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Abstract
Smoking is a well-known risk factor for non-small-cell lung cancer (NSCLC) and blad-
der urothelial carcinoma (BLCA). Despite this, there has been no investigation into 
a prognostic marker based on smoking-related genes that could universally predict 
prognosis in these cancers and correlate with immune checkpoint therapy. This study 
aimed to identify smoking-related differential genes in NSCLC and BLCA, analyse 
their roles in patient prognosis and immune checkpoint therapy through subgroup 
analyses, and shed light on PRR11 as a crucial prognostic gene in both cancers. By ex-
amining PRR11 co-expressed genes, a prognostic model was constructed and its im-
pact on immunotherapy for NSCLC and BLCA was evaluated. Molecular docking and 
tissue microarray analyses were conducted to explore the correlation between PRR11 
and its reciprocal gene SPDL1. Additionally, miRNAs associated with PRR11 were an-
alysed. The study confirmed a strong link between smoking-related genes, prognosis, 
and immune checkpoint therapy in NSCLC and BLCA. PRR11 was identified as a key 
smoking-associated gene that influences the efficacy of immune checkpoint therapy 
by modulating the stemness of these cancers. A prognostic model based on PRR11 
co-expressed genes in BLCA was established and its prognostic value was validated in 
NSCLC. Furthermore, it was found that PRR11 regulates PDL1 via SPDL1, impacting 
immunotherapeutic efficacy in both cancers. The involvement of hsa-miR-200b-3p 
in the regulation of SPDL1 expression by PRR11 was also highlighted. Overall, the 
study elucidates that PRR11 modulates patient immunotherapy by influencing PDL1 
expression through its interaction with SPDL1, with potential upstream regulation by 
hsa-miR-200b-3p.
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1  |  INTRODUC TION

Cancer is the second most prevalent reason behind global mortality. 
The biology of different cancer types is greatly impacted by expo-
sure to risk factors.1 Understanding modifiable risk factors is crucial 
in managing cancer progression, and tobacco use and exposure to 
second-hand smoke stand out as major contributors to this ailment. 
As outlined by the World Health Organization (WHO), approximately 
1.1 billion people across the globe engage in tobacco consumption, re-
sulting in an estimated 6 million deaths linked to tobacco every year.2 
Cigarettes encompass deleterious constituents, including nicotine, 
acrolein, aromatic hydrocarbons, heavy metals and more than 7000 
additional distinct chemicals. These substances play pivotal roles in the 
inflammatory and carcinogenic consequences of smoking.3

Tobacco smoke has been established to significantly impact the 
development of lung cancer by promoting the characteristics of 
cancer stem cells, while extracts from cigarette smoke have demon-
strated the ability to induce epithelial–mesenchymal transition in 
human bladder cancer cells through activation of the ERK1/2 path-
way.4,5 The immune landscape within the tumour microenvironment 
(TME) has been widely recognized as a crucial determinant of prog-
nosis and the antitumour immune response.6 Increasing evidence 
suggests that smoking cigarettes significantly affects the immune 
regulation. The remarkable anticancer impact of immune checkpoint 
blockade therapy has expanded the treatment repertoire for non-
small cell lung cancer. It has been observed that lung cancer patients 
who smoke exhibit a higher response rate to anti-PD-1 therapy 
compared with non-smoking patients. Subsequent research has re-
vealed that cigarette smoke can influence the response of NSCLC 
patients to immunotherapy by modulating oxidative phosphoryla-
tion and mitochondrial biogenesis.7 Regular smoking or exposure 
to second-hand smoke weakens the effectiveness of immune cells 
in the immune system due to toxic substances. This can lead to the 
development of immunosuppressive components and the creation 
of an atypical immune microenvironment, ultimately promoting tu-
mour growth.8 Lung cancer, frequently associated with smoking, is 
the most common type of cancer, accounting for 80%–90% of all 
smoking-related cancer cases. Notably, casual smoking has been as-
sociated with a higher risk of developing health problems, including 
lung cancer, than abstaining from all smoking practices.9 Similarly, 
smoking continues to be the main risk factor for bladder cancer 
and is associated with unfavourable clinical and cancer-related out-
comes.10 Accurate prediction of prognosis and therapeutic response 
is crucial for optimizing treatment strategies and improving patient 
outcomes.11 However, to date, no research has examined the exis-
tence of a smoking-associated gene-based prognostic marker that 
could aid in the prognosis of both bladder and lung cancers, as well 
as being linked to immunotherapy for these cancers.

