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Abstract
Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as 
many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and 
task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a com-
prehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, Neuro-
Synth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring 
to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits 
replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation 
of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, 
divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and 
also a unilateral language network (but not the visual network), and the association of these networks with underlying onto-
logical key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior 
resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. 
This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing stud-
ies to test specific functional hypotheses and provide a reference for interpreting the results.
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Introduction

The cerebellum takes up a large volume of the human brain, 
which has expanded more rapidly than the neocortex dur-
ing evolution of humans and other great apes [5]. The cer-
ebellum has a surface that is about 80% of the size of the 

cerebral cortex [6] and has about 4 times as many neurons 
[7]. There are strong structural and functional interactions 
between the cerebellum and cerebral cortex, with closed-
loop connections running from the cortex to the cerebellum 
and back to the same areas in the cortex [8, 9]. This intrinsic 
connectivity has led to the discovery that the cerebellum and 
cerebral cortex share major functional networks underlying 
a variety of human psychological processes [1]. This impor-
tant finding ran parallel to a change in research focus on the 
cerebellum—from a selective interest in motor processes to 
a growing awareness that the human cerebellum supports 
major cognitive, affective, and social functions ([1, 10–19].

What does the cerebellum contribute to these distinct 
functions? Research during the last decades has uncovered 
distinct functional neuronal networks in the brain using rest-
ing-state functional connectivity of functional imaging data, 
exploiting the observation that spontaneous fluctuations of 
activation signals can give insight in the intrinsic functional 
network organization of the brain. Based on this principle, 
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• New parcellation of the cerebellum based on ontological key 
terms referring to psychological functions and associated task 
coordinates from NeuroSynth involving over 44,500 participants
• Results in 10 clusters reflecting 7 major networks plus a 
language network.
• Shows convergent validity with earlier resting-state cerebellar 
parcellations [1, 2]
• Shows convergent validity with reanalysis of earlier task-based 
cerebellar parcellation [3]
• Shows convergent functional connectivity with neocortical 
parcellation reflecting 7 major networks [4]
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seminal parcellations of the cerebrum [4] and the cerebellum 
[1], based on resting-state data of 1000 participants, have 
uncovered a solution of 7 shared network structures (and 
also a 17-network structure; for details see [4], and [1]). 
These encompass the sensorimotor, visual, limbic, dorsal 
(directed) attention, ventral (divided) attention, executive 
control, and default mode networks. These networks were 
largely replicated by Ji et al. [2] and were remarkably robust 
and valuable in elucidating functional brain organization 
in both the cerebral cortex and cerebellum, and provide a 
framework for functional interpretation of fMRI studies that 
is still useful today.

It has been argued that resting-state connectivity on 
which brain parcellations were initially based may reveal 
the pathways over which cognitive task activations flow [20, 
21]. However, this is a largely untested assumption for the 
cerebellum. Defining or identifying the psychological pro-
cesses subserved by these major network structures in the 
cerebellum is still a challenging issue, and it raises the ques-
tion whether the major network structures identified in rest-
ing-state cerebellar parcellations reflect distinct functional 
processes. Therefore, establishing an atlas of distinct task-
related processes in the cerebellum based on functional MRI 
(fMRI) activations is an important focus. In this study, we 
will provide a novel functional cerebellar atlas using task-
based imaging data and explore its convergence with earlier 
task-free resting-state parcellations of both the cerebellum 
[1, 2] and cerebral cortex [2, 4] to validate the functionality 
of these earlier parcellations of the cerebellum.

Prior attempts using task-based imaging data to unravel 
the functionality of the human cerebellum were limited in 
several respects. First, prior studies on the task-based organi-
zation of the human cerebellum were based on meta-analyses 
using a limited set of task domains [13, 16, 17], which limits 
the generality of these findings with respect to an overall 
functional structure of the cerebellum. Fortunately, more 
recent studies included a larger range of task domains. One 
of the earliest major attempts to uncover a task-based func-
tional parcellation of the whole cerebellum was conducted 
by King and colleagues [3] and involved 24 participants. 
King et al. [3] based their parcellation on 26 unique tasks 
to characterize motor and cognitive processes, including 
high-level cognition such as language and math. However, 
this task selection has limitations. For example, among the 
many cognitive tasks, they included only one social task for 
identifying the capacity to mentalize, that is, understand-
ing the mind of another person, also known as theory of 
mind [22–24]. However, recent meta-analyses have robustly 
demonstrated that social mentalizing recruits a major part of 
the posterior human cerebellum [18, 19, 25–27]. Complicat-
ing matters further, although a surface overlap may appear 
between mentalizing and language at the group level, these 
functions shown little overlap in individual participants 

and should therefore be distinguished ([28]; see also [2]). 
Hence, prior cerebellar parcellations (e.g., [3]) may have 
been biased, leading to an underrepresentation of important 
functions such as social cognition and an overrepresentation 
of other functions such as language.

Second and perhaps most importantly, the identification 
of the psychological processes underlying task-based parcel-
lations of the human cerebellum were not guided by strong 
and independent empirical evidence. Earlier cerebellar par-
cellations focused on single predefined functional networks 
(e.g., social cognition: [25]), areas, and populations (e.g., 
temporoparietal junction and autism: [29]), which limits the 
generality of the findings. In a recent attempt to overcome 
these limitations, King et al. [3] defined the psychological 
processes underlying their task-based cerebellar parcellation 
by applying a post hoc and independent cognitive ontol-
ogy [30], but the resulting descriptors included distinct and 
diverse processes for the same regions (e.g., divided atten-
tion and verbal fluency describing region 6). This approach 
led to limited convergence between their task-based cere-
bellar parcellation and other task-free parcellations ([1, 2]; 
see also Fig. 4). The lack of a more unequivocal functional 
nomenclature in recent work renders interpretations of the 
discovered cerebellar structures ambiguous and insight in 
the functionality of the cerebellum difficult.

To address these limitations of earlier parcellations of the 
human cerebellum, we first identify a parcellation of func-
tionally homogenous clusters based on a very large, publicly 
available database of past fMRI research, NeuroSynth [31], 
which showed convergent validity with earlier clusters. Sec-
ond, we assign interpretable psychological concepts to these 
clusters. While the first aim is very similar to earlier attempts 
at parcellation (but relying on a larger database), the second 
aim is different and attempts at improving earlier analyses 
of cerebellar functionality.

Indeed, an important advantage of NeuroSynth is that 
psychological functionality is characterized by topical key 
terms extracted from the text corpuses of the articles in the 
database using latent Dirichlet allocation (for more details, 
see [32]). Topic mapping was then used in NeuroSynth to 
identify the relationship between these key terms and brain 
activation to characterize basic operations that reflect latent 
underlying mental functions that give rise to associated pat-
terns of brain activity. This provides NeuroSynth with a 
strong empirical basis for conceptual functional description. 
To take advantage of this functional database, we (a) first 
selected pre-identified NeuroSynth topical key terms reflect-
ing all unique task functions, (b) then performed a cluster 
analysis on all studies associated with each of these terms 
in NeuroSynth, and (c) finally labeled the cerebellar sur-
face using a winner-take-all approach of the obtained clus-
ters and their associated task functions. It should be noted, 
however, that although our approach rests on NeuroSynth’s 
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convergence between researchers’ thinking and vocabulary 
about fundamental psychological processes, this conver-
gence may well reflect systematic preconceptions and biases, 
which are only proxies for actual processes and may even-
tually turn out to be largely incorrect to characterize the 
functionality subserved by the cerebellum.

