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Abstract

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of the pancreatic β-cells. Genome-wide association (GWAS) and
fine mapping studies have been conducted mainly in European ancestry (EUR) populations. We performed a multi-ancestry GWAS to
identify SNPs and HLA alleles associated with T1D risk and age at onset. EUR families (N = 3223), and unrelated individuals of African
(AFR, N = 891) and admixed (Hispanic/Latino) ancestry (AMR, N = 308) were genotyped using the Illumina HumanCoreExome BeadArray,
with imputation to the TOPMed reference panel. The Multi-Ethnic HLA reference panel was utilized to impute HLA alleles and amino
acid residues. Logistic mixed models (T1D risk) and frailty models (age at onset) were used for analysis. In GWAS meta-analysis, seven
loci were associated with T1D risk at genome-wide significance: PTPN22, HLA-DQA1, IL2RA, RNLS, INS, IKZF4-RPS26-ERBB3, and SH2B3,
with four associated with T1D age at onset (PTPN22, HLA-DQB1, INS, and ERBB3). AFR and AMR meta-analysis revealed NRP1 as associated
with T1D risk and age at onset, although NRP1 variants were not associated in EUR ancestry. In contrast, the PTPN22 variant was
significantly associated with risk only in EUR ancestry. HLA alleles and haplotypes most significantly associated with T1D risk in AFR
and AMR ancestry differed from that seen in EUR ancestry; in addition, the HLA-DRB1∗08:02-DQA1∗04:01-DQB1∗04:02 haplotype was
‘protective’ in AMR while HLA-DRB1∗08:01-DQA1∗04:01-DQB1∗04:02 haplotype was ‘risk’ in EUR ancestry, differing only at HLA-DRB1∗08.
These results suggest that much larger sample sizes in non-EUR populations are required to capture novel loci associated with T1D risk.
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Introduction
Type 1 diabetes (T1D) is a common autoimmune disease in which
the destruction of pancreatic β-cells results in the eventual inabil-
ity of the body to produce insulin [1–4]. Without insulin, there
is accumulation of glucose in the bloodstream and an inability
for glucose to enter cells for production of energy. Progression of
glucose accumulation leads to blood vessel and organ damage
from dehydration, conversion of tissue to ketones for alternative
energy sources, and life-threatening diabetic ketoacidosis [5–8].
Thus, external sources of insulin are necessary for survival.

There are many risk factors associated with the development
of T1D, including both genetic and generally unknown environ-
mental factors [9–11]. As a disease of autoimmunity, T1D has
been characterized by three specific stages [12]: Stage 1 represents
the transition from normal glucose homeostasis in an individ-
ual with variable genetic and other risk factors to production
of multiple islet autoantibodies but with glucose levels in the
normal range; Stage 2 includes individuals who have multiple islet
autoantibodies but with glucose levels exceeding normal range
(e.g. fasting plasma glucose ≥ 100 mg/dl or ≥ 5.6 mmol/l); with

Stage 3 representing clinically diagnosed T1D. Each of these stages
of T1D diabetes may have overlapping, as well as distinct, genetic,
and non-genetic risk factors. T1D has historically been thought
to be a disease of childhood (known previously as juvenile-onset
diabetes mellitus) and restricted to people of European ancestry;
however, T1D occurs in individuals of all ages and ancestry groups
[13–17].

The genetic basis of T1D is well-established. Twin and family
studies have estimated the genetic contribution to T1D in child-
hood as roughly 50%. Early studies focused on the HLA region [18–
20] and identified the contribution of the genes, alleles and hap-
lotypes of the human Major Histocompatibility Complex (MHC)
that have large effects on risk, specifically the HLA class I genes
(-A, -B, and -C) and the HLA class II genes (-DRB1, -DQA1, -DQB1,
-DPA1, -DPB1) [19–22]. Subsequent studies utilized candidate gene
approaches (related to the immune response) with few (typically
functional) genetic variants in small numbers of cases, controls,
and families. The insulin gene (INS) variable number of tandem
repeat (VNTR) polymorphism was identified through a candidate
gene study focused on INS due to its direct impact on insulin
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metabolism and implication in risk of T1D [23]. Several additional
loci were discovered containing variants with large effect that
were in coding or promoter regions in candidate genes, such as
PTPN22 [24] and CTLA4 [25].

With the development of rapid genotyping technology and
ability to assemble large numbers of cases with T1D and controls,
genome-wide association studies (GWAS) became a common tool
to detect genetic variants associated with disease and risk fac-
tors [26]. Initial GWAS studies identified loci that had statistical
power for the detection of common variants (minor allele fre-
quency (MAF) > 0.05) with large effect (OR > 1.5) [26], there was
recognition that much of the genetic impact on common human
disease would have much smaller effects, requiring significantly
increased sample size. The Type 1 Diabetes Genetics Consor-
tium (T1DGC) was formed to conduct genome-wide analyses in
affected sib-pair families (linkage) and case-control collections
(association) to individually increase sample size and to conduct
meta-analyses in T1D [27]. Following GWAS, additional genotyp-
ing for fine mapping required development of a custom array
(ImmunoChip) to better interrogate regions of interest across
the genome [28, 29]. Currently, GWAS meta-analyses and fine
mapping studies [29, 30] have identified over 100 loci associated
with risk of T1D.