The rapid development of bioinformatics in recent years has sig-
nificantly improved the diagnosis and prognosis of diseases.12 This 
study aimed to use bioinformatics methods to analyse the presence 
of common immune-related prognostic genes in lung and bladder 
cancer, with a particular emphasis on smoking-related genes. We 

classified samples from the cancer genome atlas (TCGA) bladder 
urothelial carcinoma (BLCA) and non-small cell lung cancer (NSCLC) 
datasets into two groups based on smoking habits. Our analysis re-
vealed a significant correlation between smoking-associated genes, 
immune infiltration, and immune checkpoints in both NSCLC and 
BLCA. This suggests that these smoking-associated genes may play 
a role in the regulation of immunotherapy based on subgroup typ-
ing and least absolute shrinkage and selection operator (LASSO). 
Furthermore, we identified PRR11 as a common immune-related 
prognostic gene in patients with NSCLC and BLCA. PRR11 regulates 
PDL1 expression by interacting with SPDL1 in both types of cancer. 
Additionally, our findings revealed a negative correlation between 
hsa-miR-200b-3p and the expression of PRR11, SPDL1, and PDL1 in 
NSCLC and BLCA. This suggests that hsa-miR-200b-3p is involved 
in the regulation of PDL1 by PRR11 via SPDL1. In conclusion, our 
study highlights the importance of the hsa-miR-200b-3p/PRR11/
SPDL1 signalling axis in the context of immunotherapy for NSCLC 
and BLCA, specifically in the regulation of PDL1.

2  |  MATERIAL S AND METHODS

2.1  |  Samples, datasets and antibody

Clinical information on the 406 BLCA and 1017 NSCLC samples 
and RNA-seq data were obtained from the TCGA database (https://​
portal.​gdc.​com). Bladder and lung cancer tissue microarrays were 
acquired from Shanghai Outdo Biotech Company. Sixty lung can-
cer tissue microarrays and 41 bladder samples were included in 
this study. This study was approved by the Shanghai Outdo Ethics 
Committee. PRR11 (bs-6237R) and SPDL1 (bs-2321R) antibodies 
were purchased from BIOSS.

2.2  |  Analysis of differences in 
smoking-related genes

NSCLC and BLCA samples were classified into smoking and non-
smoking groups. For bladder cancer, there were 286 and 109 sam-
ples from the smoking and non-smoking groups, respectively. For 
lung cancer, there were 896 and 92 samples from the smoking and 
non-smoking groups, respectively. Differential expression of mRNAs 
was investigated using the Limma package in R software (version 
3.40.2.). We defined ‘p < 0.05, and log2 (fold change) > 1.3 or log2 
(fold change) < −1.3’ as the threshold mRNA differential expression 
screening.13

2.3  |  Consistency cluster analysis

Consistency analysis was conducted on the NSCLC and BLCA clinical 
and RNA-seq data obtained from TCGA. The ConsensusClusterPlus 
R package version 1.54.0 was employed for this purpose. To perform 
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the analysis, a maximum of six clusters were defined. Additionally, 
80% of the total sample was randomly selected 100 times, using 
clusterAlg = ‘hc’ and innerLinkage = ‘ward.D2’. To visualize the clus-
tering results, we utilized the pheatmap R software package version 
1.0.12 to generate cluster heat maps. All statistical analyses were 
carried out using R version 4.0.3. For analysing the survival patterns, 
Kaplan–Meier (KM) survival curves were generated for different 
subgroups of samples within the dataset, and log-rank tests were 
used to compare the survival outcomes between groups.

2.4  |  Analysis of immune infiltration and Immune 
Checkpoint Blockade therapy responsiveness

To reliably evaluate the immune score, we utilized immuneeconv, an 
R software package that assimilates six contemporary algorithms: 
TIMER, xCell, MCP-counter, CIBERSORT, EPIC and quanTIseq. The 
six algorithms were benchmarked, and each exhibited a distinctive 
edge.14 In this study, we chose the CIBERSORT algorithm because it 
can analyse a relatively large number of immune-infiltrating cells.15 
The tumour immune dysfunction and exclusion (TIDE) algorithm 
evaluates two distinct mechanisms of tumour immune escape: CTL 
dysfunction in tumour-infiltrating cells and CTL rejection by immune-
suppressing factors. Tumours with high TIDE scores exhibit poor re-
sponsiveness and lower survival rates following Immune Checkpoint 
Blockade therapy. This algorithm uses a set of gene expression mark-
ers to assess these mechanisms.16 The Tumour Immunization Single 
Cell Center (TISCH) database was used to analyse the correlation be-
tween PRR11 and immune infiltration in NSCLC and BLCA.17

2.5  |  Gene function analysis

In order to authenticate the prospective roles of these targets, we 
undertook an analysis dedicated to functional enrichment. We uti-
lized the Gene Ontology (GO) database to annotate genes accord-
ing to their molecular functions (MF), biological pathways (BP) and 
cellular components (CC). Moreover, we performed an analysis on 
gene functions and relevant high-level genomic functional informa-
tion using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis.18 To acquire a more profound comprehension 
of the oncogenic functions of the target genes, we implemented the 
ClusterProfiler package in R to assess the GO functionality of po-
tential mRNAs and to enrich the KEGG pathways. Additionally, the 
ClusterProfiler tool offers the capability to execute gene set enrich-
ment analysis (GSEA).19,20

2.6  |  Correlation analysis of PRR11 with stemness 
characteristics of NSCLC and BLCA

The mRNA signature was determined using the one-class linear re-
gression (OCLR) algorithm established by Malta et al. A compilation 

of 11,774 genes formed the gene expression profile, which was 
established according to mRNA expression patterns. To transform 
RNA expression data into a comparable scale, Spearman's correla-
tion analysis was performed using the aforementioned technique. 
Subsequently, the dryness index was assigned to the interval [0,1] by 
subtracting the smallest value and dividing by the largest value.21,22 
All analytical techniques and R packages employed in this study were 
performed using R Foundation for Statistical Computing (2020) ver-
sion 4.0.3.