We are aware of several other biases of the NeuroSynth 
database, which in our opinion do not outweigh its advan-
tages. First, some research topics in the database might 
have been published more or less frequently than others, 
and the quality of research might differ between research 
topics, which may have biased the data. Second, the Neuro-
Synth database is agnostic to imaging parameters and other 
analytic choices in the studies (e.g., spatial normalization 
and significance thresholds based on peak voxels or clus-
ters), resulting in large variations with respect to the spa-
tial localization and strength of activity. Third, the database 
provides only a summary of activation data reporting only 
peak coordinates, without any measure of inter-participant 
variability. However, we suspect that the sheer breadth and 
variety of research designs, tasks, and topics largely pro-
tect against these first three limitations, or, at least, are not 
more damaging than in the majority of empirical reviews 
and meta-analyses in the neuroimaging literature which suf-
fer from these same limitations. Moreover, the number of 
participants included—over 40,000 for studies involving the 
cerebellum—is far beyond what has been analyzed so far, 
and hence allows to generalize across individual differences 
in functional organization.

Fourth, the cerebellum is incompletely covered in many 
studies, often leaving out the inferior cerebellum or having 
it preprocessed and analyzed inappropriately [33]. Coordi-
nates of the inferior cerebellum are reported in far less stud-
ies than the superior cerebellum. (This can be verified in 
the activation maps in Supplementary Figure S1, where the 
inferior parts of the cerebellum show less signal). However, 
our winner-takes-all approach largely protects against this 
bias, because it compares activation of different clusters at 
voxel-level, that is, within the same spatial location (e.g., 
for each given voxel, a task with the highest activation will 
win the competition from other tasks with lower activation; 
if all activations for all tasks are much weaker in the inferior 
part of the cerebellum to the same degree, say only 50%, 
this same task will win the competition again in the inferior 
cerebellum). It is unlikely that a systematic and biased asso-
ciation would exist between neglect of the cerebellum and 
some task domains. Fifth, more generally, the cerebellar cor-
tex is much more folded than the cerebral neocortex, so that 
localization of functional divisions might be more challeng-
ing (i.e., adjacent voxels only 1 mm apart could actually be 
located at different sides of a cerebellar sulcus and represent 
entirely different functions). Sixth, NeuroSynth data were 
acquired automatically, including much more than just fMRI 

activation such as connectivity, anatomical, and volumetric 
analyses. Hence, before using this database for analyzing the 
organization of the human cerebellum, a manual clean-up of 
the data was mandatory.

To sum up, this study attempts to identify a cerebellar 
parcellation with the aim to investigate spatial convergence 
with major functional networks uncovered by earlier resting-
state analyses [2, 3, 34] and earlier task-based approaches 
such as King et al. [3]. However, we take a novel approach 
by strongly relying on the mental functions of brain struc-
tures empirically identified by the task-related brain database 
of NeuroSynth [31, 32] to define the psychological processes 
associated with our cerebellar parcellation.

Method

In brief, our analysis took the following steps roughly similar 
to King et al. [3], which are explained in more detail below 
(see Supplementary Material for a technical summary):

1.	 Selection of studies NeuroSynth database with MNI 
coordinates in the cerebellum

2.	 Selection of functional NeuroSynth topics and terms 
from the database v5-topics-50

3.	 Quality screening of selected studies and coordinate 
tables

4.	 Meta-analytic processing of the selected functional top-
ics using the activation likelihood estimation (ALE) pro-
cedure

5.	 Assigning clusters to anatomical areas on the z-values 
obtained by ALE

6.	 Representing the clusters on the cerebellar surface based 
on a winner-takes-all approach

Selection of Cerebellar Coordinates

Coordinates were identified as cerebellar, using the follow-
ing inclusion criteria (all of which had to apply):

1.	 When coordinates were provided in MNI coordinates, 
since the automatic conversion of other coordinate sys-
tems into the MNI system is often flawed in NeuroSynth 
(see also [18])

2.	 When coordinates were located within an anatomical 
cerebellar mask loosely created around the cerebellum, 
using several anatomical restrictions:

•	 A box defined by the outer x-y-z coordinates −63 > x < 
63; -28 > y >−103; and z < 11

•	 Below z coordinates surrounding the superior part of the 
cerebellum determined by two planes defined by x-y-z 
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coordinates 0 −50 12 and ±60 −50 −30, using the for-
mulas: z < (−30 −12) / (60 − 0) * |x| +12; and z < −0.70 
* |x| +12

•	 Below z coordinates surrounding the posterior part of 
the cerebellum determined by x-y-z coordinates: 0 −50 
12 and 0 −100 −15, using the formulas: z < (−15 −12) / 
(−100 + 50) * (y +50) + 12; and z < 0.54 * (y +50) +12

3.	 When coordinates received at least one cerebellar label 
by one of the following atlases (to be as inclusive as 
possible):

•	 Using the SPM Anatomy toolbox, the label “cerebellum,” 
“cerebellar,” “vermis,” “dentate,” or “lobule”

•	 Using the Talairach Client toolbox and after conversion 
to Talairach coordinates (cf. [35]), the label “cerebellum”

Selection of Functional NeuroSynth Topics 
and Terms

We selected several central key terms from the NeuroSynth 
topics in the Database v5-topics-50. This database contains 
a set of 50 topics created by applying a standard topic mod-
eling approach [32] to the abstracts or text of articles in 
the database, leading to a list of key terms that characterize 
each topic. The v5-topics-50 terms were extracted from the 
abstracts of all articles in the NeuroSynth database as of July 
2018 (14,371 articles). Importantly for the present analysis, 
all the articles in the database are characterized by a load-
ing on each key term (between 0 and 1). For each topic, 
the key terms are ordered along the highest loading to the 
topic, which allows to identify the most related key terms 
and articles. However, to extract the most central and unique 
key terms for each topic, we introduced additional criteria 
for the present analysis as follows:

1.	 We included 10 functional terms with the highest 10 
loadings on each NeuroSynth topic.

2.	 We excluded all non-functional terms referring to areas 
of the brain, methodology of brain research (volumes, 
network, state, resting, …), methodology of stimulus 
presentation (e.g., priming, response, …), and clinical 
pathologies and populations (e.g., neuroticism, bipolar, 
ms, ad, …). After eliminating these non-functional top 
10 terms, the total list of 50 topics was reduced to a total 
of 22 functional topics.

3.	 From the remaining top 10 terms, we selected a maxi-
mum of five key terms that were unique across the 22 
remaining topics, so that they were representative for 
that topic only (see Table 1 “Selected functional key 
terms”); in addition, closely related terms from the top 

10 terms were added (i.e., with the same word stem, e.g., 
“trait” and “traits”).

4.	 To ensure that the selected terms (and especially the first 
term) were central to the topic, we included only terms 
with sufficiently low within-topic uniqueness and high 
within-topic convergence with respect to the first, most 
representative term of the topic.

•	 Uniqueness within a topic was calculated by the relative 
increase of studies in the NeuroSynth database after add-
ing an additional term to the first (i.e., most representa-
tive) term using the formula: #(1 to a) / #(1 to [a − 1]), 
where # reflects the number of studies including the first 
term and all additional terms “a” up to that point divided 
by the number of studies up to the previous point “a – 
1.” To illustrate, for the addition of the third term, the 
uniqueness formula would become: #(1 to 3) / #(1 to 2).

•	 Overlap within a topic was calculated by the relative 
overlap of studies in the NeuroSynth database after add-
ing the term using the formula: (#1∩#a) / #(1 to a) where 
# reflects the number of studies of the first term and of 
the additional terms “a” divided by the number of stud-
ies including the first term and all additional terms “a” 
up to that point (as defined above). To illustrate, for the 
addition of the third term, the formula would be: (#1∩#3) 
/ #(1 to 3).

Based on this analysis, 5 key terms were omitted with an 
overlap under .09 (i.e., at 25% of the mean overlap across 
all topics), while some key terms were reordered (i.e., put 
earlier) because these terms had relatively higher centrality 
scores (i.e., higher overlap and lower uniqueness)—this reor-
dering impacts only the use of terms in the results, tables, 
and figures, but not the selection of studies. Table 1 shows 
the final selection of the key functional terms for each of the 
22 selected functional NeuroSynth topics.

