. This study was approved by the Shanghai Outdo Ethics 
Committee.	 PRR11	 (bs-	6237R)	 and	 SPDL1	 (bs-	2321R)	 antibodies	
were purchased from BIOSS.

2.2  |  Analysis of differences in 
smoking- related genes

NSCLC	 and	 BLCA	 samples	were	 classified	 into	 smoking	 and	 non-	
smoking	groups.	For	bladder	cancer,	there	were	286	and	109	sam-
ples from the smoking and non- smoking groups, respectively. For 
lung	cancer,	there	were	896	and	92	samples	from	the	smoking	and	
non-	smoking	groups,	respectively.	Differential	expression	of	mRNAs	
was investigated using the Limma package in R software (version 
3.40.2.).	We	defined	 ‘p < 0.05,	 and	 log2	 (fold	 change) > 1.3	or	 log2	
(fold	change) < −1.3’	as	the	threshold	mRNA	differential	expression	
screening.13

2.3  |  Consistency cluster analysis

Consistency	analysis	was	conducted	on	the	NSCLC	and	BLCA	clinical	
and	RNA-	seq	data	obtained	from	TCGA.	The	ConsensusClusterPlus	
R	package	version	1.54.0	was	employed	for	this	purpose.	To	perform	

https://portal.gdc.com
https://portal.gdc.com
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the	analysis,	a	maximum	of	six	clusters	were	defined.	Additionally,	
80% of the total sample was randomly selected 100 times, using 
clusterAlg = ‘hc’	and	 innerLinkage = ‘ward.D2’.	To	visualize	the	clus-
tering	results,	we	utilized	the	pheatmap	R	software	package	version	
1.0.12	 to	generate	 cluster	heat	maps.	All	 statistical	 analyses	were	
carried out using R version 4.0.3. For analysing the survival patterns, 
Kaplan–Meier	 (KM)	 survival	 curves	 were	 generated	 for	 different	
subgroups of samples within the dataset, and log- rank tests were 
used to compare the survival outcomes between groups.

2.4  |  Analysis of immune infiltration and Immune 
Checkpoint Blockade therapy responsiveness

To	reliably	evaluate	the	immune	score,	we	utilized	immuneeconv,	an	
R	 software	 package	 that	 assimilates	 six	 contemporary	 algorithms:	
TIMER,	xCell,	MCP-	counter,	CIBERSORT,	EPIC	and	quanTIseq.	The	
six	 algorithms	were	benchmarked,	 and	each	exhibited	 a	distinctive	
edge.14 In this study, we chose the CIBERSORT algorithm because it 
can analyse a relatively large number of immune- infiltrating cells.15 
The	 tumour	 immune	 dysfunction	 and	 exclusion	 (TIDE)	 algorithm	
evaluates two distinct mechanisms of tumour immune escape: CTL 
dysfunction in tumour- infiltrating cells and CTL rejection by immune- 
suppressing	factors.	Tumours	with	high	TIDE	scores	exhibit	poor	re-
sponsiveness and lower survival rates following Immune Checkpoint 
Blockade	therapy.	This	algorithm	uses	a	set	of	gene	expression	mark-
ers to assess these mechanisms.16	The	Tumour	Immunization	Single	
Cell	Center	(TISCH)	database	was	used	to	analyse	the	correlation	be-
tween	PRR11	and	immune	infiltration	in	NSCLC	and	BLCA.17

2.5  |  Gene function analysis

In order to authenticate the prospective roles of these targets, we 
undertook an analysis dedicated to functional enrichment. We uti-
lized	the	Gene	Ontology	(GO)	database	to	annotate	genes	accord-
ing	to	their	molecular	functions	(MF),	biological	pathways	(BP)	and	
cellular	components	 (CC).	Moreover,	we	performed	an	analysis	on	
gene functions and relevant high- level genomic functional informa-
tion	using	the	Kyoto	Encyclopedia	of	Genes	and	Genomes	 (KEGG)	
enrichment analysis.18 To acquire a more profound comprehension 
of the oncogenic functions of the target genes, we implemented the 
ClusterProfiler	package	 in	R	 to	assess	 the	GO	functionality	of	po-
tential	mRNAs	and	to	enrich	the	KEGG	pathways.	Additionally,	the	
ClusterProfiler	tool	offers	the	capability	to	execute	gene	set	enrich-
ment	analysis	(GSEA).19,20

2.6  |  Correlation analysis of PRR11 with stemness 
characteristics of NSCLC and BLCA

The	mRNA	signature	was	determined	using	the	one-	class	linear	re-
gression	(OCLR)	algorithm	established	by	Malta	et	al.	A	compilation	

of	 11,774	 genes	 formed	 the	 gene	 expression	 profile,	 which	 was	
established	according	 to	mRNA	expression	patterns.	To	 transform	
RNA	expression	data	 into	a	comparable	scale,	Spearman's	correla-
tion analysis was performed using the aforementioned technique. 
Subsequently,	the	dryness	index	was	assigned	to	the	interval	[0,1]	by	
subtracting the smallest value and dividing by the largest value.21,22 
All	analytical	techniques	and	R	packages	employed	in	this	study	were	
performed	using	R	Foundation	for	Statistical	Computing	(2020)	ver-
sion 4.0.3.

2.7  |  Construction of a prognostic model based on 
PRR11 co- expressed genes

Initially, we detected predictive genes displaying correlation coef-
ficients	 exceeding	 0.5	 for	 PRR11.	 Following	 that,	 we	 applied	 the	
LASSO	regression	algorithm	 to	 select	 features,	 conducted	10-	fold	
cross- validation and employed the R package glmnet to conduct the 
analysis.	A	predictive	model	was	formulated	by	utilizing	the	LASSO	
algorithm.	KM	survival	analysis	was	executed	using	the	log-	rank	test	
to compare differences in survival between the aforementioned 
groups. These analyses and the R package were conducted employ-
ing R software version 4.0.3 (R Foundation for Statistical Computing, 
2020).

2.8  |  Molecule docking

Protein–protein	docking	was	performed	to	examine	the	relationship	
between	PRR11	and	SPDL1.	We	used	the	Protein	Data	Bank	(PDB)	
(http:// www. rcsb. org/ )	to	obtain	the	PDB	format	for	the	protein	do-
main. Subsequently, the ZDOCK module assigned docking sites and 
computed	the	corresponding	ZDOCK	scores.	Autodock	Vina	1.2.2	
(http:// autod ock. scrip ps. edu/ )	 was	 employed	 for	 the	 molecular	
docking studies.

2.9  |  Immunohistochemical analysis of PRR11 and 
SPDL1 expression in NSCLC and BLCA tissues

After	removing	the	wax	from	the	microarrays,	a	peroxidase	 inhibi-
tor was applied to the tissue and incubated at room temperature 
for	10 min	to	repair	the	antigen.	Once	the	sealing	process	was	com-
pleted,	 the	 PRR11	 antibody	 (with	 a	 dilution	 ratio	 of	 1:40)	was	 in-
troduced and left to incubate overnight at a temperature of 4°C. 
Subsequently,	 the	PRR11	antibody	was	washed	off	and	 the	 tissue	
underwent a 30- min incubation with the secondary antibody. Finally, 
colour development, restoration and sealing were performed. The 
SPDL1	dilution	 ratio	was	1:40.	The	staining	 results	were	 indepen-
dently evaluated by two pathologists who employed numerical 
scales of 1, 2 and 3 to indicate low, medium and high concentrations, 
respectively.	The	staining	patterns	were	further	categorized	into	the	
following	 ranges:	 0%–25%,	 26%–50%,	 51%–75%	 and	 76%–100%,	

http://www.rcsb.org/
http://autodock.scripps.edu/
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which were correspondingly assigned scores of 1, 2, 3 and 4. Finally, 
the total score was obtained by multiplying the scores of the two 
evaluations.