2.7  |  Construction of a prognostic model based on 
PRR11 co-expressed genes

Initially, we detected predictive genes displaying correlation coef-
ficients exceeding 0.5 for PRR11. Following that, we applied the 
LASSO regression algorithm to select features, conducted 10-fold 
cross-validation and employed the R package glmnet to conduct the 
analysis. A predictive model was formulated by utilizing the LASSO 
algorithm. KM survival analysis was executed using the log-rank test 
to compare differences in survival between the aforementioned 
groups. These analyses and the R package were conducted employ-
ing R software version 4.0.3 (R Foundation for Statistical Computing, 
2020).

2.8  |  Molecule docking

Protein–protein docking was performed to examine the relationship 
between PRR11 and SPDL1. We used the Protein Data Bank (PDB) 
(http://​www.​rcsb.​org/​) to obtain the PDB format for the protein do-
main. Subsequently, the ZDOCK module assigned docking sites and 
computed the corresponding ZDOCK scores. Autodock Vina 1.2.2 
(http://​autod​ock.​scrip​ps.​edu/​) was employed for the molecular 
docking studies.

2.9  |  Immunohistochemical analysis of PRR11 and 
SPDL1 expression in NSCLC and BLCA tissues

After removing the wax from the microarrays, a peroxidase inhibi-
tor was applied to the tissue and incubated at room temperature 
for 10 min to repair the antigen. Once the sealing process was com-
pleted, the PRR11 antibody (with a dilution ratio of 1:40) was in-
troduced and left to incubate overnight at a temperature of 4°C. 
Subsequently, the PRR11 antibody was washed off and the tissue 
underwent a 30-min incubation with the secondary antibody. Finally, 
colour development, restoration and sealing were performed. The 
SPDL1 dilution ratio was 1:40. The staining results were indepen-
dently evaluated by two pathologists who employed numerical 
scales of 1, 2 and 3 to indicate low, medium and high concentrations, 
respectively. The staining patterns were further categorized into the 
following ranges: 0%–25%, 26%–50%, 51%–75% and 76%–100%, 
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which were correspondingly assigned scores of 1, 2, 3 and 4. Finally, 
the total score was obtained by multiplying the scores of the two 
evaluations.

2.10  |  Statistical analysis

The Wilcoxon test was used to assess statistical differences be-
tween two groups. The Kaplan–Meier curves underwent a log-rank 
test for survival analysis, and any p-value < 0.05 was considered sta-
tistically significant.

3  |  RESULTS

3.1  |  Identification of smoking-related genes in 
BLCA and NSCLC

Smoking habit has been extensively investigated to elucidate the 
molecular mechanisms underlying its potential to promote BLCA and 
NSCLC. For this purpose, we thoroughly examined BLCA and NSCLC 
samples obtained from the TCGA database (Figure 1A–D). The en-
rolled patients were categorized into ‘smokers’ and ‘non-smokers’. 
Through comparative analysis of gene expression in BLCA and 
NSCLC tissues with their respective normal tissues from the TCGA 
database, we successfully identified 66 differentially expressed 
genes that were associated with smoking (Figure  1E). Thereafter, 
enrichment analysis of these 66 genes was conducted to elucidate 
their probable biological functions. KEGG analysis indicated a strong 
correlation between these genes and crucial cellular processes, such 
as the cell cycle, cellular senescence, DNA replication and base exci-
sion repair. Moreover, GO analysis yielded significant evidence sup-
porting the association of these genes with cell-cycle regulation and 
DNA repair (Figure 1F).

3.2  |  Cluster analysis of NSCLC and BLCA samples

To further investigate the impact of smoking-related genes on the 
prognosis and immune infiltration in NSCLC and BLCA, we conducted 
subgroup analyses of NSCLC and BLCA samples. We divided the 
NSCLC samples into three clusters and their distribution maps can be 
observed in Figure 2A,B. The heat map provides a detailed comparison 
of the expression of 66 genes across the three clusters. Notably, more 
than half of the genes exhibited higher expression in Cluster 2 and 
lower expression in Cluster 3 (Figure 2C). Additionally, we assessed 
the overall survival of the three clusters. The results revealed signifi-
cant differences in overall survival between the clusters (Figure 2D). 
Moreover, we examined the correlation between the three clusters 
and clinicopathological factors of NSCLC, as detailed in Table 1. We 
also conducted cluster analyses of BLCA samples to investigate the 
impact of smoking-related genes on the prognosis and immune in-
filtration in patients with BLCA. To maintain consistency with the 

NSCLC analyses, we classified the BLCA samples into three clusters 
based on the inflection point in the delta area at k = 3 (Figure 2E,F). By 
examining the expression of smoking-related genes using a heat map, 
we observed that more than half of the genes were highly expressed 
in Cluster 1 and less expressed in Cluster 2 (Figure 2G). Furthermore, 
we analysed overall survival in the three bladder cancer clusters and 
found the same significant differences in overall survival prognosis 
between the three clusters (Figure 2H). Additionally, we explored the 
correlation between these three clusters and clinicopathological fac-
tors in patients with BLCA (Table 2). These findings highlighted the 
significance of smoking-related genes in predicting the prognosis of 
patients with NSCLC and BLCA.