Quality Screening of Selected Studies 
and Coordinate Tables

We included studies that investigated task-related brain acti-
vation using fMRI. This was done through inspection of 
each of the original articles by many co-authors (in alpha-
betical order: Kris Baetens, Tom Bylemans, Beatriz Puerta 
Catoira, Mahyar Firouzi, Naem Haihambo, Meijia Li, Qiany-
ing Ma, Min Pu, and honor students), using the exclusion 
and inclusion criteria listed below. The raters read minimally 
the abstract of each article, and in case of inclusion, the full 
article insofar as to obtain necessary information and check 
the criteria. The decisions of the raters were double checked 
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by Qianying Ma and Naem Haihambo, and disagreements 
were resolved by discussion:

1.	 Excluding studies or tables referring to analyses with 
(in alphabetical order) connectivity or PPI, coordinates 
that were incorrect or from individual participants, 
coordinate tables that were not found, meta-analyses, 
neuromodulation, neurostimulation, patients (excludes 
whole study), PET, resting-state, SPECT, substance, or 
drug use (excludes whole study), volume, young partici-
pants (< 12 years) (excludes whole study). We did not 
distinguish between activations or deactivations, or the 
direction of contrast in the analyses.

2.	 Including studies or tables referring to analyses with 
(in alphabetical order) covariate analysis, multivariate 
analysis, parametric analysis, regression analysis, SUIT 
analysis or space, and other analyses that reflect task-
related brain activation.

Information on the number of participants was added into 
the analysis. In case of multiple experiments reported in a 
single table, we entered the total number of all participants 
of the table/study for a joint analysis, or the average of all 
participants of the table/study for separate analyses.

Functional Parcellation

This analysis proceeded in the following steps (using cus-
tom-made Matlab scripts, except in step 1). All calculations 
are based on the volume of the cerebellum (and cerebrum), 
except when noted otherwise:

1.	 ALE analysis on the 22 functional topics. Activation 
likelihood estimation (ALE) analyses were conducted 
on the coordinates of all studies related to the selected 
key terms for each of the 22 functional topics, as imple-
mented by GingerALE 3.0.2 [36–39]. ALE reveals the 
consistent activation across studies for each topic and 
results in a map of unthresholded z-values. No clusters 
or thresholds were defined as the purpose of further 
analysis was to look for the highest z-value in each voxel 
for each topic to determine the winner-take-all dominant 
functionality. Table 1 lists the number of coordinates, 
studies, and participants involved for the 22 functional 
topics, and Supplementary Figure S1 depicts the z-value 
flatmaps [40].

2.	 Clustering of functional topics. We applied hierarchi-
cal clustering on the ALE analyses of the 22 functional 
topics, after rescaling all z-scores for each topic between 
0 and 1 (i.e., unity-based normalization) to minimize 
activation differences related to the experimental tasks 
that are characteristic for each topic. Normalization is 
often applied in resting-state parcellation across partici-

pants [1, 2], while we apply it here across ALE topics 
in order to obtain equivalent results. It logically tends 
to favor ALE topics that have overall lower activation 
(see Supplementary Figure S2 for a visual comparison, 
with or without normalization, after applying step 3). 
Hierarchical clustering allows to decide on the number 
of clusters based on the existing pattern or dendogram of 
hierarchically nested topics in clusters that are meaning-
ful, rather than setting a number of clusters a priori. We 
used hierarchical clustering methods that yield compact 
and relatively independent clusters, including Ward [41] 
and Complete linkage [42] based on Euclidean distance 
between the cerebellar coordinates, using the clusterdata 
procedure of Matlab 2021.

3.	 Assigning clusters to anatomical areas. We decomposed 
the T (topics) × V (voxels) z-value matrix into a product 
of an T × C (cluster) matrix of task profiles and a C × 
V matrix of voxel weights. A winner-takes-all approach 
was adopted to assign each voxel to the cluster with the 
highest z-value. To smooth the pictorial representation 
of the parcellation, the parcellation was filtered using 
a box of isometric voxels surrounding each voxel and 
assigning each voxel to the most frequent cluster in the 
box after 10 random sweeps through the data.

4.	 Spatial homogeneity of the parcellations. To measure 
whether the parcellations were spatially homogenous, 
we calculated the distance-controlled boundary coeffi-
cient (DCBC) introduced by King et al. [3]. The basic 
idea is that if a boundary divides two parcellations, 
then any equidistant pair of voxels within a parcellation 
should have activation profiles that are more correlated 
with each other than two voxels that are separated by the 
boundary. Note that this assumption creates a bias as it 
favors parcellations with smooth closed curvatures (e.g., 
circle) over other shapes (e.g., banana-like shapes), and 
favors clear lines at boundaries over small irregularities 
such as wrinkles or fragmented patches (intruding from 
the other parcellation). Relatedly, given the extreme 
folding of the cerebellar cortex, adjacent voxels only 
1 mm apart could actually be located at different sides 
of a cerebellar sulcus and hence in different networks. 
As these spatial shapes of boundaries are not well con-
trolled for, the DCBC should be interpreted with some 
caution. We calculated correlations between voxel pairs 
using a range of spatial bins (i.e., with Euclidian dis-
tance of 6 mm, 10 mm, and so on up to 50 mm; with 
each distance rounded to 2 mm of the minimal voxel 
size). The difference between the within- and between-
parcellation correlations for each spatial bin then serves 
as the DCBC. We followed the implementation of King 
et al. [3], and calculated Pearson correlations of the final 
parcellation (without truncating negative covariances, as 
we found no strong motivation for it).
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5.	 Similarity between parcellations. To compare the simi-
larity between different parcellations from prior and 
present analyses, we resampled all data sets in a com-
mon SUIT data format (using suit_map2surf), and cal-
culated a Rand similarity index (which ranges between 
0 and 1), as well as the adjusted Rand index reflecting 
similarity above chance level (when the value is above 
0; [43, 44]; see code by [45]). We report both indices 
because of the controversy involving the adjusted index 
as it depends on the chosen random distribution [46] 
and is not entirely independent of the number and size 
of clusters either [44]. For a discussion of the results, we 
mainly focus on Rand indices with an adjusted value > 
0. The target of comparison was restricted to the 7 net-
works, which were consistently found in Buckner et al. 
[1] and Ji et al. [2], and the additional language network 
of Ji et al. [2]. Consequently, clusters that were merged 
in single parcellations/networks in the present analyses 
were also merged for the computation of the Rand indi-
ces, while all remaining clusters were collapsed in a sin-
gle “other” category. To compare the similarity among 
individual networks, we conducted the same analysis for 
each network individually, while the other networks not 
involved were assigned to a single “other” category.

6.	 Cross-validation of the functional parcellation. To obtain 
a measure of cluster reliability, we randomly divided the 
studies for each of the 22 topics in two non-overlapping 
halves, and computed a new ALE analysis on the two 
halves for each of the topics. We then derived a winner-
take-all parcellation based on the same pre-determined 
functional clusters obtained in the previous step 3. 
Cluster reliability was determined by the Rand index 
between the winner-take-all results of the two halves. 
We repeated this cross-validation process 20 times, and 
averaged the Rand index. Note that this provides a lower 
bound on the reliability of the full parcellation, because 
the analysis is conducted on only half of the full data set.

7.	 Cross-validation through functional connectivity with 
the neocortex. To obtain convergent validity for the 
cerebellar parcellation, we conducted an analysis of the 
functional connectivity with the cerebral cortex. This 
essentially involved replicating step 3, now applied on 
the whole brain database of cerebellar studies, that is, 
including all coordinates of the entire brain (cerebral 
and cerebellar structures) of the studies with cerebellar 
coordinates.