A major limitation in most human genetic studies has been a
focus on populations of European (EUR) ancestry [31–33]. Despite
increasing recognition of the benefit of including diversity in
discovery, scientific equity, and reducing health disparities from
applications of genetic medicine, there has yet to be a GWAS
in T1D that includes large sample sizes in non-EUR ancestry
populations. This absence of genetic diversity represents a major
gap, particularly with the increasing global incidence and preva-
lence of T1D [34–36]. In this report, we conduct a multi-ancestry
GWAS meta-analysis in cases, controls, and families with T1D for
discovery of genetic variants, detection of novel ancestry-specific
HLA variants and amino acid residues that are associated with
risk of T1D as well as the age at onset of disease.

Results
A total of 13 412 individuals were included in this study, with
6648 having T1D and 52% female. After genotype quality control,
430 930 variants were included for imputation. Each individual’s
genetic ancestry was inferred by using multi-dimensional scaling
(MDS), where T1DGC samples were projected to 1000 Genome
phase-3 reference panel (see Methods/Population stratification
for details). Each participant was assigned to one of three genetic
ancestry groups—African (AFR), Admixed (AMR) and European
(EUR). Genotypes were imputed using the TOPMed multi-ancestry
reference panel. After additional SNP quality control, 13 777 800
(AFR), 8 952 895 (AMR), and 8 500 361 (EUR pseudo case-control)
variants (MAF > 0.01) remained for association analyses. Associ-
ation analyses were conducted separately on individual ancestry
groups (409 AFR cases, 482 AFR controls; 153 AMR cases, 155
AMR controls; and 3428 pseudo-cases and 3428 pseudo-controls
generated from affected sibpair families). Across ancestry groups,
the average age at onset of T1D ranges from 8.3–11.0 years, with
more females than males (67% in AFR, 58% in AMR and 51% in
EUR) (Supplementary Table 1, Supplementary Fig. 1).

Genome-wide association analysis of T1D across
diverse ancestry
Logistic mixed models were fit for each ancestry group. In meta-
analysis of AFR, AMR and pseudo case-control datasets, there
was no evidence of systematic bias (λGC = 1.01) after excluding

SNPs in the MHC region. Seven known T1D-associated loci were
identified with genome-wide significance (P < 5.0 × 10−8): 1p13.2
(PTPN22), 6p21.32 (HLA-DQA1), 10p15.1 (IL2RA), 10q23.31 (RNLS),
11p15.5 (INS), 12q13.2 (IKZF4-RPS26-ERBB3), and 12q24.12 (SH2B3)
(Table 1; Supplementary Fig. 2A and B, Supplementary Fig. 3A–F).
The INS SNP rs689 exhibited the strongest association among non-
HLA region SNPs (OR = 1.81, P = 2.34 × 10−45). The non-HLA region
lead variant, rs6679677 in the PTPN22 locus, is in high linkage
disequilibrium (LD) (r2 ∼ 0.96) with the known rs2476601 (R620W)
SNP, residing in the coding sequence of PTPN22 [24, 37, 38]. The
risk allele frequency of rs2476601 (in perfect LD with rs6679677 in
EUR populations) differs across ancestry groups. The EUR ancestry
population only exhibited robust evidence of association with
T1D; however, the allele had comparable effect sizes across ances-
tries, suggesting increased sample sizes in non-EUR populations
are required to achieve statistical significance. The 12q13.2 region
is complex, with multiple potential candidate genes associated
with T1D including IKZF4, RPS26, and ERBB3. Previously, a EUR
ancestry GWAS identified ERBB3 as a putative candidate gene [27],
while fine-mapping studies supported the IKZF4-RPS26 region [28,
29]. In our diverse ancestry meta-analysis, rs7302200 was identi-
fied as the lead variant 12q13.2 (OR = 1.31, P = 7.74 × 10−13), resid-
ing between RPS26 and ERBB3. Another T1D-associated region
on chromosome 12 is the SH2B3 locus, with rs597808 being the
most significant variant (OR = 1.27, P = 4.82 × 10−11) and in high
LD (r2 > 0.96) with previously identified variants in this region
(rs653178 [28] and rs7310615 [29]).

Four regions reached suggestive levels of genome-wide
significance (P < 5.0 × 10−7): 2q33.2 (CTLA4), 8p23.1 (GATA4),
10p11.22 (NRP1) and 22q12.2 (HORMAD2). Evidence of association
for the NRP1 locus was strongest in the AFR and AMR populations,
reaching genome-wide significance (rs722988, ORAFR_AMR = 1.61,
PAFR_AMR = 1.10 × 10−8) (Supplementary Table 2; Supplemen-
tary Fig. 4A) In contrast, there was little evidence of association
in the EUR population (OREUR = 1.11, PEUR = 0.005; Pdiff = 0.04),
suggesting potential heterogeneity (Table 1). Previously, a large
fine-mapping multi-ancestry meta-analysis identified the NRP1
locus (rs722988, OR = 1.11, P = 3.21 × 10−15) as significantly
associated with T1D risk [29]. Results by ancestry can be found in
Supplementary Table 2 and Supplementary Fig. 5.

