Skip to main content
. 2024 May 17;18:17534666241249168. doi: 10.1177/17534666241249168

Table 2.

Table 2 is all model we used to predict micropapillary/solid component of lung adenocarcinoma, LR model preforms the best performance. So in the building of clinical signature, LR is selected as base model.

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Task
LR 0.839 0.858 0.8007–0.9158 0.870 0.735 0.919 0.621 Label-train
LR 0.636 0.822 0.7036–0.9398 0.535 1.000 1.000 0.375 Label-test
SVM 0.927 0.954 0.9122–0.9948 0.917 0.959 0.987 0.770 Label-train
SVM 0.800 0.806 0.6509–0.9615 0.791 0.833 0.944 0.526 Label-test
KNN 0.789 0.854 0.8052–0.9035 0.817 0.694 0.902 0.523 Label-train
KNN 0.764 0.811 0.6964–0.9257 0.791 0.667 0.895 0.471 Label-test
RandomForest 0.995 1.000 0.9996–1.0000 0.994 1.000 1.000 0.980 Label-train
RandomForest 0.836 0.785 0.6274–0.9424 0.884 0.667 0.905 0.615 Label-test
ExtraTrees 1.000 1.000 1.0000–1.0000 1.000 1.000 1.000 1.000 Label-train
ExtraTrees 0.800 0.673 0.4840–0.8629 0.907 0.455 0.848 0.556 Label-test
XGBoost 1.000 1.000 1.0000–1.0000 1.000 1.000 1.000 1.000 Label-train
XGBoost 0.764 0.771 0.6251–0.9176 0.791 0.667 0.895 0.471 Label-test
LightGBM 0.876 0.952 0.9267–0.9777 0.852 0.959 0.986 0.653 Label-train
LightGBM 0.618 0.767 0.6213–0.9136 0.535 0.917 0.958 0.355 Label-test
MLP 0.908 0.932 0.8940–0.9703 0.941 0.796 0.941 0.796 Label-train
MLP 0.782 0.818 0.6994–0.9363 0.791 0.750 0.919 0.500 Label-test

KNN, k-nearest neighbor; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; NPV negative predictive value; SVM, support vector machines; PPV, positive predictive value.