Results and Discussion

To briefly recapitulate, our goal was to conduct a task-based 
parcellation of the cerebellum, using a much larger dataset 
than has been used so far. To do so, we selected studies from 

the NeuroSynth 50 topics database from 2018 [31], which 
reported cerebellar involvement (using an approximate cer-
ebellar mask and the SPM Anatomy and Talairach Client 
toolboxes) and activation in MNI coordinates. The data-
base involves 50 topics represented by key terms describing 
basic operations that reflect latent underlying mental func-
tions giving rise to associated patterns of brain activity [32]. 
We included 22 topics that indicated functional task-related 
processes. Each selected topic was denoted by a representa-
tive top term and up to four additional key terms from the 
database, all of which were unique to each topic to avoid 
functional overlap (Table 1). The top term had the high-
est load in the NeuroSynth database for that topic and a 
high centrality (i.e., high overlap and low uniqueness) with 
respect to the four additional key terms. For each topic, we 
extracted the MNI coordinates from the cerebellum as well 
as from the whole brain (cerebral and cerebellar structures, 
including only studies with cerebellar coordinates). We then 
conducted meta-analyses on all studies that were associated 
with each of the 22 functional topics, using the ALE proce-
dure [36–39]. We conducted these ALE analyses on both the 
cerebellar data as well as on the whole brain data.

We then conducted a combined clustering on the Z val-
ues associated with the ALE analyses for both the cerebel-
lum and whole brain data, using the hierarchical methods 
of Ward [41] and Complete linkage [42]. This combined 
analysis was driven by our attempt to seek convergence 
between cerebellar and cerebral networks, and so increase 
convergent validity of the clustering results. We arrived at 
a cluster solution for both the cerebellum and the whole 
brain, which was remarkably similar across the two brain 
parts and clustering methods. Although there were a number 
of equivalent ways for clustering, we selected the complete 
linkage clustering solution because of its somewhat superior 
overlap between the cerebellar and whole brain analyses, and 
also because it yielded more compact, and thus functionally 
more homogenous, clusters. The few remaining differences 
between the two brain parts were resolved by given prior-
ity to cerebellar clusters, if the distance on the whole-brain 
clusters were not too large. By doing so, we ended up with a 
10-cluster solution (Fig. 1) in line with prior research arriv-
ing also at 10 clusters to describe the connectivity [2] and 
functionality [3] of the cerebellum. Using a winner-takes-
all approach, we derived from this clustering a 10-cluster 
cerebellar parcellation.

A 10‑Cluster Parcellation of the Cerebellum

Our cerebellar parcellation is represented on a cerebellar 
flatmap (Fig. 2; [40]). On a flatmap, the anterior parts of 
the superior cerebellar surface (lobule I) and inferior sur-
face (lobules IX and X) are stretched and flattened from 
the top to the bottom respectively of the flatmap, with the 
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most posterior parts of the cerebellum (lobule VII) in the 
middle. Thus, from top to bottom of the flatmap, the upper 
part reflects the anterior cerebellum (lobules I to V), and 
the middle to bottom part reflects the posterior cerebellum 
(lobules VI to X). An advantage of a flatmap is that the sur-
face structure and volume of a parcellation is immediately 
visible. We describe the present results from top to bottom 
on the flatmap.

Starting at the superior surface, we clearly observe the 
bilateral sensorimotor network in the anterior cerebellum 
(cluster 1) although it is quite fragmented, a large but also 
fragmented divided (ventral) attention network (cluster 3), 
and two tiny areas representing the limbic network at the 

right hemisphere (clusters 5 and 6). This is followed by a 
small bilateral directed (dorsal) attention network (cluster 
2) and a large bilateral executive network (composed of 
clusters 7–9), ending in the posterior cerebellum with a 
mentalizing network, which constitutes the larger part of 
the default mode network ([47]; cluster 10). Turning back 
along the inferior surface (i.e., further down the flatmap), 
we observe at the right hemisphere an independent lan-
guage network (cluster 4) bordering along two sides the 
mentalizing / default mode network. We further find the 
same networks at both hemispheres as on the superior sur-
face. This large-scale structural division confirms the pri-
mary and secondary representation of the major networks 

Fig. 1   Functional cluster 
analysis of NeuroSynth activa-
tions. The analysis is based on 
the combined input of ALE 
z-scores on the 22 selected top-
ics of the cerebellar and whole-
brain (including cerebellar) 
MNI coordinates. The vertical 
broken line demarcates the solu-
tion for 9 clusters in each data-
base, while the x-axis represents 
the distance between z-scores 
at which functional topics are 
clustered. By giving priority 
to cerebellar clusters (when 
equivalent whole-brain clusters 
were broken up), the analysis 
ended up with a final 10-cluster 
solution. To illustrate, the single 
“decision-prediction-events-
working-number” cerebellar 
cluster yielded two whole brain 
clusters, which were relatively 
close to each other, and hence 
the single cluster was kept. 
Likewise for the single “con-
flict-location-fear-inhibition” 
cerebellar cluster. In contrast, 
the “emotion-face” cerebellar 
cluster yielded two very distant 
clusters in the whole brain, 
which were therefore separated. 
Colors refer to the spatial rep-
resentation of the same clusters 
in Fig. 2



1001The Cerebellum (2024) 23:993–1012	

1 3

on the superior and inferior surface, respectively, of the 
cerebellum (cf. [1]).

To evaluate the spatial homogeneity of the 10 cluster 
parcellation as well as of the derived 7-network parcella-
tion (including a language network but excluding a visual 
network), we computed the DCBC [3], which reflects cor-
relations between voxel pairs using a range of equidistance 

voxels (i.e., bins of the same spatial distance) and so effec-
tively controls for spatial distance. The difference between 
the within- and between-parcellation correlations for each 
spatial bin is the DCBC index. For both the 10-cluster and 
7-network parcellations, the strongest DCBC value was 
0.10 at an equidistance of 40 mm (Fig. 3 left, Supplemen-
tary Table S2), demonstrating a spatial homogeneity of the 

Fig. 2   Parcellation of the cerebellum into 10 functional clusters. 
The identification of the “winning” clusters are based on normalized 
ALE z-scores and displayed on a cerebellar flatmap, smoothed with a 
5 isometric voxels box filter. The top and additional key terms from 
NeuroSynth that characterize each “winning” cluster are listed with 
larger and smaller font respectively. The suggested major networks 
to which single or multiple clusters belong are also indicated, result-
ing in 7 networks overall. In the remainder of the text, the 10-network 

structure refers to the original 10 cluster solution here, while the 
7-network structure refers to the 7 networks. Numbers for each cluster 
refer to the location on the flatmap. Colors refer to the same clusters 
as in Fig. 1. Note that the yellow color of the limbic clusters 5 and 6 
is identical (given the tiny surfaces) and that the brown color of the 
executive clusters ranges from light brown (clusters 7), brown (cluster 
9), to dark brown (cluster 8). Some colors in the legend are slightly 
darkened to improve readability. tom, theory of mind

Fig. 3   Spatial homogeneity of the parcellations. Correlations for 
“Within” (blue) and “Between” (orange) voxel pairs and resulting 
DCBC difference (dashed black) for [left] the present 7-network par-
cellation and [right] reanalysis of King et al. [3]. As can be seen also 

in Supplementary Table S2, the results of the two parcellations are 
very similar with equivalent DCBC results, suggesting a similar level 
of homogeneity
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parcellations, which was, however, lower than the DCBC 
of 0.16 reported in King et al. [3]. This statistical result 
probably reflects the more spatially fragmented clustering/
networks of the present parcellation, but is unrelated to the 
functional validity of the clusters.