Genome-wide association analysis of T1D age at
onset across diverse ancestry
AFR (N = 891), and AMR (N = 308) individuals self-reported age
at onset of T1D in cases and age at enrollment for controls.
In families that generated pseudo case-controls, the family
members (N = 6840) self-reported their age at onset of T1D or
age at enrollment. Censored time-to-event models were used
for analysis of each ancestry group. There was no evidence of
systematic bias (λGC = 1.01) after excluding SNPs in the MHC
region. Meta-analysis of the three ancestry groups for T1D
age at onset revealed four regions that attained genome-wide
significance, all established T1D risk loci: 1p13.2 (PTPN22),
6p21.32 (HLA-DQB1), 11p15.5 (INS), and 12q13.2 (ERBB3) (Table 2;
Supplementary Fig. 2C and D, Supplementary Fig. 3G–I). Among
the non-HLA region SNPs, rs689 in the INS locus had the strongest
association with age at onset (HR = 1.45, P = 2.81 × 10−28), like its
association with T1D risk (OR = 1.81, P = 2.34 × 10−45). Although
the association with T1D age at onset was weaker, the trend
was consistent with disease risk. Meta-analysis revealed that
rs11171747, near ERBB3 in the 12q13.2 region, was the most
significantly associated SNP with T1D age at onset (HR = 1.17,
P = 1.20 × 10−8). This finding suggests that different (statistically
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Table 1. Lead variants associated with T1D risk (SAIGE).

Heterogeneity

Chr BP rsID A1 A2 AF_A1 OR BETA SE P Direction χ2 P-value Gene

1 113761186 rs6679677 A C 0.12 1.66 0.51 0.05 1.02×10−22 +++ 0.02 0.988 PTPN22
2 203859027 rs1427679 A G 0.54 0.84 −0.17 0.03 3.14×10−7 − 4.18 0.124 CTLA4
6 32619017 rs9271365 T G 0.39 0.28 −1.29 0.03 8.80×10−369 − 1.76 0.414 HLA-DQA1
8 11734407 rs35726503 A T 0.45 0.84 −0.18 0.03 4.00×10−7 − 0.24 0.885 GATA4
10 6052734 rs61839660 T C 0.06 0.65 −0.43 0.08 1.79×10−8 ?− 3.02 0.082 IL2RA
10 33140315 rs11009245 T C 0.56 0.84 −0.17 0.03 5.00×10−7 − 13.11 0.001 NRP1
10 88257039 rs737391 A G 0.18 0.78 −0.25 0.04 1.91×10−8 − 2.06 0.358 RNLS
11 2160994 rs689 A T 0.29 0.55 −0.59 0.04 2.34×10−45 − 6.40 0.041 INS
12 56055651 rs7302200 A G 0.32 1.31 0.27 0.04 7.74×10−13 +++ 0.33 0.848 IKZF4-RPS26-ERBB3
12 111535554 rs597808 A G 0.46 1.27 0.24 0.04 4.82×10−11 +++ 1.34 0.512 SH2B3
22 30037182 rs35829240 G GT 0.49 0.84 −0.17 0.03 4.63×10−7 − 0.59 0.745 HORMAD2

The number of cases and controls used in the analyses and the ancestry-specific results are provided in Supplementary Tables 1 and 2. Genome Build: GRCh38.
A1—effect allele. A2—alternative allele. AF_A1—allele frequency of the effect allele. OR—odds ratio. BETA—effect size. SE—standard Error of BETA. P—P-value
for meta-analysis of 3 ancestries. Direction—indication of risk (+), protection (−) or missing SNP (?) for AFR, AMR and EUR. χ2—heterogeneity statistic from
Cochran’s test. P-value—heterogeneity P-value. Gene—the nearest or candidate gene.

Table 2. Lead variants associated with T1D age at onset (GATE).

Heterogeneity

Chr BP rsID A1 A2 AF_A1 HR BETA SE P Direction χ2 P-value Gene

1 113761186 rs6679677 A C 0.12 1.31 0.27 0.04 4.34×10−11 +++ 1.06 0.588 PTPN22
6 32658525 rs9273364 T G 0.50 0.39 −0.94 0.03 2.12×10−301 − 32.46 8.92×10−8 HLA-DQB1
10 88287593 rs2018705 T G 0.77 1.18 0.16 0.03 1.11×10−7 +++ 0.27 0.873 RNLS
11 2160994 rs689 A T 0.30 0.69 −0.37 0.03 2.81×10−28 − 2.54 0.281 INS
12 56124624 rs11171747 T G 0.64 1.17 0.16 0.03 1.20×10−8 +++ 0.57 0.753 ERBB3
12 111270654 rs1265564 A C 0.58 0.86 −0.15 0.03 1.38×10−7 − 1.46 0.482 SH2B3
18 12857336 rs534911 A G 0.74 0.85 −0.16 0.03 2.95×10−7 − 0.17 0.917 PTPN2

The number of cases used in the analyses of age at onset is provided in Supplementary Table 1. Genome Build: GRCh38. A1—effect allele. A2—alternative allele.
AF_A1—allele frequency of the effect allele. HR—hazard ratio. BETA—effect size. SE—standard Error of BETA. P—P-value for meta-analysis of 3 ancestries.
Direction—indication of risk (+), protection (−) or missing SNP (?) for AFR, AMR and EUR. χ2—heterogeneity statistic from Cochran’s test.
P-value—heterogeneity P-value. Gene—the nearest or candidate gene.

independent) SNPs in the IKZF4-RPS26-ERBB3 locus may be
associated with T1D risk and age at onset.