3.3  |  Smoking-related genes correlate with the 
immune microenvironment in both NSCLC and BLCA

Immunotherapies have arisen as a highly promising and crucial ap-
proach to treating cancer, greatly influencing the treatment out-
comes of many types of solid tumours.23 In this study, we used the 
CIBERSORT algorithm to analyse the correlation between the three 
clusters based on the composition of smoking-related genes and im-
mune infiltration in lung cancer. Our findings revealed that the levels 
of B cell plasma, naive CD4+ T cells, gamma delta T cells, activated 
NK cells, eosinophils and neutrophils were not significantly different 
among the three clusters. However, the levels of the remaining 16 im-
mune infiltration-associated cells varied significantly among clusters 
(Figure 3A,B). Additionally, we examined the expression of immune 
checkpoint-related genes in the three clusters. Our results demon-
strated that all immune checkpoint-related genes displayed significant 
differences among the clusters, with Cluster 1 consistently exhibiting 
the highest expression levels (Figure 3C). The TIDE algorithm was used 
to predict the responsiveness of the three clusters to immune check-
point inhibitor therapy. Cluster 3 exhibited the lowest TIDE scores, in-
dicating that patients in Cluster 3 had the most favourable response to 
immune checkpoint inhibitor treatment. In contrast, Clusters 1 and 2 
demonstrated poorer responses to immune checkpoint inhibitor treat-
ment than Cluster 3 did (Figure 3D). In bladder cancer samples, B-cell 
naive, T-cell follicular helper, T-cell gamma delta, NK-cell resting, mac-
rophage M2, myeloid dendritic cell resting and eosinophil scores did 
not significantly differ among the three clusters. However, the remain-
ing 15 immune infiltration-associated cells exhibited significantly dif-
ferent scores among the three clusters (Figure 3E,F). The expression 
of immune checkpoint-related genes also varied significantly across 
all three BLCA clusters, with SIGLEC15 highly expressed in Cluster 2, 
and all other immune checkpoint-related genes highly expressed in 
Cluster 1 (Figure 3G). Finally, we evaluated the responsiveness of the 
three clusters to immune checkpoint inhibitor treatment and found 
that patients in Cluster 2 had the lowest TIDE scores, indicating that 
Cluster 2 had the most favourable outcomes after receiving immune 
checkpoint inhibitor treatment (Figure 3H). Collectively, these findings 
support the strong association between smoking-related genes and 
immunotherapy in NSCLC and BLCA.
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F I G U R E  1 Sixty-six genes identified as smoking-related genes in BLCA and NSCLC. (A, B) Differential analyses based on smoking and 
non-smoking samples in NSCLC. (C, D) Differential analyses based on smoking and non-smoking samples in BLCA. (E) Venn diagram of 
common smoking-related differential genes in BLCA and NSCLC. (F) Gene enrichment analysis of smoking-related differential genes.
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3.4  |  PRR11 in smoking-related genes as a 
prognostic gene associated with immune infiltration 
in both NSCLC and BLCA

To further screen for the best immune-related prognostic genes 
in NSCLC and BLCA, we combined the NSCLC and BLCA prognos-
tic genes. Our analysis evidenced that PRR11 may be a common 

prognostic gene in both NSCLC and BLCA (Figure 4A). In BLCA, 
PRR was positively correlated with CD274, CTLA4, HAVCR2, 
LAG3, PDCD1, PPDCD1LG2 and TIGIT, and negatively corre-
lated with SIGLEC15. In NSCLC, PRR was found to have a positive 
correlation with CD274, LAG3 and PPDCD1LG2, a negative cor-
relation with CTLA4 and HAVCR2, and no significant correlation 
with PDCD1, SIGLEC15 and TIGIT. Interestingly, in both NSCLC 

F I G U R E  2 Subgroup typing for NSCLC and BLCA samples. (A) Sample distribution of the three clusters in NSCLC. (B) CDF Delta area. 
(C) Heatmap of the expression of smoking-related genes in three NSCLC clusters. (D) Overall survival for three NSCLC clusters. (E) Sample 
distribution of the three clusters in BLCA. (F) CDF Delta area. (G) Heatmap of the expression of smoking-related genes in three BLCA 
clusters. (H) Overall survival for three BLCA clusters.
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and BLCA, PRR was positively correlated with CD274, LAG3 and 
PDCD1LG2, with CD274 exhibiting the strongest correlation 
(Figure  4B). Subsequently, we analysed the relevance of PRR in 
immune infiltration in NSCLC and BLCA using single-cell analy-
sis. The results revealed that PRR correlated with CD8T, NK, and 
Mono/Macro in both NSCLC and BLCA (Figure  4C). By examin-
ing the cluster plots of single-cell RNA sequencing data, we de-
termined the location and expression of PRR11 in various immune 
cells (Figure 4D,E). Finally, we used the CIBERSORT algorithm to 
analyse the correlation between PRR11 and immune infiltration 
in NSCLC and BLCA using TCGA dataset. Our findings revealed 