A Comparison with Prior Task‑Free and Task‑Related 
Parcellations

A visual comparison between our parcellation with the task-
free parcellation by Buckner et al. [1] and Ji et al. [2], as well 
as the task-related parcellation of 10 networks by King et al. 
[3], is provided in Fig. 4. To facilitate this comparison, we 
used flatmaps and color-coded the same major functional 
networks along the Buckner et al. [1] 7-network structure. 
Unique networks identified by Ji et al. [2] and King et al. [3] 
are represented by additional color coding. Apart from the 
striking similarities of the present clustering solution with 

the network structures and locations of Buckner et al. [1] 
and Ji et al. [2], we can observe some important differences.

We begin with differences with Buckner et al. [1]: Our 
limbic network is only represented as a tiny cluster; our sen-
sorimotor network is rather fragmented; and our directed 
(dorsal) attention network is bilaterally represented on the 
superior surface showing extensive areas, but is hardly dis-
cernable on the inferior surface. Interestingly, our parcel-
lation reveals a clearly discernible language cluster on the 
right hemisphere that was not identified in the 7-network 
structure by Buckner et al. [1].

More similarities can be observed in the comparison with 
the parcellation by Ji et al. [2]. Almost like our 10-cluster 
structure, this 10-network parcellation fails to identify an 
independent limbic cluster. Another similarity is that their 
sensorimotor network is more fragmented than Buckner 
et al. [1]. Perhaps most importantly, Ji et al. [2] also revealed 
an independent language cluster mainly on the right hemi-
sphere. Also noteworthy is that this parcellation identifies a 

Fig. 4   A comparison of cerebellar parcellations. [Top row] The task-
based parcellation in the present study (top left), King et al. [3], and 
reanalysis of King et al. [3]; [bottom row] resting-state parcellations 
of Buckner et  al. [1] and Ji et  al. [2]; [bottom right] color coding 
legend applied to all parcellations for ease of comparison. The main 
color legend refers to the original color code by Buckner et  al. [1] 
and is used for similar networks in all atlases (based on the original 

authors’ main characterization). Additional color codes from other 
authors refer to additional networks from other studies (see legend). 
The present task-based solution is most similar to the resting-state 
structure of Ji et  al. [2] with respect to the networks included and 
their location (except for the visual and additional networks), and of 
Buckner et al. [1]
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larger network volume related to directed (dorsal) attention 
at the superior surface, much in line with our structure.

Similarities of the present analysis are also observed with 
the task-related 10-fold functional parcellation by King et al. 
[3], although there are many differences. We color-coded 
this parcellation in line with the top ontological term (i.e., 
with the highest feature weight) of each region (Fig. 4), in 
line with the winner-take-all approach of the other parcel-
lations. At the superior surface, our parcellation does not 
reflect the large bilateral contribution of sensorimotor func-
tions to hand presses and motor planning in King et al. [3]; 
see also [1]), and neither the representation of visual func-
tions involving saccades and visual processing in and close 
to the vermis. In King et al. [3], there is no clear representa-
tion of an executive, mentalizing / default mode, or limbic 
network, except for autobiographic recall, which might be 
interpreted as an executive (i.e., recall) or mentalizing (i.e., 
autobiographic) function. King et al. [3] reveal a large rep-
resentation of divided attention volumes at the left and right 
hemispheres, interrupted only by narrative / language pro-
cesses closer to the vermis. This large narrative / language 
cluster strongly overlaps with the two distinct mentalizing 
and language clusters in our parcellation.

We computed the similarity between all the above par-
cellations using the Rand index, as well as the adjusted 
Rand index, which reflects convergence above random 
level when its value is above zero. As can be seen in 
upper panel of Table 2 (and focusing on Rand indices with 
adjusted values > 0), the results confirm the high similar-
ity between the task-free parcellations by Buckner et al. [1] 
and Ji et al. [2] with Rand = 0.78, which is followed by a 
similarity of Rand = 0.75 of both task-free parcellations 

with the task-based parcellation by King et  al. [3]. A 
somewhat lower (but still substantially better than ran-
dom) similarity of Rand 0.66–0.67 is found between our 
7-network task-based parcellation and earlier parcellations 
(both task-free parcellations and [3]).

To analyze where the lower Rand indices from the 
present analysis may originate from, we also analyzed 
all individual networks separately (i.e., each of the 7 net-
works of [1], and the language network of [2]; see bot-
tom panel of Table 2). This analysis showed relatively 
higher similarity with the two task-free parcellations for 
higher-level associative networks involving executive con-
trol, default mode, and language, while the King et al. [3] 
analysis showed higher similarity for the sensorimotor net-
work (Supplementary Table S1). Overall, this resulted in 
somewhat better average convergence of the present work 
with the two task-free parcellations with mean Rand = 
0.74–0.75, which is equivalent to King et al. [3] with mean 
Rand = 0.73. Note that the Rand index evaluates similar-
ity between spatial locations and boundaries, but not the 
adequacy of ontological terms denoting the functionality 
of the parcellations.

Taken together, the comparison of earlier and our 
results clearly demonstrate important functional bounda-
ries in the cerebellum. However, they also make clear that 
there are a number of closely equivalent ways to subdivide 
the cerebellum, which are constrained by the methods used 
for data sampling and clustering. Our parcellation provides 
clear similarities with the task-free structures identified by 
Buckner et al. [1] and Ji et al. [2], while the topological 
key terms provide a functional task-related characteriza-
tion quite different from King et al. [3].

Table 2   (Adjusted) Rand index comparing the similarity in parcellations of task-free and task-based studies

This analysis is based on the 7 networks of Buckner et al. [1] and an additional language network of Ji et al. [2], and uses parcellations based on 
merged clusters in the last two studies (i.e., present analyses). All other clusters were collapsed in an “other” category. For individual network 
analyses, the networks not involved were also assigned to the “other” category

Rand index Adjusted Rand index

Buckner et al. [1] Ji et al. [2] King et al. [3] Buckner et al. [1] Ji et al. [2] King et al. [3]

All Networks
  Ji et al. [2] 0.78 0.27
  King et al. [3] 0.75 0.75 0.23 0.19
  Reanalysis of King et al. [3] 0.75 0.73 0.75 0.22 0.14 0.26
  Present 7-network parcellation 0.67 0.66 0.65 0.11 0.07 0.08
Means of all individual Networks
  Ji et al. [2] 0.80 0.25
  King et al. [3] 0.72 0.73 0.06 0.19
  Reanalysis of King et al. [3] 0.75 0.76 0.76 0.13 0.13 0.09
  Present 7-network parcellation 0.74 0.75 0.73 0.10 0.10 0.02
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Cross‑Validation of the 7‑Network and 10‑Cluster 
Parcellation

To assess the consistency of our 7-network and 10-cluster 
parcellation, we conducted a cross-validation analysis using 
split-half reliability analysis. Specifically, for each of the 22 
topics, we divided all studies randomly in two equivalent 
halves, and for each random draw, we computed a new ALE 
analysis for each of the topics. We then derived a novel par-
cellation based on the pre-determined functional clusters of 
the full analysis. We repeated this cross-validation process 
20 times. Cluster consistency was determined by the average 
Rand index across the repetitions. Note that this split-half 
analysis provides a lower bound on actual consistency since 
it is based on only half of the data.

Overall, split-half reliability of the cluster structure 
was good with a mean Rand = 0.66 and 0.64 (adjusted 
Rand = 0.04 and 0.03) for the 10-cluster and 7-network 
parcellation, respectively, across 20 replications. This 
value is equivalent to the mean Rand = 0.65 of the cross-
validation reported by King et al. [3]. When consider-
ing each network individually (with all other networks 
coding as belonging to an ‘other’ category), reliability 
increased with a mean Rand = 0.83 and 0.81, respec-
tively (adjusted Rand = 0.55 and 0.48). There were no 
substantial differences between networks (see Supple-
mentary Table S3). The consistency of the 7-network 
parcellation can be visually inspected in Fig. 5, where a 
whiter coloring indicates that voxels were assigned more 
often to a different network between the two random-
split halves. As can be seen, the parcellation was most 
consistent for larger networks, including the mentalizing, 
executive, and divided attention networks, and also for 
the smaller language network.