2.10  |  Statistical analysis

The	Wilcoxon	 test	 was	 used	 to	 assess	 statistical	 differences	 be-
tween two groups. The Kaplan–Meier curves underwent a log- rank 
test for survival analysis, and any p-	value < 0.05	was	considered	sta-
tistically significant.

3  |  RESULTS

3.1  |  Identification of smoking- related genes in 
BLCA and NSCLC

Smoking	 habit	 has	 been	 extensively	 investigated	 to	 elucidate	 the	
molecular	mechanisms	underlying	its	potential	to	promote	BLCA	and	
NSCLC.	For	this	purpose,	we	thoroughly	examined	BLCA	and	NSCLC	
samples	obtained	from	the	TCGA	database	(Figure 1A–D).	The	en-
rolled	patients	were	 categorized	 into	 ‘smokers’	 and	 ‘non-	smokers’.	
Through	 comparative	 analysis	 of	 gene	 expression	 in	 BLCA	 and	
NSCLC	tissues	with	their	respective	normal	tissues	from	the	TCGA	
database,	 we	 successfully	 identified	 66	 differentially	 expressed	
genes that were associated with smoking (Figure 1E).	 Thereafter,	
enrichment analysis of these 66 genes was conducted to elucidate 
their probable biological functions. KEGG analysis indicated a strong 
correlation between these genes and crucial cellular processes, such 
as	the	cell	cycle,	cellular	senescence,	DNA	replication	and	base	exci-
sion repair. Moreover, GO analysis yielded significant evidence sup-
porting the association of these genes with cell- cycle regulation and 
DNA	repair	(Figure 1F).

3.2  |  Cluster analysis of NSCLC and BLCA samples

To further investigate the impact of smoking- related genes on the 
prognosis	and	immune	infiltration	in	NSCLC	and	BLCA,	we	conducted	
subgroup	 analyses	 of	 NSCLC	 and	 BLCA	 samples.	 We	 divided	 the	
NSCLC	samples	into	three	clusters	and	their	distribution	maps	can	be	
observed in Figure 2A,B. The heat map provides a detailed comparison 
of	the	expression	of	66	genes	across	the	three	clusters.	Notably,	more	
than	half	of	 the	genes	exhibited	higher	expression	 in	Cluster	2	and	
lower	expression	 in	Cluster	3	 (Figure 2C).	Additionally,	we	assessed	
the overall survival of the three clusters. The results revealed signifi-
cant differences in overall survival between the clusters (Figure 2D).	
Moreover,	we	examined	the	correlation	between	the	three	clusters	
and	clinicopathological	factors	of	NSCLC,	as	detailed	in	Table 1. We 
also	conducted	cluster	analyses	of	BLCA	samples	to	investigate	the	
impact of smoking- related genes on the prognosis and immune in-
filtration	 in	 patients	 with	 BLCA.	 To	 maintain	 consistency	 with	 the	

NSCLC	analyses,	we	classified	the	BLCA	samples	into	three	clusters	
based on the inflection point in the delta area at k = 3	(Figure 2E,F).	By	
examining	the	expression	of	smoking-	related	genes	using	a	heat	map,	
we	observed	that	more	than	half	of	the	genes	were	highly	expressed	
in	Cluster	1	and	less	expressed	in	Cluster	2	(Figure 2G).	Furthermore,	
we analysed overall survival in the three bladder cancer clusters and 
found the same significant differences in overall survival prognosis 
between the three clusters (Figure 2H).	Additionally,	we	explored	the	
correlation between these three clusters and clinicopathological fac-
tors	 in	patients	with	BLCA	(Table 2).	These	findings	highlighted	the	
significance of smoking- related genes in predicting the prognosis of 
patients	with	NSCLC	and	BLCA.

3.3  |  Smoking- related genes correlate with the 
immune microenvironment in both NSCLC and BLCA

Immunotherapies have arisen as a highly promising and crucial ap-
proach to treating cancer, greatly influencing the treatment out-
comes of many types of solid tumours.23 In this study, we used the 
CIBERSORT algorithm to analyse the correlation between the three 
clusters based on the composition of smoking- related genes and im-
mune infiltration in lung cancer. Our findings revealed that the levels 
of B cell plasma, naive CD4+ T cells, gamma delta T cells, activated 
NK	cells,	eosinophils	and	neutrophils	were	not	significantly	different	
among	the	three	clusters.	However,	the	levels	of	the	remaining	16	im-
mune infiltration- associated cells varied significantly among clusters 
(Figure 3A,B).	Additionally,	we	examined	 the	expression	of	 immune	
checkpoint- related genes in the three clusters. Our results demon-
strated that all immune checkpoint- related genes displayed significant 
differences	among	the	clusters,	with	Cluster	1	consistently	exhibiting	
the	highest	expression	levels	(Figure 3C).	The	TIDE	algorithm	was	used	
to predict the responsiveness of the three clusters to immune check-
point	inhibitor	therapy.	Cluster	3	exhibited	the	lowest	TIDE	scores,	in-
dicating that patients in Cluster 3 had the most favourable response to 
immune checkpoint inhibitor treatment. In contrast, Clusters 1 and 2 
demonstrated poorer responses to immune checkpoint inhibitor treat-
ment than Cluster 3 did (Figure 3D).	In	bladder	cancer	samples,	B-	cell	
naive,	T-	cell	follicular	helper,	T-	cell	gamma	delta,	NK-	cell	resting,	mac-
rophage M2, myeloid dendritic cell resting and eosinophil scores did 
not	significantly	differ	among	the	three	clusters.	However,	the	remain-
ing	15	immune	infiltration-	associated	cells	exhibited	significantly	dif-
ferent scores among the three clusters (Figure 3E,F).	The	expression	
of immune checkpoint- related genes also varied significantly across 
all	three	BLCA	clusters,	with	SIGLEC15	highly	expressed	in	Cluster	2,	
and	 all	 other	 immune	 checkpoint-	related	 genes	 highly	 expressed	 in	
Cluster 1 (Figure 3G).	Finally,	we	evaluated	the	responsiveness	of	the	
three clusters to immune checkpoint inhibitor treatment and found 
that patients in Cluster 2 had the lowest TIDE scores, indicating that 
Cluster 2 had the most favourable outcomes after receiving immune 
checkpoint inhibitor treatment (Figure 3H).	Collectively,	these	findings	
support the strong association between smoking- related genes and 
immunotherapy	in	NSCLC	and	BLCA.
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F I G U R E  1 Sixty-	six	genes	identified	as	smoking-	related	genes	in	BLCA	and	NSCLC.	(A,	B)	Differential	analyses	based	on	smoking	and	
non-	smoking	samples	in	NSCLC.	(C,	D)	Differential	analyses	based	on	smoking	and	non-	smoking	samples	in	BLCA.	(E)	Venn	diagram	of	
common	smoking-	related	differential	genes	in	BLCA	and	NSCLC.	(F)	Gene	enrichment	analysis	of	smoking-	related	differential	genes.
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3.4  |  PRR11 in smoking- related genes as a 
prognostic gene associated with immune infiltration 
in both NSCLC and BLCA

To further screen for the best immune- related prognostic genes 
in	NSCLC	and	BLCA,	we	combined	the	NSCLC	and	BLCA	prognos-
tic	genes.	Our	analysis	evidenced	 that	PRR11	may	be	a	common	

prognostic	 gene	 in	 both	NSCLC	and	BLCA	 (Figure 4A).	 In	BLCA,	
PRR	 was	 positively	 correlated	 with	 CD274,	 CTLA4,	 HAVCR2,	
LAG3,	 PDCD1,	 PPDCD1LG2	 and	 TIGIT,	 and	 negatively	 corre-
lated	with	SIGLEC15.	In	NSCLC,	PRR	was	found	to	have	a	positive	
correlation	with	CD274,	 LAG3	 and	PPDCD1LG2,	 a	 negative	 cor-
relation	with	CTLA4	and	HAVCR2,	and	no	significant	correlation	
with	 PDCD1,	 SIGLEC15	 and	 TIGIT.	 Interestingly,	 in	 both	NSCLC	