that PRR11 was significantly associated with memory B cells, T-cell 
CD4+ memory resting, T-cell CD4+ memory activated, regulatory 
T cells (Treg), resting NK cells, monocytes, M0 macrophages, ac-
tivated mast cells and resting mast cells in both NSCLC and BLCA 
(Figure  4F,G). In conclusion, our study confirmed the significant 
correlation between PRR11 expression and immune cell infiltra-
tion in both NSCLC and BLCA. Based on the conclusions drawn 
from the single-cell analysis and CIBERSORT algorithm, we sug-
gest that PRR11 may play a role in the immune microenvironment 
of NSCLC and BLCA through the regulation of monocytes and M0 
macrophages.

3.5  |  PRR11 is associated with stemness 
characteristics in BLCA and NSCLC

Stemness plays a crucial role in enabling tumour cells to resist vari-
ous treatments. Using GSEA (Figure 5A,B), we discovered a signifi-
cant association between PRR11 expression and stemness in both 
BLCA and NSCLC. To further investigate this, we examined the cor-
relation between PRR11 and stem cell characteristics in BLCA and 
NSCLC. Our findings revealed that stemness scores were consist-
ently higher in the PRR11 high-expression group than in the PRR11 
low-expression group in both BLCA and NSCLC. This suggests that 
elevated PRR11 expression is correlated with increased stemness 
characteristics in BLCA and NSCLC and that it promotes the stemness 
characteristics of these cancers (Figure 5C,D). Furthermore, we ana-
lysed the distribution of stemness scores in BLCA and NSCLC sam-
ples, considering the clinical stage, grading and smoking history of 
the patients (Figure 5E,F).

3.6  |  Construction of a prognostic model based on 
PRR11 co-expressed genes

Initially, we screened for prognostic genes common to BLCA and 
NSCLC (Figure 6A). Of the 160 genes identified, 16 exhibited cor-
relation coefficients >0.5 with PRR11 in both BLCA and NSCLC 
(Figure  6B). Subsequently, these 16 genes were included in the 
analysis using the LASSO algorithm in BLCA, resulting in the iden-
tification of five genes for inclusion in the model (Figure 6C,D). The 
risk score was calculated based on the expression levels of GAPDH, 
COLGALT1, EHBP1, GANAB and LRRC59 in BLCA. Patients in the 
high-risk group had a significantly worse prognosis than those in the 
low-risk group (Figure  6E). Subsequently, this model was applied 
to lung cancer samples to investigate whether it could predict the 
prognosis of patients with lung cancer. The results confirmed that 
the model could predict the prognosis of patients with lung cancer, 
with those in the high-risk group having a significantly worse prog-
nosis than those in the low-risk group (Figure  6F). Therefore, we 
concluded that the prognostic model constructed using the PRR11 
co-expression gene could simultaneously predict the prognosis of 
patients with BLCA and NSCLC.

TA B L E  1 Correlation analysis of three subtypes with sex, age 
and stage in NSCLC samples.

Feature C1 C2 C3 p-Value

Status Alive 176 280 158

Dead 127 208 68 0.004

Gender Female 141 125 142

Male 162 363 84 0

pT_stage T1 40 44 33

T1a 19 23 29

T1b 27 36 32

T2 107 175 59

T2a 49 88 32

T2b 17 36 8

T3 30 65 23

T4 12 21 9

TX 2 1 0

pN_stage N0 186 304 161

N1 67 125 35

N2 43 50 21

N3 2 5

NX 5 4 8 0.003

pM_stage M0 210 390 158

M1 11 9 3

M1a 2 1

M1b 2 3 1

MX 77 81 61 0.006

pTNM_stage I 4 3 1

IA 71 74 76

IB 77 151 63

II 1 3

IIA 32 64 19

IIB 51 85 29

III 1 2

IIIA 42 71 23

IIIB 8 17 4

IV 15 13 5 0
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3.7  |  Analysis of prognostic models constructed 
based on PRR11 co-expressed genes in 
correlation with the immune microenvironment of 
BLCA and NSCLC

First, we analysed the differences in the expression of immune 
checkpoint-related genes between the high- and low-risk groups. 
The results revealed that all immune checkpoint genes were sig-
nificantly different, except for SIGLEC15, which expression was 
not significantly different between the high- and low-risk groups 
(Figure 7A,B). Subsequently, we analysed the correlation of immune-
infiltrating cells between the high- and low-risk groups using the 
CIBERSORT algorithm. We found significant differences in memory 
B cells, plasma B cells T-cell CD4+ memory activated, Treg, resting 
NK cells, monocytes, M0 macrophages, M1 macrophages, activated 
mast cells, and resting mast cells in both BLCA and NSCLC between 
the high- and low-risk groups (Figure 7C,D). Finally, we analysed the 
responsiveness to immune checkpoint inhibitor treatment in the 

high-risk and low-risk groups; in both BLCA and NSCLC, patients 
in the high-risk group had higher TIDE scores and immune check-
point inhibitors were less effective in treating patients in the high-
risk group (Figure  7E,F). This might explain the poor prognosis of 
patients in the high-risk group.