Validation Using a 10‑Cluster Connectivity 
Parcellation of the Whole Brain

To further validate our empirical approach on the parcel-
lation of the cerebellum, we conducted a parcellation of 
the whole brain using the same 10 functional clusters, 
and analyzed both cerebellar and cerebral coordinates to 
establish coactivation between these two brain parts. As 
can be seen in Fig. 6, our 10-cluster whole-brain par-
cellation shows strong similarity with Yeo et al. [4] and 
other major networks structures identified also in other 
resting-state research (e.g., [2]), including sensorimotor, 
directed (dorsal) attention, divided (ventral) attention, 
executive control, default mode, and limbic networks, 
except for the visual network (see also Supplementary 
Figure S3). According to Buckner et al. [1], the primary 
visual network is not represented in the cerebellum, and 
consequently shows little convergence in the cerebral par-
cellation (on the occipital lobe). Importantly, the present 
parcellation also includes the bilateral language network 
identified by Ji et al. [2], which is somewhat smaller on 
the right hemisphere in the present and Ji’s parcellation. 
There is compelling similarity between the language 
network revealed here in the cerebrum (Fig. 6) and the 
core language structure identified in the literature ([48]; 
Fig. 1). Although differing at the edges of the networks, 
overall, our surface organization of the whole brain is 
remarkably robust and similar with earlier task-free par-
cellations. This result provides additional empirical evi-
dence for our parcellation of the cerebellum. However, 
note that our initial cluster analysis rested on shared cer-
ebellar and cerebral coordinates, and therefore this con-
vergence cannot serve as an entirely independent valida-
tion of the present cerebellar parcellation.

Fig. 5   Visual illustration of split-halve reliability of the 7-network 
parcellation after 20 repetitions, with greater whitening reflecting less 
consistency among all split-halves. The illustration shows the original 
full network parcellation with whitening applied only when network 
displacement of voxels is beyond a threshold of 50 %, 40 %, and 30 

% displacements across the repetitions. To illustrate, displacements 
that occur in more than 50% of the repetitions are less frequent than 
displacements in more than 30% of the repetitions, and this is shown 
in less whitening and more of the original structure for the 50% than 
30% threshold
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Validation Using a New Cluster‑Analysis 
and Parcellation of King et al. [3]

In another attempt to validate our empirical work, we sought 
convergence with the data of the multidimensional task bat-
tery (MDTB), which formed the basis of the King et al. [3] 
parcellation. We conducted a novel cluster-analysis and 
parcellation of the cerebellum on the 61 task activations of 
the MDTB, which are publicly available, using the same 
procedures as for our parcellation to answer the question: 
Is higher convergence possible when similar procedures are 
used? The reanalysis arrived at a 15-cluster solution using 
the hierarchical method of Ward [41], which maintained the 
best coherence between the same tasks across sets A and B 
and between conditions of the same task set. Figure 7 shows 
the results of the winner-takes-all approach, where we com-
bined several neighboring clusters reflecting similar psycho-
logical processes under the same network, in the same way 
as we did for our parcellation. Each term in Fig. 7 denotes 
the major tasks involved in each cluster (with more details 
in Supplementary Figure S4). To evaluate the homogeneity 
of the 15 cluster parcellation, we calculated the DCBC. The 
strongest DCBC value was 0.10 at an equidistance of 40 
mm (Fig. 3 right, Supplementary Table S2), demonstrating a 
positive homogeneity, which is lower than the DCBC of 0.16 
for the clustering reported in King et al. [3]. We were not 
able to acquire the original clustering results of King et al. 

[3], so it is possible that these differences are also due to 
some implementational differences in computing the DCBC.

For convenience, Fig. 4 illustrates our reanalysis of King 
et al. [3] together with the other parcellations discussed ear-
lier. There is good convergence between our parcellation 
and the reanalysis, with major networks at approximately 
the same locations, and much more so than the original 
analysis by King et al. [3]. In particular, in the reanalysis, 
we see again a language network on the left hemisphere 
that is even larger than in our parcellation, a divided atten-
tion network that is much smaller, a limbic network that is 
very small and mainly on the right hemisphere as in our 
parcellation, and an executive control and mentalizing net-
work of a similar size. The mentalizing network consists 
of the left hemisphere largely of movies involving natural 
scenes and biological/animal activities. In this re-analysis, 
we kept the action observation network separate from the 
more overarching sensorimotor network, because this net-
work is often neighboring the mentalizing network. This is 
likely the result of actively judging biological movement on 
its substantive (e.g., goal-related) or emotional (e.g., happy 
or sad) meaning, because recall was often required after-
wards, even though the instruction was to simply watch the 
movement passively. Judging movement for its substantive 
or emotional meaning may often activate mentalizing areas 
in the posterior cerebellum (see meta-analysis by [18]). With 
respect to the directed attention network, it is possible that 

Fig. 6   [Left] Functional con-
nectivity between the cerebel-
lum and the cerebral cortex. 
The “winning” clusters with 
the highest ALE z-values are 
displayed on the cerebral cortex. 
The clusters of the executive 
network are combined (brown 
color; as in Fig. 2). The net-
works are shown on a medial 
section and left and right hemi-
spheres of the Colin brain using 
Mango, smoothed with a 3 iso-
metric voxel box filter. [Right] 
The 7-network parcellation 
of the cerebral cortex by Yeo 
et al. [4]. Visual comparison 
shows that the present solution 
is close the 7-network solution 
by Yeo et al. [4], except that 
the present parcellation reveals 
a separate language network 
(since this was also identified 
in our cerebellar parcellation), 
and lacks a visual network (as it 
did not show up in our cerebel-
lar parcellation) so that the 
occipital cortex is ‘erroneously’ 
substituted by other functions
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it rather reflects the saccades or visual network described in 
King et al. [3] and Ji et al. [2], respectively, given its location 
and underlying task (i.e., visual search).

A Rand index of 0.73–0.75 showed a high level of conver-
gence of the reanalysis of King et al. [3] with prior task-free 
parcellations ([1, 2]; Table 2), with an equally high similar-
ity for the individual networks (mean Rand = 0.76–0.78), 
which was roughly the same as the present 7-network parcel-
lation (Supplementary Table S1). Before we end, it is impor-
tant to note that the parcellation obtained in this reanalysis 
is constrained by seeking convergence with preexisting 
cerebellar parcellations and a post hoc subjective interpre-
tation of the underlying task-related processes, unlike our 
parcellation, which was based on established and empirically 
derived descriptors [32]. This reanalysis nonetheless points 
to the possibility of convergent validity between parcella-
tions based on distinct task sets.

General Discussion

The aim of this analysis was to derive a comprehensive 
characterization of the functional structure of the human 
cerebellum. This was motivated by limitations of earlier 
functional parcellations of the cerebellum. Parcellations 
based on resting-state brain activation (e.g., [1, 2]) were 
limited because of the lack of evidence that these task-free 
results are indicative of the functionality of the major net-
works uncovered. A novel parcellation based on task-related 
brain activation [3] was limited in that the study was carried 

out on a limited number of participants and tasks, so that 
the results might have been biased and specific to tasks 
and sample. For instance, the functional topology left out 
many important high-level psychological functions such as 
social mentalizing (or theory of mind), while it did put an 
undue emphasis on other lower-level social processes such 
as action observation (or mirroring: [24, 49]). Moreover, the 
ontological descriptors of the underlying psychological pro-
cesses were not very compelling because they were obtained 
post hoc, and differed from functional processes revealed 
by recent meta-analyses, perhaps most markedly for social 
cognition [18, 19, 25, 26]. In sum, earlier resting-state and 
task-based parcellations may have introduced a bias, leading 
to an underrepresentation of important functions such as lan-
guage and social cognition, apart from motor, cognitive, and 
affective functions studied earlier in the human cerebellum.