F I G U R E  2 Subgroup	typing	for	NSCLC	and	BLCA	samples.	(A)	Sample	distribution	of	the	three	clusters	in	NSCLC.	(B)	CDF	Delta	area.	
(C)	Heatmap	of	the	expression	of	smoking-	related	genes	in	three	NSCLC	clusters.	(D)	Overall	survival	for	three	NSCLC	clusters.	(E)	Sample	
distribution	of	the	three	clusters	in	BLCA.	(F)	CDF	Delta	area.	(G)	Heatmap	of	the	expression	of	smoking-	related	genes	in	three	BLCA	
clusters.	(H)	Overall	survival	for	three	BLCA	clusters.
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and	BLCA,	PRR	was	positively	correlated	with	CD274,	LAG3	and	
PDCD1LG2,	 with	 CD274	 exhibiting	 the	 strongest	 correlation	
(Figure 4B).	 Subsequently,	 we	 analysed	 the	 relevance	 of	 PRR	 in	
immune	 infiltration	 in	 NSCLC	 and	 BLCA	 using	 single-	cell	 analy-
sis.	The	results	revealed	that	PRR	correlated	with	CD8T,	NK,	and	
Mono/Macro	 in	 both	NSCLC	 and	 BLCA	 (Figure 4C).	 By	 examin-
ing	 the	 cluster	 plots	 of	 single-	cell	 RNA	 sequencing	 data,	we	 de-
termined	the	location	and	expression	of	PRR11	in	various	immune	
cells (Figure 4D,E).	Finally,	we	used	the	CIBERSORT	algorithm	to	
analyse	 the	 correlation	 between	 PRR11	 and	 immune	 infiltration	
in	NSCLC	 and	 BLCA	 using	 TCGA	 dataset.	Our	 findings	 revealed	

that	PRR11	was	significantly	associated	with	memory	B	cells,	T-	cell	
CD4+ memory resting, T- cell CD4+ memory activated, regulatory 
T	cells	 (Treg),	 resting	NK	cells,	monocytes,	M0	macrophages,	ac-
tivated	mast	cells	and	resting	mast	cells	in	both	NSCLC	and	BLCA	
(Figure 4F,G).	 In	 conclusion,	 our	 study	 confirmed	 the	 significant	
correlation	 between	 PRR11	 expression	 and	 immune	 cell	 infiltra-
tion	 in	 both	NSCLC	 and	BLCA.	 Based	 on	 the	 conclusions	 drawn	
from the single- cell analysis and CIBERSORT algorithm, we sug-
gest	that	PRR11	may	play	a	role	in	the	immune	microenvironment	
of	NSCLC	and	BLCA	through	the	regulation	of	monocytes	and	M0	
macrophages.

3.5  |  PRR11 is associated with stemness 
characteristics in BLCA and NSCLC

Stemness plays a crucial role in enabling tumour cells to resist vari-
ous	treatments.	Using	GSEA	(Figure 5A,B),	we	discovered	a	signifi-
cant	association	between	PRR11	expression	and	stemness	 in	both	
BLCA	and	NSCLC.	To	further	investigate	this,	we	examined	the	cor-
relation	between	PRR11	and	stem	cell	characteristics	in	BLCA	and	
NSCLC.	Our	 findings	 revealed	 that	 stemness	 scores	were	 consist-
ently	higher	in	the	PRR11	high-	expression	group	than	in	the	PRR11	
low-	expression	group	in	both	BLCA	and	NSCLC.	This	suggests	that	
elevated	 PRR11	 expression	 is	 correlated	with	 increased	 stemness	
characteristics	in	BLCA	and	NSCLC	and	that	it	promotes	the	stemness	
characteristics of these cancers (Figure 5C,D).	Furthermore,	we	ana-
lysed	the	distribution	of	stemness	scores	in	BLCA	and	NSCLC	sam-
ples, considering the clinical stage, grading and smoking history of 
the patients (Figure 5E,F).

3.6  |  Construction of a prognostic model based on 
PRR11 co- expressed genes

Initially,	 we	 screened	 for	 prognostic	 genes	 common	 to	 BLCA	 and	
NSCLC	 (Figure 6A).	Of	 the	160	genes	 identified,	16	exhibited	cor-
relation coefficients >0.5	 with	 PRR11	 in	 both	 BLCA	 and	 NSCLC	
(Figure 6B).	 Subsequently,	 these	 16	 genes	 were	 included	 in	 the	
analysis	using	the	LASSO	algorithm	in	BLCA,	resulting	in	the	iden-
tification of five genes for inclusion in the model (Figure 6C,D).	The	
risk	score	was	calculated	based	on	the	expression	levels	of	GAPDH,	
COLGALT1,	EHBP1,	GANAB	and	LRRC59	in	BLCA.	Patients	 in	the	
high- risk group had a significantly worse prognosis than those in the 
low- risk group (Figure 6E).	 Subsequently,	 this	 model	 was	 applied	
to lung cancer samples to investigate whether it could predict the 
prognosis of patients with lung cancer. The results confirmed that 
the model could predict the prognosis of patients with lung cancer, 
with those in the high- risk group having a significantly worse prog-
nosis than those in the low- risk group (Figure 6F).	 Therefore,	 we	
concluded	that	the	prognostic	model	constructed	using	the	PRR11	
co-	expression	 gene	 could	 simultaneously	 predict	 the	 prognosis	 of	
patients	with	BLCA	and	NSCLC.

TA B L E  1 Correlation	analysis	of	three	subtypes	with	sex,	age	
and	stage	in	NSCLC	samples.

Feature C1 C2 C3 p- Value

Status Alive 176 280 158

Dead 127 208 68 0.004

Gender Female 141 125 142

Male 162 363 84 0

pT_stage T1 40 44 33

T1a 19 23 29

T1b 27 36 32

T2 107 175 59

T2a 49 88 32

T2b 17 36 8

T3 30 65 23

T4 12 21 9

TX 2 1 0

pN_stage N0 186 304 161

N1 67 125 35

N2 43 50 21

N3 2 5

NX 5 4 8 0.003

pM_stage M0 210 390 158

M1 11 9 3

M1a 2 1

M1b 2 3 1

MX 77 81 61 0.006

pTNM_stage I 4 3 1

IA 71 74 76

IB 77 151 63

II 1 3

IIA 32 64 19

IIB 51 85 29

III 1 2

IIIA 42 71 23

IIIB 8 17 4

IV 15 13 5 0
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3.7  |  Analysis of prognostic models constructed 
based on PRR11 co- expressed genes in 
correlation with the immune microenvironment of 
BLCA and NSCLC

First,	 we	 analysed	 the	 differences	 in	 the	 expression	 of	 immune	
checkpoint- related genes between the high-  and low- risk groups. 
The results revealed that all immune checkpoint genes were sig-
nificantly	 different,	 except	 for	 SIGLEC15,	 which	 expression	 was	
not significantly different between the high-  and low- risk groups 
(Figure 7A,B).	Subsequently,	we	analysed	the	correlation	of	immune-	
infiltrating cells between the high-  and low- risk groups using the 
CIBERSORT algorithm. We found significant differences in memory 
B cells, plasma B cells T- cell CD4+ memory activated, Treg, resting 
NK	cells,	monocytes,	M0	macrophages,	M1	macrophages,	activated	
mast	cells,	and	resting	mast	cells	in	both	BLCA	and	NSCLC	between	
the high-  and low- risk groups (Figure 7C,D).	Finally,	we	analysed	the	
responsiveness to immune checkpoint inhibitor treatment in the 

high-	risk	 and	 low-	risk	 groups;	 in	 both	 BLCA	 and	NSCLC,	 patients	
in the high- risk group had higher TIDE scores and immune check-
point inhibitors were less effective in treating patients in the high- 
risk group (Figure 7E,F).	 This	might	 explain	 the	 poor	 prognosis	 of	
patients in the high- risk group.