Two regions associated with T1D risk also reached suggestive
evidence of association with T1D age at onset: 10q23.31 (RNLS)
and 12q24.12 (SH2B3). The SNP in RNLS (rs2018705, HR = 1.18,
P = 1.11 × 10−7) had similar direction of effect for T1D risk. The
SNP with T1D in SH2B3 (rs1265564, HR = 1.16, P = 1.38 × 10−7) is
in moderate LD (r2 ∼ 0.60) with rs597808, the variant identified
as associated with T1D risk. The 18p11.21 (PTPN2) locus reached
suggestive significance for association with T1D age at onset
but not T1D risk in these data, although the PTPN2 locus has
been established previously as a T1D risk locus [39, 40]. In the
NRP1 locus, the same variant associated with T1D risk and with
T1D age at onset only reached genome-wide significance in
the meta-analysis of AFR and AMR ancestry subjects (rs722988,
HRAFR_AMR = 1.41, PAFR_AMR = 2.41 × 10−8) (Supplementary Fig. 4B).

HLA region class II gene and haplotype analysis
in T1D
The association analyses of T1D with the HLA region included AFR
ancestry (409 cases and 482 controls), AMR ancestry (153 cases,
155 controls), and EUR ancestry (2970 pseudo-cases, 2970 pseudo-
controls). After imputation, the HLA region contained 20 329 vari-
ants for AFR, 20 376 variants for AMR, and 20 279 variants for
EUR). Classical HLA alleles and HLA gene amino acid sequences
were imputed from SNP data (Methods). In AFR and AMR ancestry
groups, the most significantly associated allele for both T1D risk

and age at onset was HLA-DQA1∗03:01. In the EUR ancestry group,
however, the HLA-DQB1∗03:02 allele was most associated with
both T1D risk and age at onset. When we evaluated amino acid
residues in HLA genes, the established HLA-DQB1 amino acid
position 57 was associated most strongly with both T1D risk
(Fig. 1) and age at onset (Fig. 2) across the three ancestry groups.

It has been documented that the combination (haplotypes) of
specific HLA-DRB1, -DQA1 and -DQB1 alleles have been associated
with the risk of T1D [41, 42]. To identify the ancestry-specific
risk alleles of HLA DR-DQ haplotypes, three locus HLA class II
haplotypes were analyzed. The most significantly associated hap-
lotype with T1D in AFR and AMR (Table 3) was HLA-DRB1∗03:01-
DQA1∗05:01-DQB1∗02:01 (ORAFR = 4.23, PAFR = 1.9 × 10−22; ORAMR =
6.95, PAMR = 2.6 × 10−10). In EUR ancestry (Table 3), the HLA-
DRB1∗04:01-DQA1∗03:01-DQB1∗03:02 haplotype (OREUR = 6.66,
PEUR = 4.5 × 10−207) was the most significantly associated with T1D.

Using conditional analysis, seven AFR ancestry HLA hap-
lotypes (Supplementary Table 3), two AMR ancestry HLA
haplotypes (Supplementary Table 4), and nineteen EUR ancestry
HLA haplotypes (Supplementary Table 5) were independently
associated with T1D. Conditional analysis revealed that HLA-
DRB1∗08:02-DQA1∗04:01-DQB1∗04:02 haplotype was protective
(OR < 1) in the AMR ancestry group (OR = 0.39, P = 2.9 × 10−2).
In the EUR ancestry group, the HLA-DRB1∗08:01-DQA1∗04:01-
DQB1∗04:02 haplotype (differing only at the second field of
HLA-DRB1∗08) was associated with increased risk for T1D
(OR = 1.81, P = 5.5 × 10−5).
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Figure 1. HLA alleles and amino acids associated with T1D risk in AFR (A), AMR (B), EUR (C) and meta-analysis (D). HLA class I and HLA class II genes are
labeled on the x-axis. The y-axis represents −log10(P-value). The horizontal dashed line represents the threshold for genome-wide significance. SNPs
are represented by grey diamonds, HLA alleles by yellow diamonds, and HLA amino acids by red diamonds. (A) T1D risk associations within the HLA
region in AFR ancestry individuals. (B) T1D risk associations within the HLA region in AMR ancestry individuals. (C) T1D risk associations within the
HLA region in EUR ancestry individuals. (D) T1D risk associations within the HLA region in meta-analysis of AFR, AMR and EUR ancestry individuals.