Parcellation Based on Mapping of Task‑Related 
Conceptual Topical Terms

As an alternative strategy, we employed a very large exist-
ing database of task-related neuroimaging data, NeuroSynth 
[31], to create a parcellation that could comprehensively 
describe the functional organization of the cerebellum across 
a plethora of tasks and participants, so that potential biases 
in tasks and populations were minimized. Importantly, the 
NeuroSynth dataset goes together with functional descrip-
tors that have been empirically validated and applied previ-
ously on this dataset [32]. NeuroSynth characterizes psycho-
logical functionality by topical key terms extracted from the 

Fig. 7   Functional clusters of the multidimensional task battery 
(MDTB) of King et  al. [3]. The original 15 clusters were derived 
from the normalized task activation and are categorized into 10 major 
parcellations to display maximal similarity with the other cerebellar 
parcellations and network structures. The parcellation is displayed on 
a cerebellar flatmap, smoothed with a 5 isometric voxel box filter. The 

original cluster analysis of all tasks is shown in Supplementary Fig-
ure S4. Numbers refer to the location on the flatmap. For similar net-
works as in Fig. 2, identical colors (and numbers) are used; different 
colors refer to additional clusters (9: movies) or networks (6: action 
observation)
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articles in the database that reflect latent underlying mental 
functions associated with patterns of brain activity. These 
key terms therefore provide a strong empirical and compel-
ling description of the psychological functions underlying 
brain activity. Based on these key descriptors, we selected 
22 topics reflecting only functional processes, and elimi-
nated topics related to specific anatomic brain areas or to 
psychological pathologies. For each topic, we selected from 
the 10 highest loading key terms in NeuroSynth, only those 
that were unique for a given topic, and as top descriptive 
term, we selected the term with the highest centrality (most 
often the term with the highest topic loading). This proce-
dure protected as much as possible against contamination 
of other topical functions due to overlap in studies related 
to similar key terms.

The results generally show that our novel cerebellar par-
cellation does not outperform earlier task-related parcella-
tions at a spatial level. Specifically, although cluster conver-
gence with earlier task-free parcellations [1, 2] is roughly 
equivalent (cf. Rand index), the present parcellation is some-
what more fragmented and less spatially homogenous (cf. 
DCBC index; [3]). Note that this latter measure should be 
interpreted with some caution, because the spatial shape of 
boundaries between parcellations (irregular versus smooth 
curvatures; folding of the cortex) is not well controlled for. 
The novel contribution of our meta-analytic approach is that 
it is based on the functional terms of NeuroSynth and so pro-
vides a very valuable contribution for a functional labelling 
of psychological processes underlying the partitions of the 
cerebellum, thereby providing a much more thorough analy-
sis of the task characteristics that activate cerebellar areas.

One could argue that our top-down topical approach using 
NeuroSynth is prone to biases arising from preconceived 
notions present in the published corpus. Topical key terms 
may reflect how the majority of researchers conceive of 
psychological key functions, but this is not necessarily an 
accurate reflection of fundamental neurological processes. 
No objective criterion exists to validate these psychological 
interpretations. Nevertheless, our labeling is less dependent 
on the preconceptions of individual authors from previous 
task-free and task-based parcellations, in contrast to the large 
(if perhaps biased) consensus accrued from most authors in 
the literature.

However, the choice of NeuroSynth as our database 
comes at a cost because, as intimated in the introduction, 
it has several potential limitations. We reiterate these here 
briefly. First, the database might be prone to a publication 
bias, collects a large variety of analytic parameters and 
choices, and provides only peak coordinates devoid of indi-
vidual variability. Against this criticism, we argued, stands 
the sheer volume—over 40 000 participants involving the 
cerebellum—and variety of research designs, tasks, and top-
ics, which allow for a generalization that may largely protect 

against these limitations, at least to the same extent as con-
ventional meta-analyses in the literature. Second, the inferior 
cerebellum is incompletely covered or inappropriately ana-
lyzed in many studies [33]. Against this criticism stands the 
popular winner-takes-all approach in parcellation research, 
which compares activation at each individual voxel, and thus 
treats competitive parcellations and interpretation equally 
(although the data volume might be restricted). Finally, Neu-
roSynth is an automated database, often including irrelevant 
volume or connectivity analyses, inadequate coordinate con-
versions, or non-healthy participants. To avoid this limita-
tion, all studies with cerebellar coordinates in the dataset 
were carefully screened one by one, so that only valid func-
tional activations in MNI coordinates of healthy participants 
were included in the analysis. Nonetheless, it is important to 
take these limitations into account, to understand some of 
the shortcomings of our parcellation results.

Our Task‑Based Parcellation Converges with Earlier 
Resting‑State Parcellations

Our analysis of the NeuroSynth database provided task-
related functional clusters, which were very consistent with 
resting-state partitions published earlier, in particular Ji et al. 
[2] and Buckner [1]. We observed independent bilateral clus-
ters representing sensorimotor, divided (ventral) attention, 
directed (dorsal) attention, executive control, and mentaliz-
ing (default mode) networks and a unilateral cluster reflect-
ing a language network. Despite this high converge with 
prior well-known parcellations in the literature, this does 
not mean that our proposed network nomenclature corre-
sponds exactly to prior proposed networks, or the functions 
associated with the NeuroSynth key terms. Therefore, some 
networks deserve additional clarifications.

The divided (ventral) attention network is closely related 
to the salience network [50] and cingulo-opercular network 
[51]. Seeley et al. [50] found empirical evidence for dis-
tinguishing the salience network encompassing the dorsal 
anterior cingulate (at the medial prefrontal cortex) from the 
executive control network comprising of the dorsolateral 
frontal and parietal cortices. They demonstrated that the 
salience network was functionally related to anxiety, and 
together with the inclusion of the dorsal anterior cingulate 
and its association with conflict monitoring [52, 53], this 
supports the present characterization of the divided atten-
tion network by the key terms “fear,” “inhibition,” and “con-
flict”. With respect to fear, an analysis of distinct emotional 
responses in relation to brain networks [54] seems to suggest 
that apart from the mentalizing (and visual) networks in the 
cerebrum, fear triggers most strongly the ventral attention 
network followed by the dorsal attention network. To our 
knowledge, no such in-depth analysis has been published on 
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the relation of distinct emotions, such as fear, and networks 
in the cerebellum.

The executive network is covered by topical key terms 
that seem to reflect one of its basic components, namely 
updating. This executive process refers to updating and mon-
itoring of working memory representations [55, 56] and has 
been linked to frontoparietal and medial temporal cortices 
[57]. It is reflected by our key terms “working memory” 
and “encoding,” and the dynamically manipulation of its 
predominantly cognitive (i.e., non-social) content in typical 
experimental tasks, reflected by our key terms “objects” and 
“number” as well as “prediction” and “events” (i.e., tempo-
ral sequencing). There is no evidence for a distinct represen-
tation of other executive components such as inhibition or 
shifting (i.e., switching; [55, 56]), although these component 
processes are likely incorporated under some tasks denoted 
by our key terms.

The mentalizing network is often denoted as default mode 
network because it is prominently active in task-free (hence 
the term default mode) circumstances, but it is becoming 
increasingly clear, also from this parcellation, that this net-
work predominantly reflects mentalizing during social cog-
nition, that is, understanding the mental state of self and 
other persons [58], also in the cerebellum [17,  26].