3.8  |  PRR11 regulates PDL1 through interaction 
with SPDL1

To investigate the potential mechanism underlying the regulation of 
PDL1	 by	 PRR11,	we	 used	 the	 STRING	website	 to	 identify	 the	 in-
teracting	genes	shared	by	PRR11	and	PDL1.	An	 interplay	network	
diagram was constructed (Figure 8A).	 Our	 analysis	 revealed	 that	
SPDL1	is	a	reciprocal	gene	common	to	both	PRR11	and	PDL1,	with	
an	interaction	score	of	0.15.	To	further	validate	the	relationship	be-
tween	PRR11,	SPDL1	and	PDL1,	we	performed	molecular	docking	
to	examine	their	correlations	at	the	structural	level.	Remarkably,	we	
observed	a	strong	correlation	between	PRR11	and	SPDL1,	as	well	
as	 between	PDL1	 and	 SPDL1	 (Figure 8B,C).	 Additionally,	we	 ana-
lysed	the	correlation	between	SPDL1	and	PRR11	expression	 in	60	
lung and 41 bladder cancer tissues. The results consistently dem-
onstrated	a	positive	correlation	between	SPDL1	and	PRR11	expres-
sion in both lung and bladder cancers (Figure 8D–G).	In	conclusion,	
our study provides evidence supporting the potential mechanism by 
which	PRR11	 regulates	PDL1	expression	 in	 lung	 and	bladder	 can-
cers.	 It	 is	 plausible	 that	 PRR11	 influences	 the	 immunotherapy	 of	
these	tumours	through	its	interaction	with	SPDL1,	thereby	regulat-
ing	the	expression	of	PDL1.

3.9  |  The hsa- miR- 200b- 3p/PRR11/SPDL1 
signalling axis simultaneously regulates PDL1 
expression in BLCA and NSCLC

A	total	of	78	miRNAs	were	found	to	correlate	with	PRR11	in	bladder	
and	lung	cancers.	Among	these	78	miRNAs,	we	identified	17	that	ex-
hibited	differential	expression	in	bladder	and	lung	cancers	compared	
with their corresponding normal tissues (Figure 9A,B).	 Interestingly,	
only	hsa-	miR-	200b-	3p	was	negatively	associated	with	PRR11,	SPDL1	
and	CD274	expression	in	NSCLC	and	BLCA	(Figure 9C,D).	This	sug-
gests that hsa- miR- 200b- 3p plays a role in the regulation of CD274 
by	 both	 PRR11	 and	 SPDL1	 in	 bladder	 and	 lung	 cancers.	 Notably,	
low	 expression	 of	 hsa-	miR-	200b-	3p	 was	 significantly	 associated	
with	poor	prognosis	in	patients	with	NSCLC	and	BLCA	(Figure 9E,F).	
Additionally,	 the	 expression	 of	 hsa-	miR-	200b-	3p	 was	 significantly	
higher	in	NSCLC	and	BLCA	tissues	than	in	the	corresponding	normal	
tissues (Figure 9G,H).	Furthermore,	analysis	of	cellular	localization	re-
vealed	that	PRR11,	SPDL1	and	hsa-	miR-	200b-	3p	were	predominantly	
expressed	in	the	nucleus	(Figure 9I).	In	conclusion,	our	findings	sug-
gest	that	hsa-	miR-	200b-	3p	acts	upstream	of	PRR11	and	is	involved	in	
the	regulation	of	CD274	expression	in	NSCLC	and	BLCA.

TA B L E  2 Correlation	analysis	of	three	subtypes	with	sex,	age	
and	stage	in	BLCA	samples.

Feature C1 C2 C3 P- value

Status Alive 90 57 81

Dead 95 22 61 0.002

Gender Female 50 18 38

Male 135 61 104 0.754

pT_stage T1 4 2 5

T2 46 30 34

T2a 14 6 11

T2b 26 6 17

T3 19 13 14

T3a 22 5 19

T3b 33 5 27

T4 4 1 3

T4a 13 8 11

T4b 2

TX 2 3 1 0.246

pN_stage N0 110 53 73

N1 23 5 18

N2 27 14 34

N3 5 2

NX 17 7 12 0.228

pM_stage M0 73 52 70

M1 7 1 3

MX 103 26 68 0.004

pTNM_stage II 51 36 42

III 74 22 44

IV 59 20 54

I 1 1 0.02
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F I G U R E  3 Smoking-	related	genes	significantly	associated	with	immunotherapy	for	NSCLC	and	BLCA.	(A,	B)	Differential	expression	of	
immune-	infiltrating	cells	in	lung	cancer	in	the	three	clusters	analysed	based	on	the	CIBERSORT	algorithm.	(C)	Differential	expression	of	
immune	checkpoint-	related	genes	in	the	three	clusters	in	NSCLC.	(D)	Predicting	immune	checkpoint	inhibitor	treatment	response	using	the	
TIDE	algorithm	in	NSCLC.	(E,	F)	Differential	expression	of	immune-	infiltrating	cells	in	bladder	cancer	in	three	clusters	analysed	based	on	the	
CIBERSORT	algorithm.	(G)	Differential	expression	of	immune	checkpoint-	related	genes	in	the	three	clusters	in	BLCA.	(H)	Predicting	immune	
checkpoint	inhibitor	treatment	response	using	the	TIDE	algorithm	in	BLCA.	*p < 0.05,	**p < 0.01	and	***p < 0.001.
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F I G U R E  4 PRR11	is	strongly	associated	with	immunotherapy	for	lung	and	bladder	cancer	through	regulation	of	monocyte	and	
macrophage	M0.	(A)	Venn	diagram	mapping	the	intersection	of	smoking-	related	genes	with	NSCLC	and	BLCA	prognostic	genes.	(B)	PRR11	
correlates	with	immune	checkpoints	in	NSCLC	and	BLCA.	(C–E)	Single-	cell	analysis	of	PRR11	correlates	with	immune	infiltration	correlation.	
(F,	G)	Correlation	of	PRR11	with	immune	infiltration	in	NSCLC	and	BLCA	in	the	TCGA	dataset.	*p < 0.05,	**p < 0.01	and	***p < 0.001.
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F I G U R E  5 PRR11	positively	correlates	with	stemness	score	in	BLCA	and	NSCLC.	(A)	PRR11	is	significantly	associated	with	embryonic	
stem	cell	pluripotency	pathways	in	BLCA.	(B)	PRR11	is	significantly	associated	with	embryonic	stem	cell	pluripotency	pathways	in	NSCLC.	
(C)	PRR11	positively	correlates	with	stemness	score	in	BLCA.	(D)	PRR11	positively	correlates	with	stemness	score	in	NSCLC.	(E)	PRR11	
expression,	clinical	stage,	grading,	smoking	history	and	stemness	score	distribution	in	BLCA.	(F)	PRR11	expression,	clinical	stage,	smoking	
history	and	dryness	score	distribution	in	NSCLC.
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F I G U R E  6 Prognostic	model	simultaneously	predicts	prognosis	of	BLCA	and	NSCLC	patients	based	on	co-	expressed	PRR11	gene.	(A)	
Common	prognostic	genes	in	BLCA	and	NSCLC.	(B)	Genes	associated	with	PRR11	in	BLCA	and	NSCLC.	(C,	D)	Five	genes	co-	expressed	with	
PRR11	were	included	in	the	prognostic	model.	(E)	Risk	score	and	survival	time,	survival	status	and	prognostic	differences	between	high-		and	low-	
risk	groups	in	BLCA.	(F)	Risk	score	and	survival	time,	survival	status	and	prognostic	differences	between	high-		and	low-	risk	groups	in	NSCLC.
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F I G U R E  7 Analysis	of	prognostic	models	correlating	with	immunotherapy	for	BLCA	and	NSCLC.	(A)	Differential	expression	of	immune	
checkpoint	genes	in	BLCA	between	high-		and	low-	risk	groups.	(B)	Differential	expression	of	immune	checkpoint	genes	in	NSCLC	between	
high-		and	low-	risk	groups.	(C)	Differences	in	scores	of	immune-	infiltrating	cells	in	BLCA	between	high-		and	low-	risk	groups.	(D)	Differences	
in	scores	of	immune-	infiltrating	cells	in	NSCLC	between	high-		and	low-	risk	groups.	(E)	Analysis	of	response	to	immune	checkpoint	inhibitor	
therapy	in	BLCA	between	high-		and	low-	risk	groups	using	the	TIDE	algorithm.	(F)	Analysis	of	response	to	immune	checkpoint	inhibitor	
therapy	in	NSCLC	between	high-		and	low-	risk	groups	using	the	TIDE	algorithm.	*p < 0.05,	**p < 0.01	and	***p < 0.001.
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F I G U R E  8 PRR11	and	SPL1	are	significantly	correlated	in	both	BLCA	and	NSCLC.	(A)	Interaction	network	of	PRR11	and	PDL1.	(B)	
Molecular	docking	map	of	PRR11	and	SPDL1.	(C)	Molecular	docking	map	of	PDL1	and	SPDL1.	(D)	Expression	of	PRR11	and	SPDL1	in	lung	
cancer.	(E)	Correlation	analysis	of	PRR11	and	SPDL1	in	lung	cancer.	(F)	Expression	of	PRR11	and	SPDL1	in	bladder	cancer.	(G)	Correlation	
analysis	of	PRR11	and	SPDL1	in	bladder	cancer.
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4  |  DISCUSSION