Enrichment of T1D genes across autoimmune
diseases
The coexistence of T1D with other immune-mediated diseases
was documented extensively through clustering in families in
part due to similarity of HLA associations with disease. Recent
evidence of genetic similarity of autoimmune diseases has been
shown in analysis of targeted array data and not genome-wide
analysis. We utilized GWAS data to compare enrichment of
T1D-annotated genes against GWAS-catalog reported genes in
autoimmune diseases (Fig. 3) using FUMA software [43]. We
identified 12 autoimmune diseases, including T1D that shared
annotated genes. The most significant overlap of identified
T1D genes in autoimmune diseases was with alopecia areata
(AA; P = 3.62 × 10−16). The overlap between T1D and AA loci was
driven, in part, by common susceptibility variants within PTPN22,
IL2RA, IKZF4, ERBB3 and SH2B3. In EUR ancestry populations,
previous gene set enrichment analysis (using the fine-mapping
ImmunoChip array) with T1D showed a similar overlap with dis-
eases that have characteristic tissue autoantibodies; e.g. AA, juve-
nile idiopathic arthritis (JIA), and rheumatoid arthritis (RA) [28].

Discussion
This is the first genome-wide association scan of T1D in
populations of diverse ancestry. While previous studies utilized
targeted genotyping arrays (ImmunoChip), we demonstrated that
no additional loci could be identified genome-wide in EUR and
other ancestry populations. Although, the study contains the
largest sample sizes in AFR and AMR populations to date, much

larger sample sizes will be required to fully characterize the
genome with respect to T1D risk.

We identified seven regions at genome-wide significance asso-
ciated with risk and four regions at genome-wide significance
associated with T1D age at onset, with some regions exhibiting
ancestry-specific effects. In the HLA region, we determined spe-
cific HLA class I and class II alleles and amino acids associated
with T1D risk and age at onset within and across ancestry, as well
as ancestry-specific HLA haplotypes. We identified seven associ-
ated HLA haplotypes in the AFR ancestry group, two in the AMR
(Hispanic/Latino) ancestry group, and nineteen HLA haplotypes
significantly associated with risk in the EUR ancestry group.

As expected, the strongest non-HLA regions associated with
T1D risk and age at onset were seen at the known INS and
PTPN22 loci. The most associated variant (rs2476601, C1858T,
R620W, in complete LD with rs6679677) in the PTPN22 locus was
only supported by EUR ancestry. The association between PTPN22
rs2476601 and T1D was first documented in a case-control study
of non-Hispanic white individuals from North America and Sar-
dinia [24]. Subsequent family and case–control studies in numer-
ous European populations [37, 44–47] confirmed its association
with T1D in this locus, showing high frequencies of rs2476601
in northern European populations and decreased frequencies in
southern European and Sardinian populations [48]. The PTPN22
rs2476601 variant has been shown to be rare in African and Asian
populations [48–50], supporting our results of reduced association
in non-EUR ancestry individuals. In addition, it has been shown
that the PTPN22 rs2476601 SNP is associated with earlier age at
onset of T1D in the European ancestry population [51].
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Figure 2. HLA alleles and amino acids associated with T1D age at onset in AFR (A), AMR (B), EUR (C) and meta-analysis (D). HLA class I and HLA class II
genes are labeled on the x-axis. The y-axis represents −log10(P-value). The horizontal dashed line represents the threshold for genome-wide significance.
SNPs are represented by grey diamonds, HLA alleles by yellow diamonds, and HLA amino acids by red diamonds. (A) T1D age at onset associations within
the HLA region in AFR ancestry individuals. (B) T1D age at onset associations within the HLA region in AMR ancestry individuals. (C) T1D age at onset
associations within the HLA region in EUR ancestry individuals. (D) T1D age at onset associations within the HLA region in meta-analysis of AFR, AMR
and EUR ancestry individuals.

Figure 3. Enrichment of T1D identified genes in other autoimmune diseases. Each bar represents the number of input genes overlapping with the
gene set with percentage. Diseases on the x-axis are ordered by increasing P-values. All presented results are significant (adj. P-value < 0.05). P-
values were adjusted using a multiple test correction (Benjamini-Hochberg): T1D—4.69 × 10−18, AA—3.62 × 10−16, VIT—6.56 × 10−14, CD—1.54 × 10−7,
PSO—5.96 × 10−5, CEL—5.79 × 10−4, JIA—8.23 × 10−4, RA—5.81 × 10−3, SLE—8.79 × 10−3, PSC—1.03 × 10−2, PBC—1.50 × 10−2, ATD—1.87 × 10−2. The MHC
region (chr6: 25 Mb-35 Mb) was excluded from the analysis. AA—Alopecia Areata, ATD—Autoimmune Thyroid Disease, CEL—Celiac Disease, CD—
Crohn’s Disease, JIA—Juvenile Idiopathic Arthritis, PBC—Primary Biliary Cholangitis, PSC—Primary Sclerosing Cholangitis, PSO—Psoriasis (PSO), RA—
Rheumatoid Arthritis, SLE—Systemic Lupus Erythematosus, T1D—Type 1 Diabetes, VIT—Vitiligo.
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We identified an association of the NRP1 locus with T1D risk
and age at onset in non-EUR ancestry (AFR and AMR groups) but
not in the EUR ancestry group. This locus has been identified in
a large fine-mapping study involving diverse ancestry individuals
[29] and GWAS of a large European ancestry cohort [30]. Together,
the NRP1 locus may represent a region more associated with T1D
risk in non-European ancestry populations, as the effect sizes are
stronger in our AFR and AMR groups; however, the direction of
effect is the same in all ancestry groups. In addition, the strongest
associated variant in the NRP1 locus was associated with earlier
T1D age at onset. Previously, two SNPs located in intron 9 of NRP1
were shown to be associated with T1D [52], with the strength of
association stronger in children with onset before age 10 years
and/or in children who had a parent with T1D. In addition, an
NRP1 isoform in pancreatic islets has been shown to be associated
with a very young age at onset of T1D [53]. Cells containing the
truncated version of neuropilin-1 protein (encoded by NRP1) are
devoid of insulin, resulting in the development of T1D at a very
early age. In those individuals with onset of T1D before age 4 years,
the frequency of the minor allele (T) of the NRP1 intron 9 variant
(rs2070303) is increased when compared with those having an
older age at onset.