3.8  |  PRR11 regulates PDL1 through interaction 
with SPDL1

To investigate the potential mechanism underlying the regulation of 
PDL1 by PRR11, we used the STRING website to identify the in-
teracting genes shared by PRR11 and PDL1. An interplay network 
diagram was constructed (Figure  8A). Our analysis revealed that 
SPDL1 is a reciprocal gene common to both PRR11 and PDL1, with 
an interaction score of 0.15. To further validate the relationship be-
tween PRR11, SPDL1 and PDL1, we performed molecular docking 
to examine their correlations at the structural level. Remarkably, we 
observed a strong correlation between PRR11 and SPDL1, as well 
as between PDL1 and SPDL1 (Figure  8B,C). Additionally, we ana-
lysed the correlation between SPDL1 and PRR11 expression in 60 
lung and 41 bladder cancer tissues. The results consistently dem-
onstrated a positive correlation between SPDL1 and PRR11 expres-
sion in both lung and bladder cancers (Figure 8D–G). In conclusion, 
our study provides evidence supporting the potential mechanism by 
which PRR11 regulates PDL1 expression in lung and bladder can-
cers. It is plausible that PRR11 influences the immunotherapy of 
these tumours through its interaction with SPDL1, thereby regulat-
ing the expression of PDL1.

3.9  |  The hsa-miR-200b-3p/PRR11/SPDL1 
signalling axis simultaneously regulates PDL1 
expression in BLCA and NSCLC

A total of 78 miRNAs were found to correlate with PRR11 in bladder 
and lung cancers. Among these 78 miRNAs, we identified 17 that ex-
hibited differential expression in bladder and lung cancers compared 
with their corresponding normal tissues (Figure 9A,B). Interestingly, 
only hsa-miR-200b-3p was negatively associated with PRR11, SPDL1 
and CD274 expression in NSCLC and BLCA (Figure 9C,D). This sug-
gests that hsa-miR-200b-3p plays a role in the regulation of CD274 
by both PRR11 and SPDL1 in bladder and lung cancers. Notably, 
low expression of hsa-miR-200b-3p was significantly associated 
with poor prognosis in patients with NSCLC and BLCA (Figure 9E,F). 
Additionally, the expression of hsa-miR-200b-3p was significantly 
higher in NSCLC and BLCA tissues than in the corresponding normal 
tissues (Figure 9G,H). Furthermore, analysis of cellular localization re-
vealed that PRR11, SPDL1 and hsa-miR-200b-3p were predominantly 
expressed in the nucleus (Figure 9I). In conclusion, our findings sug-
gest that hsa-miR-200b-3p acts upstream of PRR11 and is involved in 
the regulation of CD274 expression in NSCLC and BLCA.

TA B L E  2 Correlation analysis of three subtypes with sex, age 
and stage in BLCA samples.

Feature C1 C2 C3 P-value

Status Alive 90 57 81

Dead 95 22 61 0.002

Gender Female 50 18 38

Male 135 61 104 0.754

pT_stage T1 4 2 5

T2 46 30 34

T2a 14 6 11

T2b 26 6 17

T3 19 13 14

T3a 22 5 19

T3b 33 5 27

T4 4 1 3

T4a 13 8 11

T4b 2

TX 2 3 1 0.246

pN_stage N0 110 53 73

N1 23 5 18

N2 27 14 34

N3 5 2

NX 17 7 12 0.228

pM_stage M0 73 52 70

M1 7 1 3

MX 103 26 68 0.004

pTNM_stage II 51 36 42

III 74 22 44

IV 59 20 54

I 1 1 0.02



    |  9 of 18WANG et al.