In	2020,	the	GLOBOCAN	study	reported	over	570,000	new	cases	
of	bladder	cancer	(BLCA),	accounting	for	2.1%	of	all	cancer-	related	
deaths worldwide.24	Smoking	is	a	significant	risk	factor	for	BLCA,	as	
it	 is	responsible	for	more	than	one-	third	(36.8%)	of	all	BLCA	cases	
globally.25 Lung cancer is the leading cause of cancer- related deaths 
globally,	with	approximately	1.6	million	fatalities	each	year,	whereas	
NSCLC	accounts	for	approximately	85%	of	all	lung	cancer	cases	and	

its cure and survival rates remain low. Despite the well- established 
correlation	between	smoking	and	lung	cancer,	80.6%–81.9%	of	lung	
cancer	deaths	are	attributed	to	cigarette	smoke	exposure.26 Immune 
system plays an important role in the development of cancers. 
Notably,	 the	 balance	 of	 cytokines	 significantly	 influences	 disease	
progression.27 Research has revealed that habitual smoking weak-
ens the effectiveness of immune cells and molecules because of 
the	presence	of	toxic	substances,	leading	to	the	development	of	an	
immunosuppressive environment and tumour growth.28	 Although	

F I G U R E  9 In	NSCLC	and	BLCA,	hsa-	miR-	200b-	3p	is	involved	in	the	regulation	of	CD274	by	PRR11.	(A)	PRR11-	related	miRNAs	in	NSCLC	
and	BLCA.	(B)	Differential	miRNAs	associated	with	PRR11	in	NSCLC	and	BLCA.	(C)	hsa-	miR-	200b-	3p	negatively	correlates	with	PRR11,	
SPDL1,	CD274	in	NSCLC.	(D)	hsa-	miR-	200b-	3p	negatively	correlates	with	PRR11,	SPDL1,	CD274	in	BLCA.	(E,	F)	Prognostic	KM	curves	of	
hsa-	miR-	200b-	3p	in	NSCLC	and	BLCA.	(G,	H)	Differential	expression	of	hsa-	miR-	200b-	3p	in	NSCLC	and	BLCA.	(I)	Cellular	localisation	of	
PRR11,	SPDL1	and	hsa-	miR-	200b-	3p.	***p < 0.001.
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extensive	 research	 has	 been	 conducted	 on	 the	molecular	mecha-
nisms underlying smoking- induced cancer, the evidence on how 
smoking promotes cancer development remains insufficient. Our 
research objective was to identify common immunotherapeutic tar-
gets for bladder and lung cancers in order to improve the prognosis 
of affected patients.

In this study, we identified 66 smoking- associated differential 
genes	that	are	common	in	NSCLC	and	BLCA.	Gene	enrichment	analysis	
revealed that these genes primarily play a role in modulating cell cycle 
and	cellular	senescence.	Previous	studies	have	evidenced	that	smok-
ing	accelerates	NSCLC	progression	by	affecting	cell	cycle.29 Cigarette 
smoke	damages	DNA	and	 impairs	 the	mechanisms	 that	 control	 cell-	
cycle	 checkpoints	 and	 DNA	 repair	 pathways.30	 Additionally,	 it	 has	
been	demonstrated	 that	 cigarette	 smoke	extracts	 induce	premature	
cellular senescence in individuals with chronic obstructive pulmonary 
disease	by	activating	the	p53/p21	signalling	pathway.31 Moreover, cig-
arette	 smoke	extracts	 can	cause	apoptosis	 and	elicit	 innate	 immune	
responses.32 In recent years, the concept of precision medicine has led 
to	the	categorization	of	trial	participants	into	subgroups.	A	well-	known	
example	is	the	molecular	categorization	of	breast	cancer,	which	reveals	
distinct pathogenic mechanisms and clinical prognostic features in dif-
ferent subgroups.33	 In	 our	 study,	we	 classified	patients	with	NSCLC	
and	BLCA	into	three	clusters	to	investigate	the	relationship	between	
smoking status, prognosis and immunotherapy.34	 The	 complex	 and	
dynamic crosstalk between tumour cells and TME has a crucial role 
in tumour growth, invasion and metastasis.35 We found a significant 
correlation between smoking- related genes and immune- infiltrating 
cells, as well as immune checkpoints, suggesting a close association 
between smoking- related genes and the immune microenvironment in 
NSCLC	and	BLCA.	Notably,	PRR11	has	emerged	as	the	only	smoking-	
associated	gene	that	can	serve	as	a	prognostic	marker	in	both	NSCLC	
and	BLCA.	The	prognostic	value	and	relevance	of	PRR11	in	lung	ade-
nocarcinoma have been previously analysed.36 The growing research 
on TME has indicated that tumour- infiltrating immune cells play a crit-
ical role in cancer progression and aggressiveness.37 Our study aimed 
to	explore	the	immune	infiltration	relevance	of	PRR11	in	lung	cancer	
using the CIBERSORT algorithm in combination with single- cell anal-
ysis.	Our	findings	suggest	that	PRR11	plays	a	role	in	the	immune	infil-
tration of lung cancer by regulating monocytes and M0 macrophages. 
Additionally,	we	observed	a	significant	association	between	PRR11	and	
PDL1,	an	immune	checkpoint	marker,	in	both	NSCLC	and	BLCA.	This	
suggests	that	PRR11	may	potentially	contribute	to	immunotherapy	for	
NSCLC	and	BLCA	by	modulating	PDL1	expression.