Due to the importance of the HLA region in T1D and lim-
ited data in non-European ancestries, we determined ancestry-
specific haplotypes in collected cohorts. We identified the HLA-
DRB1∗03:01-DQA1∗05:01-DQB1∗02:01 haplotype as the most sig-
nificantly associated with T1D in non-EUR ancestry individuals
(AFR and AMR). A fine-mapping study of 3949 African ancestry
samples revealed the same haplotype as the strongest association
[50]. In our EUR ancestry subjects, the haplotype most signif-
icantly associated with T1D was HLA-DRB1∗04:01-DQA1∗03:01-
DQB1∗03:02, consistent with previous results [54]. Comparisons
across ancestries implicated differences in risk based upon HLA-
DRB1 gene, such as HLA-DRB1∗08:02-DQA1∗04:01-DQB1∗04:02 as
a protective haplotype in our AMR ancestry population, with
HLA-DRB1∗08:01-DQA1∗04:01-DQB1∗04:02 representing a suscep-
tible haplotype in our EUR ancestry population.

This study has several strengths, including use of under-
represented populations (African and admixed ancestry), the
genome-wide coverage of variants, and imputation to increase
SNP density. In addition, the detailed interrogation of the HLA
region provides novel information on risk associations not only
of HLA alleles but also amino acid residues and HLA haplotypes.
There are, however, some limitations of the study, including the
small number of samples compared with other genomic studies in
European ancestry (despite having the largest non-EUR ancestry
T1D genome-wide data to date). The relatively small number
of samples in total may explain the number of T1D-associated
loci and failure to identify new regions that would likely have
small effect sizes. Despite these limitations, it is important to
recognize potential ancestry-specific effects on the risk of T1D,
thereby better defining the genetic landscape of T1D risk in non-
European ancestry populations, particularly in the HLA region as
it represents a major risk locus for T1D.

Our multi-ancestry GWAS analysis enabled the discovery of
genetic variants, novel ancestry-specific HLA variants and amino
acid residues associated with risk of T1D and age at T1D onset.
Including subjects with diverse genetic ancestry revealed that the
NRP1 region exhibits a stronger effect on T1D risk and age at
onset in non-European ancestry populations. The association of
NRP1 locus and specific HLA haplotypes, in addition to PTPN22,
differentiate the risk of T1D between individuals of European
and non-European ancestries. These results suggest that further

increasing sample diversity can provide better understanding of
genetic risk factors contributing to T1D in global populations. This
genetic diversity could help improve population-specific genetic
risk scores application to identify individuals at high genetic risk
of T1D and provide opportunities for islet autoantibody screen for
eligibility into early intervention trials (e.g. teplizumab) to delay or
prevent disease onset.

Materials and Methods
Participants
We obtained DNA samples from 13 412 subjects recruited by the
T1DGC (Supplementary Table 1). The study population consisted
of 12 213 individuals from affected sib-pair and trio families. The
majority of individuals from families were of European (EUR)
ancestry (10501). The case-control series consisted of 891 unre-
lated individuals of AFR ancestry (409 T1D cases, 482 controls) and
308 individuals of AMR ancestry (153 T1D cases, 155 controls).