F I G U R E  3 Smoking-related genes significantly associated with immunotherapy for NSCLC and BLCA. (A, B) Differential expression of 
immune-infiltrating cells in lung cancer in the three clusters analysed based on the CIBERSORT algorithm. (C) Differential expression of 
immune checkpoint-related genes in the three clusters in NSCLC. (D) Predicting immune checkpoint inhibitor treatment response using the 
TIDE algorithm in NSCLC. (E, F) Differential expression of immune-infiltrating cells in bladder cancer in three clusters analysed based on the 
CIBERSORT algorithm. (G) Differential expression of immune checkpoint-related genes in the three clusters in BLCA. (H) Predicting immune 
checkpoint inhibitor treatment response using the TIDE algorithm in BLCA. *p < 0.05, **p < 0.01 and ***p < 0.001.
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F I G U R E  4 PRR11 is strongly associated with immunotherapy for lung and bladder cancer through regulation of monocyte and 
macrophage M0. (A) Venn diagram mapping the intersection of smoking-related genes with NSCLC and BLCA prognostic genes. (B) PRR11 
correlates with immune checkpoints in NSCLC and BLCA. (C–E) Single-cell analysis of PRR11 correlates with immune infiltration correlation. 
(F, G) Correlation of PRR11 with immune infiltration in NSCLC and BLCA in the TCGA dataset. *p < 0.05, **p < 0.01 and ***p < 0.001.
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F I G U R E  5 PRR11 positively correlates with stemness score in BLCA and NSCLC. (A) PRR11 is significantly associated with embryonic 
stem cell pluripotency pathways in BLCA. (B) PRR11 is significantly associated with embryonic stem cell pluripotency pathways in NSCLC. 
(C) PRR11 positively correlates with stemness score in BLCA. (D) PRR11 positively correlates with stemness score in NSCLC. (E) PRR11 
expression, clinical stage, grading, smoking history and stemness score distribution in BLCA. (F) PRR11 expression, clinical stage, smoking 
history and dryness score distribution in NSCLC.
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F I G U R E  6 Prognostic model simultaneously predicts prognosis of BLCA and NSCLC patients based on co-expressed PRR11 gene. (A) 
Common prognostic genes in BLCA and NSCLC. (B) Genes associated with PRR11 in BLCA and NSCLC. (C, D) Five genes co-expressed with 
PRR11 were included in the prognostic model. (E) Risk score and survival time, survival status and prognostic differences between high- and low-
risk groups in BLCA. (F) Risk score and survival time, survival status and prognostic differences between high- and low-risk groups in NSCLC.
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F I G U R E  7 Analysis of prognostic models correlating with immunotherapy for BLCA and NSCLC. (A) Differential expression of immune 
checkpoint genes in BLCA between high- and low-risk groups. (B) Differential expression of immune checkpoint genes in NSCLC between 
high- and low-risk groups. (C) Differences in scores of immune-infiltrating cells in BLCA between high- and low-risk groups. (D) Differences 
in scores of immune-infiltrating cells in NSCLC between high- and low-risk groups. (E) Analysis of response to immune checkpoint inhibitor 
therapy in BLCA between high- and low-risk groups using the TIDE algorithm. (F) Analysis of response to immune checkpoint inhibitor 
therapy in NSCLC between high- and low-risk groups using the TIDE algorithm. *p < 0.05, **p < 0.01 and ***p < 0.001.
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F I G U R E  8 PRR11 and SPL1 are significantly correlated in both BLCA and NSCLC. (A) Interaction network of PRR11 and PDL1. (B) 
Molecular docking map of PRR11 and SPDL1. (C) Molecular docking map of PDL1 and SPDL1. (D) Expression of PRR11 and SPDL1 in lung 
cancer. (E) Correlation analysis of PRR11 and SPDL1 in lung cancer. (F) Expression of PRR11 and SPDL1 in bladder cancer. (G) Correlation 
analysis of PRR11 and SPDL1 in bladder cancer.
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4  |  DISCUSSION

In 2020, the GLOBOCAN study reported over 570,000 new cases 
of bladder cancer (BLCA), accounting for 2.1% of all cancer-related 
deaths worldwide.24 Smoking is a significant risk factor for BLCA, as 
it is responsible for more than one-third (36.8%) of all BLCA cases 
globally.25 Lung cancer is the leading cause of cancer-related deaths 
globally, with approximately 1.6 million fatalities each year, whereas 
NSCLC accounts for approximately 85% of all lung cancer cases and 

its cure and survival rates remain low. Despite the well-established 
correlation between smoking and lung cancer, 80.6%–81.9% of lung 
cancer deaths are attributed to cigarette smoke exposure.26 Immune 
system plays an important role in the development of cancers. 
Notably, the balance of cytokines significantly influences disease 
progression.27 Research has revealed that habitual smoking weak-
ens the effectiveness of immune cells and molecules because of 
the presence of toxic substances, leading to the development of an 
immunosuppressive environment and tumour growth.28 Although 

F I G U R E  9 In NSCLC and BLCA, hsa-miR-200b-3p is involved in the regulation of CD274 by PRR11. (A) PRR11-related miRNAs in NSCLC 
and BLCA. (B) Differential miRNAs associated with PRR11 in NSCLC and BLCA. (C) hsa-miR-200b-3p negatively correlates with PRR11, 
SPDL1, CD274 in NSCLC. (D) hsa-miR-200b-3p negatively correlates with PRR11, SPDL1, CD274 in BLCA. (E, F) Prognostic KM curves of 
hsa-miR-200b-3p in NSCLC and BLCA. (G, H) Differential expression of hsa-miR-200b-3p in NSCLC and BLCA. (I) Cellular localisation of 
PRR11, SPDL1 and hsa-miR-200b-3p. ***p < 0.001.
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extensive research has been conducted on the molecular mecha-
nisms underlying smoking-induced cancer, the evidence on how 
smoking promotes cancer development remains insufficient. Our 
research objective was to identify common immunotherapeutic tar-
gets for bladder and lung cancers in order to improve the prognosis 
of affected patients.