The development and immune evasion of cancer stem cells 
(CSCs)	 pose	 limitations	 to	 the	 effectiveness	 of	 current	 antican-
cer therapies.38 Stem cells release various cytokines, chemokines, 
growth	factors	and	extracellular	matrix	 (ECM)	molecules	that	pos-
sess immunosuppressive and inflammatory modulatory properties. 
These	molecules	 act	 via	 autocrine	or	paracrine	pathways	 to	 exert	
immunomodulatory effects.39 In addition, the role of cigarettes 
in regulating tumour cell stemness has been demonstrated in kid-
ney and lung cancers.40,41 Through gene enrichment analysis, we 

discovered	that	PRR11	was	associated	with	cancer	stemness	char-
acteristics	in	both	NSCLC	and	BLCA.	In	the	NSCLC	and	BLCA	sam-
ples,	 the	 PRR11	 high-	expression	 group	 exhibited	 higher	 stemness	
scores,	 indicating	 a	 positive	 correlation	 between	 PRR11	 and	 tu-
mour stemness characteristics. To further investigate the role of 
PRR11	 in	 the	prognosis	 and	 immune	microenvironment	of	NSCLC	
and	BLCA,	we	constructed	prognostic	models	based	on	PRR11	co-	
expressed	genes.	The	prognostic	model	developed	for	bladder	can-
cer was also applicable to lung cancer, highlighting the consistent 
prognostic	value	of	PRR11	in	NSCLC	and	BLCA.	PRR11	controls	the	
expression	 of	 PDL1	 in	 both	NSCLC	 and	BLCA.	 To	 investigate	 the	
underlying	mechanisms,	we	used	STRING	to	analyse	genes	that	co-	
interact	with	PRR11	and	PDL1.	Among	these,	we	identified	SPDL1	
as	a	gene	that	co-	interacts	with	both	PRR11	and	PDL1.	Interestingly,	
we	observed	a	consistent	positive	correlation	between	PRR11	and	
SPDL1	expression	in	both	the	NSCLC	and	BLCA	samples.	To	further	
validate	this	interaction,	we	used	molecular	docking	to	examine	the	
molecular	structure	of	the	interaction	between	PRR11	and	SPDL1.	
Additionally,	we	confirmed	the	correlation	between	PRR11,	SPDL1	
and	PDL1	in	NSCLC	and	BLCA	tissue	microarrays.	To	investigate	the	
potential	involvement	of	miRNAs	upstream	of	PRR11	in	the	regula-
tion	of	PDL1,	we	examined	the	association	of	hsa-	miR-	200b-	3p	with	
PRR11,	SPDL1,	and	PDL1	expression	in	NSCLC	and	BLCA.	Our	find-
ings revealed a negative correlation between hsa- miR- 200b- 3p and 
PRR11,	SPDL1,	and	PDL1	in	both	NSCLC	and	BLCA.	Furthermore,	
we identified hsa- miR- 200b- 3p as a promising prognostic marker for 
NSCLC	and	BLCA.	Overall,	our	study	demonstrated	consistent	reg-
ulation	of	PDL1	by	hsa-	miR-	200b-	3p/PRR11/SPDL1	in	both	NSCLC	
and	BLCA.

5  |  CONCLUSION

In this study, we conducted a comprehensive analysis to investigate 
the prognostic and immunotherapeutic significance of smoking- 
related	genes	in	NSCLC	and	BLCA.	Our	findings	reveal	that	PRR11,	
a	 commonly	observed	prognostic	 gene	 in	both	NSCLC	and	BLCA,	
plays	a	crucial	 role	 in	regulating	PDL1	through	 its	 interaction	with	
SPDL1.	 Additionally,	 we	 discovered	 that	 hsa-	miR-	200b-	3p	 is	 in-
volved	in	the	regulation	of	PDL1	via	the	PRR11/SPDL1	pathway	in	
NSCLC	and	BLCA.

AUTHOR CONTRIBUTIONS
YaXuan Wang:	Data	curation	(lead);	formal	analysis	(lead);	writing	–	
original	draft	(lead).	HaiXia Zhu:	Investigation	(equal);	writing	–	origi-
nal	draft	(equal).	Lu Zhang:	Formal	analysis	(equal);	writing	–	original	
draft	 (equal).	 JiaXing He:	 Investigation	 (equal);	 validation	 (equal).	
Ji Bo:	 Data	 curation	 (equal);	 supervision	 (equal).	 JianShe Wang: 
Investigation	 (equal);	 validation	 (equal).	 BeiChen Ding:	 Validation	
(equal);	writing	–	review	and	editing	(equal).	MingHua Ren: Funding 
acquisition	 (lead);	 resources	 (equal);	 writing	 –	 review	 and	 editing	
(equal).



    |  17 of 18WANG et al.

ACKNOWLEDG EMENTS
This	 study	 was	 supported	 by	 the	 Natural	 Science	 Foundation	 of	
Heilongjiang	Province	(LH2019H030)	and	National	Natural	Science	
Foundation	of	China	(82002680).	In	addition,	we	would	also	like	to	
thank	the	Shengxin	Bean	Sprout	Platform	(http://	www.	sxdyc.	com/	
index	)	for	its	help	in	data	statistical	analysis.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare that the research was conducted without any 
commercial or financial relationships that could be construed as a 
potential conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The	datasets	were	obtained	from	the	TCGA	database	(https:// por-
tal. gdc. cancer. gov/ )	 and	 TISCH	 (http:// tisch. comp-  genom ics. org/ 
home/ )	database.

ORCID
YaXuan Wang  https://orcid.org/0000-0002-0996-096X 
MingHua Ren  https://orcid.org/0009-0004-1602-5146 

R E FE R E N C E S
	 1.	 GBD	 2019	 Cancer	 Risk	 Factors	 Collaborators.	 The	 global	 bur-

den	 of	 cancer	 attributable	 to	 risk	 factors,	 2010–19:	 a	 systematic	
analysis	 for	 the	 Global	 Burden	 of	 Disease	 Study	 2019.	 Lancet. 
2022;400(10352):563-591.	doi:10.1016/S0140-	6736(22)01438-	6

	 2.	 Abd	 El-	Fattah	 EE,	 Abdelhamid	 AM.	 Benzo[a]pyrene	 immunoge-
netics and immune archetype reprogramming of lung. Toxicology. 
2021;463:152994.	doi:10.1016/j.tox.2021.152994

	 3.	 Dusingize	JC,	Law	MH,	Seviiri	M,	et	al.	Genetic	variants	for	smok-
ing behaviour and risk of skin cancer. Sci Rep.	 2023;13(1):16873.	
doi:10.1038/s41598-	023-	44144-	0

	 4.	 Sun	 X,	 Deng	 Q,	 Liang	 Z,	 et	 al.	 Cigarette	 smoke	 extract	 induces	
epithelial- mesenchymal transition of human bladder cancer T24 
cells through activation of ERK1/2 pathway. Biomed Pharmacother. 
2017;86:457-465.	doi:10.1016/j.biopha.2016.12.022

	 5.	 Lu	L,	Liang	Q,	Shen	S,	Feng	L,	Jin	L,	Liang	ZF.	Tobacco	smoke	plays	
an important role in initiation and development of lung cancer by 
promoting the characteristics of cancer stem cells. Cancer Manag 
Res.	2020;12:9735-9739.	doi:10.2147/CMAR.S272277

	 6.	 Yang	L,	Zhang	Z,	Dong	J,	et	al.	Multi-	dimensional	characterization	of	
immunological profiles in small cell lung cancer uncovers clinically 
relevant immune subtypes with distinct prognoses and therapeu-
tic vulnerabilities. Pharmacol Res.	2023;194:106844.	doi:10.1016/j.
phrs.2023

	 7.	 Wang	Y,	Smith	M,	Ruiz	J,	et	al.	Modulation	of	oxidative	phosphor-
ylation and mitochondrial biogenesis by cigarette smoke influence 
the	response	to	 immune	therapy	 in	NSCLC	patients.	Lung Cancer. 
2023;178:37-46. doi:10.1016/j.lungcan.2023.01.016

	 8.	 Liu	Y,	Lu	L,	Yang	H,	et	al.	Dysregulation	of	 immunity	by	cigarette	
smoking promotes inflammation and cancer: a review. Environ 
Pollut.	2023;339:122730.	doi:10.1016/j.envpol.2023.122730

	 9.	 Sun	 Y,	 Zhang	 Y,	 Ren	 S,	 et	 al.	 Low	 expression	 of	 RGL4	 is	 associ-
ated with a poor prognosis and immune infiltration in lung ade-
nocarcinoma patients. Int Immunopharmacol.	 2020;83:106454.	
doi:10.1016/j.intimp.2020.106454

	10.	 Mossanen	 M,	 Smith	 AB,	 Onochie	 N,	 et	 al.	 Bladder	 cancer	 pa-
tient and provider perspectives on smoking cessation. Urol Oncol. 
2023;41(11):457.e9-457.e16.	doi:10.1016/j.urolonc.2023.08.017