Genotyping and quality control
All samples were genotyped according to the manufacturer’s
protocol using the Illumina Infinium CoreExome BeadChip in
the Genome Sciences Laboratory at the University of Virginia.
Raw genotyped data were subjected to SNP-level and sample-
level quality control (Supplementary Fig. 1) using KING software
(version 2.2.8 [55]). For sample level quality control, we utilized
chromosome X heterozygosity and chromosome Y absence to
identify DNA samples that had discordant results between genetic
sex and self-reported sex, these samples were treated as errors
in processing and were removed. Additionally, we removed sam-
ples with a genotype call rate < 95% and evidence of Mendelian
inconsistences (MI, for families). Pedigree sample relationships
were updated using KING software [55]. From samples passing
initial quality control metrics, the following filters were applied
for variants: removal of monomorphic SNPs, removal of SNPs
with call rates < 95%, removal of SNPs with Mendelian incon-
sistencies in > 1% of the parent-offspring pairs and trios, and
removal of SNPs significantly deviating from Hardy-Weinberg
Equilibrium (P < 1.0 × 10−6 [P < 1.0 × 10−20 for MHC region]). SNPs
with MAF < 0.01 were not included in the analysis. Variant quality
control included removal of SNPs that were not mapped uniquely
to the genome (e.g. exm244817). Additional sample quality control
included removal of family members with T1D or case samples
with age at onset of zero, and removal of family samples with
onset of diabetes greater than 32 years and with at least one
affected parent (suggestive of misdiagnosis of T1D with maturity-
onset diabetes of the young, MODY). All DNA samples were col-
lected after approval from relevant institutional research ethics
committees and appropriate informed consent was obtained from
all subjects and families.

Generation of a pseudo case–control sample
In the T1DGC, the family collection was ascertained specifically
to include affected sib-pairs [56] followed by the collection of
unrelated individuals with T1D and controls. As the analytic
method (logistic mixed models) is not robust to the targeted
ascertainment of affected sib-pair families, a series of pseudo-
cases and pseudo-controls was generated [57] for application of
the logistic mixed and frailty models (SAIGE and GATE). Within
each family and for each SNP, the alleles transmitted from each
parent to an affected child constituted the “pseudo case”; sim-
ilarly, alleles not transmitted from each parent to an affected

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae024#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddae024#supplementary-data
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child constituted the “pseudo control”. From EUR affected sib-
pair families, 3428 pseudo-cases and 3428 pseudo-controls were
constructed; summary statistics from the pseudo case-control
analysis was used in meta-analysis with the AFR and AMR case–
control results.

Population stratification
To infer genetic ancestry, we used multi-dimensional scaling
(MDS) analysis implemented in KING [55]. KING utilizes a support
vector machine (SVM) approach to assign an ancestry label
(AFR, AMR, EUR) to each individual sample by leveraging known
ancestry in the 1000 Genomes Project reference panel (https://
github.com/chenlab-uva/AncestryInference_KING). Ancestry-
specific principal components (PCs) were generated with principal
component analysis (PCA) in control individuals, using SNPs
selected by excluding the MHC region, removing SNPs with
MAF ≤ 0.05, and pruning for linkage disequilibrium (r2 > 0.5 in
50-kb windows). Genotypes of cases were projected onto control
samples using PLINK v1.9 [58] to ‘match’ for ancestry and
minimize stratification effects in case–control analyses. A total
of six subjects were removed that represented ‘outliers’ from the
PCA projection of T1D cases onto controls.

Imputation
Genotypes from the Illumina CoreExome BeadChip were imputed
to the Trans-Omics for Precision Medicine (TOPMed) reference
panel [59] on the TOPMed Imputation Server housed on the NHLBI
BioData Catalyst server (https://imputation.biodatacatalyst.
nhlbi.nih.gov/). For the GWAS data, a minimac4 imputation
accuracy of r2 > 0.3 was used as a variant filter for common and
infrequent variants (MAF > 0.01), with r2 > 0.5 used as a filter for
rare variants (MAF ≤ 0.01). For both common and rare variants,
all SNPs were removed with Mendelian inconsistencies (MI) in
at least 10% of trio families or parent-offspring (PO) pairs. All
coordinates are reported in GRCh38.

HLA imputation was conducted using the multi-ancestry HLA
reference panel (HLA-TAPAS) [60] at the University of Michigan
(https://imputationserver.sph.umich.edu/index.html). SNPs in
the HLA region (28Mbp—34Mbp) were used to impute HLA alleles
(to four-digit accuracy) and amino acid residues. The HLA-TAPAS
reference panel was generated using whole genome sequencing
data from ∼20 000 samples from five global populations [60].
Classical alleles for HLA class I (HLA-A, -B, and -C) and HLA
class II (HLA-DQA1, -DQB1, -DRB1, -DPA1, and -DPB1) genes
were inferred from reads extracted from the extended MHC
region by applying a population reference graph for the MHC
region. Imputation accuracy was assessed by comparing the
“gold standard” sequence-based typing in individuals from the
1000 Genomes Project and the Japanese cohort to inferred HLA
classical alleles. For the HLA imputation, variants with r2 > 0.5 and
MAF > 0.005 were retained. Variants were removed with MI > 10%
in trio families or in parent-offspring pairs.

Statistical analyses
Analysis of GWAS data for T1D risk (binary trait) was conducted
using SAIGE software that implemented a logistic mixed
model (LMM) regression approach to control for type 1 error
by accounting for unbalanced case–control ratio and sample
relatedness. For T1D age at onset, GATE software was used
for GWAS based on a frailty model under similar unbalanced
conditions.