The language network is unilaterally located on the right 
hemisphere, which corresponds with its contralateral left-
hemispheric dominant position in the neocortex. The role of 
the cerebellum in grammatical and verbal processes is well 
established [59]. Although the language network is spatially 
close to the mentalizing network in the present analysis, the 
identification of an independent language function is in line 
with recent findings suggesting that although there might 
be some overlap between language and mentalizing at the 
group level, these networks can be distinguished [2, 28, 60]. 
The spatial proximity is most likely because language is 
functionally related to mentalizing for at least two reasons. 
First, language and mentalizing involve relatively stimulus-
independent processes without a tangible presence of objects 
or events, as language often refers to categories that require 
abstraction (e.g., a “bird” can be a sparrow, condor, pigeon, 
etc.; [61]) or refers to (past or future) states that do not exist 
at present (e.g., “tomorrow…”) just like mentalizing refers 
to non-perceptual mental states. Second, because language 
and especially narratives are a vehicle, whereby information 
is exchanged about human agents and their personal and 
social characteristics.

An independent cluster reflecting the limbic network was 
only minimally represented, much like other parcellations 
where it was not represented at all [2, 3]. This minimal rep-
resentation is perhaps due to the fact that many emotional 
tasks focus on facial expressions, and perhaps therefore 
rather fell under the sensorimotor network in our analysis, 
or required an interpretation of sensorial states or emotional 

words [62], and so activated the mentalizing network. Recent 
meta-analyses confirm that implicit and explicit emotion 
tasks on self and others activate the cerebellar mentalizing 
network [18] as well as other cerebellar networks involv-
ing divided attention, sensorimotor activation and executive 
control, showing little evidence for a unique contribution 
of the limbic network [54, 63]. Another potential explana-
tion is the normalization applied in our (and other) parcel-
lations, which may have relatively disfavored emotion tasks 
(see Supplementary Figure S2).

Unlike the task-based parcellation by King et al. [3], 
we found no evidence for an independent cluster of action 
observation, which reflects a lower-level process of social 
cognition based on perception of biological movement (see 
meta-analyses by [24, 49]). Nor did we find evidence for an 
independent cluster of autobiographic recall, which is more 
typically conceived as a part of social mentalizing (see meta-
analyses by [17, 18, 64]). It appears that these task-related 
clusters are not reliable or independent at the present level 
of analysis, and might perhaps be revealed as lower-level 
distinctions in a more fine-grained parcellation.

Our Task‑Based Parcellation Is Consistent

The cross-validation results showed a good split-half relia-
bility of our parcellation. However, many voxels shifted their 
assignment after drawing random splits from the database. 
This is because assigning voxels to clusters depends on the 
winner-take-all approach, which may easily shift because of 
small differences in activation levels at the boundaries. This 
finding has important repercussion on the consistency of 
task-based cerebellar parcellations. It suggests that changes 
in data input from existent databases (e.g., NeuroSynth) or 
novel research (e.g., MDTB; [3]) are likely to change task-
based parcellations significantly. One likely reason is that 
tasks lead to sharply delimited areas of activation, whereas 
resting state shows a much smoother pattern of varying 
activation across the whole brain. Another reason might be 
the limited quality of large databases like NeuroSynth, or 
the limited breadth of relevant tasks in novel research [3]. 
Changes in data input from tasks may therefore have larger 
effects than for resting state, rendering the latter parcella-
tions more robust.

Our Task‑Based Parcellation Converges 
with a Reanalysis of an Earlier Functional Task 
Battery

Our analysis of the NeuroSynth database showed some con-
vergence with another functional dataset originally used by 
King et al. [3], but now reanalyzed using procedures very 
similar to ours. Although the original and present (re)analy-
ses are limited by a post hoc identification of clusters and 
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networks, the comparison between our parcellation and the 
reanalysis of King et al. [3] demonstrates the possibility of 
convergent validity between parcellations based on distinct 
task and data sets. Although this convergence validates the 
same networks at roughly similar locations, convergence 
was limited at the fine-grained voxel level most probably 
for reasons of consistency with respect to task-based activa-
tion input explained in the previous paragraph.

Asymmetries and Inhomogeneities in Our 
Task‑Based Parcellation

A notable aspect of our parcellation and that of King et al. 
[3] is that these task-based parcellations were less sym-
metrical across the left and right cerebellar hemispheres 
than resting-state parcellations [1, 2]. In our parcellation, 
this hemispheric asymmetry was most evident with respect 
to the spatial volumes and location of clusters represent-
ing the sensorimotor and divided attention networks, which 
were sometimes very homogenous on one hemisphere and 
quite fragmented on the other. Other structures were more 
robust, homogenous, and extensive, such as the executive 
control and mentalizing networks. As mentioned before, our 
limbic cluster was minimally represented, in accord with 
King et al. [3].

The spatially disparate and asymmetric functional 
mappings of task-based versus resting-state parcellations 
suggests that finer details of the functional organization 
of the cerebellum are perhaps idiosyncratic for each indi-
vidual and task. There are several reasons to support indi-
vidual variation as explanation for the observed functional 
asymmetry. First, there are significant within-individual 
variations in the spatial location and extent of cerebel-
lar mappings [34], which are claimed to be more vari-
able than the cerebral cortex [65], as well as large gender 
differences in cerebellar volumes and connectivity [66, 
67]. Second, neuroimaging research typically excludes 
individuals with left handedness, which may also have 
introduced a task-based asymmetry. Third, the Neuro-
Synth dataset includes many individuals participating in 
distinct tasks in different experiments, which increases 
variation even more. However, the fact that hemispheric 
asymmetry is revealed in both the present analysis (using 
different individuals) and King et al. [3] suggests that 
perhaps tasks rather than individuals contributed to this 
asymmetry. This coincides with the suggestion that tasks 
may range from engaging limited to multiple psycho-
logical subcomponents, recruiting brain areas ranging 
from functionally highly specialized to highly flexible 
[68]. The (non)participation of functionally specialized 
tasks may therefore have a substantial focal impact on a 
parcellation. In addition, procedural differences in the 
analyses (e.g., normalization and fMRI analysis versus 

ALE meta-analysis) may have further contributed to more 
differences and asymmetries in network localization and 
boundaries between the present task-based parcellation 
and the one from King et al. [3].

While all prior and the current parcellations provide 
evidence of critical functional distinctions underlying the 
organization of the human cerebellum, a general limita-
tion is that these analyses have hereto not provided evi-
dence on the process that distinguishes cerebellar from 
neocortical processes. Cross-validation with the neocor-
tex in our analysis and in earlier work [1, 2] provides 
compelling evidence of the close connectivity between 
the cerebellum and the cerebral cortex. These tight links 
support the hypothesis that incoming cerebral signals 
undergo a transformational process in the cerebellum, 
which contributes to efficient and adaptive cortical pro-
cessing and behavior [12, 69].

Conclusion

This article describes a comprehensive functional parcella-
tion for the human cerebellum, based on a cleaned-up large 
functional database, NeuroSynth, which is unique in its 
functional diversity of tasks and amount of data and partic-
ipants, and the reliable association of tasks with functional 
key descriptors. The primary purpose was to describe the 
functions of the human cerebellum using descriptors of 
underlying psychological processes in a more reliable and 
compelling manner than earlier task-related parcellations. 
Our analysis revealed a partition that exhibited replicabil-
ity with earlier task-free and task-related parcellations as 
well as between neocortical and cerebellar structures. We 
believe that the present parcellation presents a reasonably 
accurate estimate of cerebellar task-based functional net-
work organization in humans so far, based on a large cor-
pus of semantic terms characterizing researchers’ current 
consensus on psychological processes supported by the 
brain. Our functional organization confirms the major net-
work at locations that are roughly similar to earlier resting-
state parcellations [1, 3], including sensorimotor, directed 
(dorsal) attention, divided (ventral) attention, and limbic 
networks (but not the visual network) and shows strong 
convergence for higher-level associative networks involv-
ing executive control, mentalizing (default mode), and 
language networks. However, like prior task-related parti-
tions [3], the present results are less symmetrical across the 
two hemispheres. Given its extensive and solid ontologi-
cal basis, for future research, the present parcellation and 
associated key terms can provide a more useful guide in 
designing studies to test specific functional hypotheses and 
provide a reference for interpreting the results.
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