	11.	 Zhang	 Y,	 Yang	 Z,	 Chen	 R,	 et	 al.	 Histopathology	 images-	based	
deep learning prediction of prognosis and therapeutic response 
in small cell lung cancer. NPJ Digit Med.	2024;7(1):15.	doi:10.1038/
s41746- 024- 01003- 0

	12.	 Zhang	 J,	 Peng	 G,	 Chi	 H,	 et	 al.	 CD8 + T-	cell	 marker	 genes	 reveal	
different immune subtypes of oral lichen planus by integrating 
single-	cell	 RNA-	seq	 and	 bulk	 RNA-	sequencing.	BMC Oral Health. 
2023;23(1):464.	doi:10.1186/s12903-	023-	03138-	0

	13.	 Song	Z,	 Yu	 J,	Wang	M,	 et	 al.	 CHDTEPDB:	 transcriptome	expres-
sion profile database and interactive analysis platform for con-
genital heart disease. Congenit Heart Dis.	 2023;18(6):693-701.	
doi:10.32604/chd.2024.048081

 14. Yang Y, Liang J, Zhao J, et al. The multi- omics analyses of acsl1 re-
veal its translational significance as a tumor microenvironmental 
and prognostic biomarker in clear cell renal cell carcinoma. Diagn 
Pathol.	2023;18(1):96.	doi:10.1186/s13000- 023- 01384- y

	15.	 Newman	 AM,	 Liu	 CL,	 Green	 MR,	 et	 al.	 Robust	 enumeration	
of	 cell	 subsets	 from	 tissue	 expression	 profiles.	 Nat Methods. 
2015;12(5):453-457.	doi:10.1038/nmeth.3337

	16.	 Jiang	 P,	 Gu	 S,	 Pan	D,	 et	 al.	 Signatures	 of	 T	 cell	 dysfunction	 and	
exclusion	 predict	 cancer	 immunotherapy	 response.	 Nat Med. 
2018;24(10):1550-1558.	doi:10.1038/s41591-	018-	0136-	1

	17.	 Han	 Y,	Wang	 Y,	 Dong	 X,	 et	 al.	 TISCH2:	 expanded	 datasets	 and	
new tools for single- cell transcriptome analyses of the tumor mi-
croenvironment. Nucleic Acids Res.	 2023;51(D1):D1425-D1431.	
doi:10.1093/nar/gkac959

	18.	 Ren	 Q,	 Zhang	 P,	 Lin	 H,	 et	 al.	 A	 novel	 signature	 predicts	 prog-
nosis and immunotherapy in lung adenocarcinoma based on 
cancer- associated fibroblasts. Front Immunol.	 2023;14:1201573.	
doi:10.3389/fimmu.2023.1201573

	19.	 Wang	Y,	Zhu	H,	Wang	X.	Prognosis	and	 immune	 infiltration	anal-
ysis of endoplasmic reticulum stress- related genes in bladder 
urothelial carcinoma. Front Genet.	 2022;13:965100.	 doi:10.3389/
fgene.2022.965100

	20.	 Yu	 G,	 Wang	 LG,	 Han	 Y,	 He	 QY.	 clusterProfiler:	 an	 R	 package	
for comparing biological themes among gene clusters. Omics. 
2012;16(5):284-287.	doi:10.1089/omi.2011.0118

	21.	 Lian	H,	Han	YP,	Zhang	YC,	et	al.	Integrative	analysis	of	gene	expres-
sion	 and	 DNA	 methylation	 through	 one-	class	 logistic	 regression	
machine learning identifies stemness features in medulloblastoma. 
Mol Oncol.	2019;13(10):2227-2245.	doi:10.1002/1878-	0261.12557

	22.	 Malta	TM,	Sokolov	A,	Gentles	AJ,	et	al.	Machine	learning	identifies	
stemness features associated with oncogenic dedifferentiation. 
Cell.	2018;173(2):338-354.e15.	doi:10.1016/j.cell.2018.03.034

	23.	 Zhang	Z,	Chen	H,	 Yan	D,	Chen	 L,	 Sun	 J,	 Zhou	M.	Deep	 learning	
identifies	 a	 T-	cell	 exhaustion-	dependent	 transcriptional	 signa-
ture for predicting clinical outcomes and response to immune 
checkpoint blockade. Oncogenesis.	 2023;12(1):37.	 doi:10.1038/
s41389-	023-	00482-	2

	24.	 Sung	 H,	 Ferlay	 J,	 Siegel	 RL,	 et	 al.	 Global	 cancer	 statistics	 2020:	
GLOBOCAN	estimates	 of	 incidence	 and	mortality	worldwide	 for	
36	cancers	in	185	countries.	CA Cancer J Clin.	2021;71(3):209-249.	
doi:10.3322/caac.21660

	25.	 Freedman	ND,	Silverman	DT,	Hollenbeck	AR,	Schatzkin	A,	Abnet	
CC.	 Association	 between	 smoking	 and	 risk	 of	 bladder	 cancer	
among men and women. JAMA.	2011;306(7):737-745.	doi:10.1001/
jama.2011.1142

 26. Evans WK, Tammemägi MC, Walker MJ, et al. Integrating smok-
ing cessation into low- dose computed tomography lung cancer 
screening:	 results	 of	 the	 Ontario,	 Canada	 Pilot.	 J Thorac Oncol. 
2023;18(10):1323-1333.	doi:10.1016/j.jtho.2023.07.004

	27.	 Xiao	J,	Huang	K,	Lin	H,	et	al.	Mogroside	 IIE	 inhibits	digestive	en-
zymes	 via	 suppression	 of	 interleukin	 9/interleukin	 9	 receptor	
Signalling in acute pancreatitis. Front Pharmacol.	 2020;11:859.	
doi:10.3389/fphar.2020.00859

http://www.sxdyc.com/index
http://www.sxdyc.com/index
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
https://orcid.org/0000-0002-0996-096X
https://orcid.org/0000-0002-0996-096X
https://orcid.org/0009-0004-1602-5146
https://orcid.org/0009-0004-1602-5146
https://doi.org//10.1016/S0140-6736(22)01438-6
https://doi.org//10.1016/j.tox.2021.152994
https://doi.org//10.1038/s41598-023-44144-0
https://doi.org//10.1016/j.biopha.2016.12.022
https://doi.org//10.2147/CMAR.S272277
https://doi.org//10.1016/j.phrs.2023
https://doi.org//10.1016/j.phrs.2023
https://doi.org//10.1016/j.lungcan.2023.01.016
https://doi.org//10.1016/j.envpol.2023.122730
https://doi.org//10.1016/j.intimp.2020.106454
https://doi.org//10.1016/j.urolonc.2023.08.017
https://doi.org//10.1038/s41746-024-01003-0
https://doi.org//10.1038/s41746-024-01003-0
https://doi.org//10.1186/s12903-023-03138-0
https://doi.org//10.32604/chd.2024.048081
https://doi.org//10.1186/s13000-023-01384-y
https://doi.org//10.1038/nmeth.3337
https://doi.org//10.1038/s41591-018-0136-1
https://doi.org//10.1093/nar/gkac959
https://doi.org//10.3389/fimmu.2023.1201573
https://doi.org//10.3389/fgene.2022.965100
https://doi.org//10.3389/fgene.2022.965100
https://doi.org//10.1089/omi.2011.0118
https://doi.org//10.1002/1878-0261.12557
https://doi.org//10.1016/j.cell.2018.03.034
https://doi.org//10.1038/s41389-023-00482-2
https://doi.org//10.1038/s41389-023-00482-2
https://doi.org//10.3322/caac.21660
https://doi.org//10.1001/jama.2011.1142
https://doi.org//10.1001/jama.2011.1142
https://doi.org//10.1016/j.jtho.2023.07.004
https://doi.org//10.3389/fphar.2020.00859


18 of 18  |     WANG et al.