Type 1 diabetes (T1D) risk (SAIGE)
GWAS data passing quality control filters (MAF > 0.01 and minor
allele count (MAC) ≥ 20) were analyzed for association with T1D
within three groups (pseudo case-control with majority of EUR
ancestry [N = 6856], AFR [N = 891], and AMR [N = 308]). Logistic
mixed model (LMM) regression implemented in SAIGE software
[61] was used for analysis, which accounts for sample relatedness,
adjusting for four principal components in AFR and AMR case–
control groups and seven principal components in the pseudo
case-control group. SAIGE controls for type I error rates even for
unbalanced case–control ratios by incorporating a saddlepoint
approximation (SPA) to improve estimation of the test statistic
distribution at the extremes. Results of single-variant association
tests were combined using a fixed-effects meta-analysis using
METAL software [62]. In addition, we performed Cochran’s Q-test
for heterogeneity as implemented in METAL. Association results
for selected loci were plotted using LocusZoom [63, 64]. To deter-
mine the effect of population stratification in association analysis,
the genomic inflation factor (λGC) was estimated, defined by the
ratio of median of the empirically observed distribution of the test
statistic to the expected median. We performed conditional analy-
sis on genome-wide significant (or suggestive) variants to identify
loci with more than one variant independently associated with
T1D risk by including the most associated SNP in the LMM and
identifying the subsequent (statistically significant) SNP, adding
that SNP to the model until significance was no longer present.

Type 1 diabetes (T1D) age at onset (GATE)
Association of GWAS variants passing filters (MAF > 0.01 and
MAC ≥ 20) was evaluated with age at onset of T1D by analysis
of three groups (pseudo-case pseudo-control with majority of
EUR ancestry, AFR, and AMR). We used the frailty mixed model
regression implemented in GATE software [65], adjusting for four
principal components in AFR and AMR case–control groups and
seven principal components in the pseudo case-control group.
The age for all individuals with and without T1D was censored at
32 years old. Results of single-variant association tests were com-
bined using a fixed-effects meta-analysis with METAL software.

HLA analysis
Association analyses of T1D risk with imputed HLA alleles and
amino acid residues (MAF > 0.005 and MAC ≥ 10) were conducted
in 3 ancestry-specific groups (EUR [N = 5940], AFR [N = 891], AMR
[N = 381]) using SAIGE software. Association analyses of T1D age at
onset using GATE software employed the same approaches. Due
to missing age information, fewer samples were used for frailty
mixed model analysis in EUR ancestry (N = 5930). All HLA region
association analyses were adjusted for four principal components
in all three ancestry groups.

To analyze association of HLA class II haplotypes with T1D, all
HLA-DRB1-DQA1-DQB1 haplotypes were identified by creating a
matrix of all possible combinations of alleles for each sample in
each ancestry-specific group. For any given locus, individuals were
excluded from the analysis if the total allele count for all possible
alleles at that locus did not equal two. Common HLA alleles were
defined as those that occur more than 30 times in a combined
group of case and control subjects. For each ancestry group
(EUR, AFR, AMR), association analyses of T1D with HLA class
II haplotypes (DRB1-DQA1-DQB1) were conducted on common
haplotypes using logistic regression model and adjusting for four
principal components as described previously [50]. Independent
associations of HLA-DRB1-DQA1-DRB1 haplotypes were assessed
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by conditioning on the most significant haplotype. The process
was repeated until the consecutive haplotype failed to meet the
significance threshold. For each ancestry group, the statistical
significance was corrected for the total number of common hap-
lotypes.

Functional impact of detected variants
GWAS summary statistics were applied to the SNP2GENE and
GENE2FUNCTION modules in FUMA v1.5.3 (Functional Mapping
and Annotation, https://fuma.ctglab.nl) [43]. The SNP2GENE mod-
ule was used to functionally annotate leading SNPs and the
GENE2FUNCTION module was used to annotate genes and to
identify genes that were enriched in pre-defined gene sets (e.g.
reported genes from the GWAS catalog). Protein-coding genes
were used for both foreground (T1D associated) and 20 260 back-
ground genes (for permutation analysis). We focused on enrich-
ment of genes in the autoimmune diseases from the GWAS cata-
log gene set. Identified autoimmune diseases from GWAS catalog
gene set included: Alopecia Areata (AA), Autoimmune thyroid
diseases (ATD), Celiac disease (CEL), Crohn’s disease (CD), Juvenile
Idiopathic Arthritis (JIA), Primary Biliary cholangitis (PBC), Primary
Sclerosing Cholangitis (PSC), Psoriasis (PSO), Rheumatoid Arthritis
(RA), Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D)
and Vitiligo (VIT). Enrichment p-values were adjusted using a
multiple test correction (Benjamini-Hochberg).

All statistical analyses and data visualization were performed
using R version 4.1.1, unless otherwise stated. The HLA-TAPAS,
Locus Zoom (http://locuszoom.org/) and R packages ggplot2,
qqman and RColorBrewer were used for data visualization. For all
conducted analyses genome-wide significance was based upon
P < 5.0 × 10−8, while P < 5.0 × 10−7 was considered as suggestive
evidence of association. The LD estimates were obtained from
the LD pair tool (https://ldlink.nih.gov/) [66] with African (AFR),
admixed (AMR) and European (EUR) cohorts’ selection.
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