In this study, we identified 66 smoking-associated differential 
genes that are common in NSCLC and BLCA. Gene enrichment analysis 
revealed that these genes primarily play a role in modulating cell cycle 
and cellular senescence. Previous studies have evidenced that smok-
ing accelerates NSCLC progression by affecting cell cycle.29 Cigarette 
smoke damages DNA and impairs the mechanisms that control cell-
cycle checkpoints and DNA repair pathways.30 Additionally, it has 
been demonstrated that cigarette smoke extracts induce premature 
cellular senescence in individuals with chronic obstructive pulmonary 
disease by activating the p53/p21 signalling pathway.31 Moreover, cig-
arette smoke extracts can cause apoptosis and elicit innate immune 
responses.32 In recent years, the concept of precision medicine has led 
to the categorization of trial participants into subgroups. A well-known 
example is the molecular categorization of breast cancer, which reveals 
distinct pathogenic mechanisms and clinical prognostic features in dif-
ferent subgroups.33 In our study, we classified patients with NSCLC 
and BLCA into three clusters to investigate the relationship between 
smoking status, prognosis and immunotherapy.34 The complex and 
dynamic crosstalk between tumour cells and TME has a crucial role 
in tumour growth, invasion and metastasis.35 We found a significant 
correlation between smoking-related genes and immune-infiltrating 
cells, as well as immune checkpoints, suggesting a close association 
between smoking-related genes and the immune microenvironment in 
NSCLC and BLCA. Notably, PRR11 has emerged as the only smoking-
associated gene that can serve as a prognostic marker in both NSCLC 
and BLCA. The prognostic value and relevance of PRR11 in lung ade-
nocarcinoma have been previously analysed.36 The growing research 
on TME has indicated that tumour-infiltrating immune cells play a crit-
ical role in cancer progression and aggressiveness.37 Our study aimed 
to explore the immune infiltration relevance of PRR11 in lung cancer 
using the CIBERSORT algorithm in combination with single-cell anal-
ysis. Our findings suggest that PRR11 plays a role in the immune infil-
tration of lung cancer by regulating monocytes and M0 macrophages. 
Additionally, we observed a significant association between PRR11 and 
PDL1, an immune checkpoint marker, in both NSCLC and BLCA. This 
suggests that PRR11 may potentially contribute to immunotherapy for 
NSCLC and BLCA by modulating PDL1 expression.

The development and immune evasion of cancer stem cells 
(CSCs) pose limitations to the effectiveness of current antican-
cer therapies.38 Stem cells release various cytokines, chemokines, 
growth factors and extracellular matrix (ECM) molecules that pos-
sess immunosuppressive and inflammatory modulatory properties. 
These molecules act via autocrine or paracrine pathways to exert 
immunomodulatory effects.39 In addition, the role of cigarettes 
in regulating tumour cell stemness has been demonstrated in kid-
ney and lung cancers.40,41 Through gene enrichment analysis, we 

discovered that PRR11 was associated with cancer stemness char-
acteristics in both NSCLC and BLCA. In the NSCLC and BLCA sam-
ples, the PRR11 high-expression group exhibited higher stemness 
scores, indicating a positive correlation between PRR11 and tu-
mour stemness characteristics. To further investigate the role of 
PRR11 in the prognosis and immune microenvironment of NSCLC 
and BLCA, we constructed prognostic models based on PRR11 co-
expressed genes. The prognostic model developed for bladder can-
cer was also applicable to lung cancer, highlighting the consistent 
prognostic value of PRR11 in NSCLC and BLCA. PRR11 controls the 
expression of PDL1 in both NSCLC and BLCA. To investigate the 
underlying mechanisms, we used STRING to analyse genes that co-
interact with PRR11 and PDL1. Among these, we identified SPDL1 
as a gene that co-interacts with both PRR11 and PDL1. Interestingly, 
we observed a consistent positive correlation between PRR11 and 
SPDL1 expression in both the NSCLC and BLCA samples. To further 
validate this interaction, we used molecular docking to examine the 
molecular structure of the interaction between PRR11 and SPDL1. 
Additionally, we confirmed the correlation between PRR11, SPDL1 
and PDL1 in NSCLC and BLCA tissue microarrays. To investigate the 
potential involvement of miRNAs upstream of PRR11 in the regula-
tion of PDL1, we examined the association of hsa-miR-200b-3p with 
PRR11, SPDL1, and PDL1 expression in NSCLC and BLCA. Our find-
ings revealed a negative correlation between hsa-miR-200b-3p and 
PRR11, SPDL1, and PDL1 in both NSCLC and BLCA. Furthermore, 
we identified hsa-miR-200b-3p as a promising prognostic marker for 
NSCLC and BLCA. Overall, our study demonstrated consistent reg-
ulation of PDL1 by hsa-miR-200b-3p/PRR11/SPDL1 in both NSCLC 
and BLCA.

5  |  CONCLUSION

In this study, we conducted a comprehensive analysis to investigate 
the prognostic and immunotherapeutic significance of smoking-
related genes in NSCLC and BLCA. Our findings reveal that PRR11, 
a commonly observed prognostic gene in both NSCLC and BLCA, 
plays a crucial role in regulating PDL1 through its interaction with 
SPDL1. Additionally, we discovered that hsa-miR-200b-3p is in-
volved in the regulation of PDL1 via the PRR11/SPDL1 pathway in 
NSCLC and BLCA.
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