	28.	 Bauer-	Kemény	 C,	 Herth	 FJF.	 Rauchen	 –	 Noxen	 und	 immunolo-
gische	Folgen	 [Smoking-	toxic	substances	and	 immunological	con-
sequences].	Radiologie.	2022;62(9):731-737.	German.	doi:10.1007/
s00117- 022- 01006- 6

	29.	 Yang	Y,	Cheng	C,	He	B,	et	al.	Cigarette	smoking,	by	accelerating	the	
cell cycle, promotes the progression of non- small cell lung cancer 
through	an	HIF-	1α-	METTL3-	m6A/CDK2AP2	axis.	J Hazard Mater. 
2023;455:131556.	doi:10.1016/j.jhazmat.2023.131556

	30.	 John	 A,	 Raza	 H.	 Azadirachtin	 attenuates	 carcinogen	 Benzo(a)	
Pyrene-	induced	DNA	damage,	cell	cycle	arrest,	apoptosis,	 inflam-
matory,	metabolic,	and	oxidative	stress	in	HepG2	cells.	Antioxidants. 
2023;12(11):2001.	doi:10.3390/antiox12112001

	31.	 Zeng	 M,	 Zhang	 X,	 Xing	 W,	 Wang	 Q,	 Liang	 G,	 He	 Z.	 Cigarette	
smoke	 extract	 mediates	 cell	 premature	 senescence	 in	 chronic	
obstructive	 pulmonary	 disease	 patients	 by	 up-	regulating	 USP7	
to	 activate	p300-	p53/p21	pathway.	Toxicol Lett.	 2022;359:31-45.	
doi:10.1016/j.toxlet.2022.01.017

	32.	 Park	 EJ,	 Lee	HS,	 Lee	 SJ,	 et	 al.	 Cigarette	 smoke	 condensate	may	
disturb immune function with apoptotic cell death by impairing 
function of organelles in alveolar macrophages. Toxicol In Vitro. 
2018;52:351-364.	doi:10.1016/j.tiv.2018.07.014

	33.	 Jerusalem	G,	Park	YH,	Yamashita	T,	et	al.	Trastuzumab	deruxtecan	
in	HER2-	positive	metastatic	breast	cancer	patients	with	brain	me-
tastases:	 a	 DESTINY-	Breast01	 subgroup	 analysis.	 Cancer Discov. 
2022;12(12):2754-2762.	doi:10.1158/2159-	8290.CD-	22-	0837

 34. Wang Z, Zhang B, Zhang C, et al. Effect of region on the out-
come	 of	 patients	 receiving	 PD-	1/PD-	L1	 inhibitors	 for	 advanced	
cancer. Int Immunopharmacol.	 2019;74:105709.	 doi:10.1016/j.
intimp.2019.105709

	35.	 Zhou	M,	 Zhang	Z,	 Bao	 S,	 et	 al.	 Computational	 recognition	 of	 ln-
cRNA	signature	of	tumor-	infiltrating	B	lymphocytes	with	potential	
implications in prognosis and immunotherapy of bladder cancer. 
Brief Bioinform.	2021;22(3):bbaa047.	doi:10.1093/bib/bbaa047

	36.	 Wang	WH,	Ma	CG,	Cui	YS,	et	al.	Role	of	prognostic	marker	PRR11	
in immune infiltration for facilitating lung adenocarcinoma pro-
gression. Biomed Environ Sci.	 2023;36(9):862-868.	 doi:10.3967/
bes2023.111

 37. Sun J, Zhang Z, Bao S, et al. Identification of tumor immune 
infiltration-	associated	 lncRNAs	 for	 improving	 prognosis	 and	
immunotherapy response of patients with non- small cell lung 
cancer. J Immunother Cancer.	 2020;8(1):e000110.	 doi:10.1136/
jitc-	2019-	000110

	38.	 Jin	ML,	Jeong	KW.	Histone	modifications	in	drug-	resistant	cancers:	
from a cancer stem cell and immune evasion perspective. Exp Mol 
Med.	2023;55(7):1333-1347.	doi:10.1038/s12276-	023-	01014-	z

	39.	 Park	 N,	 Kim	 KS,	 Na	 K.	 Stem	 cell-	derived	 paracrine	 factors	 by	
modulated	 reactive	 oxygen	 species	 to	 enhance	 cancer	 immu-
notherapy. J Control Release. 2023;363:670-681. doi:10.1016/j.
jconrel.2023.10.011

 40. Qian W, Kong X, Zhang T, et al. Cigarette smoke stimulates the 
stemness of renal cancer stem cells via sonic hedgehog pathway. 
Oncogenesis.	2018;7(3):24.	doi:10.1038/s41389-	018-	0029-	7

	41.	 Sharma	 JR,	 Agraval	 H,	 Yadav	 UCS.	 Cigarette	 smoke	 induces	
epithelial- to- mesenchymal transition, stemness, and metastasis 
in	 lung	 adenocarcinoma	 cells	 via	 upregulated	 RUNX-	2/galectin-	3	
pathway. Life Sci. 2023;318:121480. doi:10.1016/j.lfs.2023.121480

How to cite this article: Wang	Y,	Zhu	H,	Zhang	L,	et	al.	
Common immunological and prognostic features of lung and 
bladder	cancer	via	smoking-	related	genes:	PRR11	gene	as	
potential immunotherapeutic target. J Cell Mol Med. 
2024;28:e18384. doi:10.1111/jcmm.18384

https://doi.org//10.1007/s00117-022-01006-6
https://doi.org//10.1007/s00117-022-01006-6
https://doi.org//10.1016/j.jhazmat.2023.131556
https://doi.org//10.3390/antiox12112001
https://doi.org//10.1016/j.toxlet.2022.01.017
https://doi.org//10.1016/j.tiv.2018.07.014
https://doi.org//10.1158/2159-8290.CD-22-0837
https://doi.org//10.1016/j.intimp.2019.105709
https://doi.org//10.1016/j.intimp.2019.105709
https://doi.org//10.1093/bib/bbaa047
https://doi.org//10.3967/bes2023.111
https://doi.org//10.3967/bes2023.111
https://doi.org//10.1136/jitc-2019-000110
https://doi.org//10.1136/jitc-2019-000110
https://doi.org//10.1038/s12276-023-01014-z
https://doi.org//10.1016/j.jconrel.2023.10.011
https://doi.org//10.1016/j.jconrel.2023.10.011
https://doi.org//10.1038/s41389-018-0029-7
https://doi.org//10.1016/j.lfs.2023.121480
https://doi.org/10.1111/jcmm.18384

	Common immunological and prognostic features of lung and bladder cancer via smoking-related genes: PRR11 gene as potential immunotherapeutic target
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Samples, datasets and antibody
	2.2|Analysis of differences in smoking-related genes
	2.3|Consistency cluster analysis
	2.4|Analysis of immune infiltration and Immune Checkpoint Blockade therapy responsiveness
	2.5|Gene function analysis
	2.6|Correlation analysis of PRR11 with stemness characteristics of NSCLC and BLCA
	2.7|Construction of a prognostic model based on PRR11 co-expressed genes
	2.8|Molecule docking
	2.9|Immunohistochemical analysis of PRR11 and SPDL1 expression in NSCLC and BLCA tissues
	2.10|Statistical analysis

	3|RESULTS
	3.1|Identification of smoking-related genes in BLCA and NSCLC
	3.2|Cluster analysis of NSCLC and BLCA samples
	3.3|Smoking-related genes correlate with the immune microenvironment in both NSCLC and BLCA
	3.4|PRR11 in smoking-related genes as a prognostic gene associated with immune infiltration in both NSCLC and BLCA
	3.5|PRR11 is associated with stemness characteristics in BLCA and NSCLC
	3.6|Construction of a prognostic model based on PRR11 co-expressed genes
	3.7|Analysis of prognostic models constructed based on PRR11 co-expressed genes in correlation with the immune microenvironment of BLCA and NSCLC
	3.8|PRR11 regulates PDL1 through interaction with SPDL1
	3.9|The hsa-miR-200b-3p/PRR11/SPDL1 signalling axis simultaneously regulates PDL1 expression in BLCA and NSCLC

	4|DISCUSSION
	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


