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Abstract

Multiplexed imaging and spatial transcriptomics enable highly resolved spatial characterization of 

cellular phenotypes, but still largely depend on laborious manual annotation to understand higher-

order patterns of tissue organization. As a result, higher-order patterns of tissue organization 

are poorly understood and not systematically connected to disease pathology or clinical 
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outcomes. To address this gap, we developed an approach called UTAG to identify and quantify 

microanatomical tissue structures in multiplexed images without human intervention. Our method 

combines information on cellular phenotypes with the physical proximity of cells to accurately 

identify organ-specific microanatomical domains in healthy and diseased tissue. We apply our 

method to various types of images across healthy and disease states to show that it can consistently 

detect higher-level architectures in human tissues, quantify structural differences between healthy 

and diseased tissue, and reveal tissue organization patterns at the organ scale.

The recent development of technologies such as multiplexed imaging1–5 and spatial 

transcriptomics6–10 allows for both direct observation of cellular phenotypes and cellular 

interactions in intact tissues. Although these technologies provide a highly resolved view of 

cellular heterogeneity in tissues, they struggle to move beyond a cell-centric view of tissue, 

failing to uncover organizing principles of tissue architecture and tissue-specific physiology 

which are encoded at various scales of cellular and extracellular interactions. Understanding 

higher-level patterns of tissue and organ organization would be crucial to establishing a 

relationship between cellular phenotypes and organ-specific tissue physiology.

Visual inspection of histopathological images of biopsied or surgically removed tissue is 

a major component of disease diagnosis, but is a labor intensive job that requires manual 

annotations from specialized pathologists. Also, the process may require multiple specialists 

to reduce intra- and inter-observer variability. To assist and improve upon the inspection 

process, computational techniques have been developed for the automated detection and 

quantification of cells or tissue structures11–13, often in a supervised manner that requires 

manual annotations as training data. This approach is expensive and laborious, prone to 

learning biases from training data, and hard to employ with exceptionally abundant tissue 

features such as small capillaries or individual ducts in submucosal glands. Unsupervised 

methods try to accomplish similar tasks without the need for manual input. A popular 

method is the inference of cell neighborhoods based on multiplexed data by assembling a 

graph of cellular interactions based on physical proximity14,15. Clustering of cells based on 

these interactions yields cellular neighborhoods predictive of patient survival14–17. However, 

graph clustering per se does not make use of cell type identities or phenotypes and has only 

been applied to cancer tissue.

Recent studies applying unsupervised deep learning models to histopathological images 

such as hematoxylin eosin staining have shown that it is possible to extract morphological 

features that are, for example, predictive of gene expression18. Other studies have also 

employed deep learning of graphs of cellular proximity with cellular phenotypes for cell 

type prediction19, inference of cellular communication20 and data exploration21. These 

models are computationally expensive to train and their results heavily depend on training 

data, which may preclude joint analysis of expression and morphological features across 

studies and data types. There is thus a need for unsupervised, broadly applicable methods 

of tissue structure detection across organs and imaging modalities that incorporate cellular 

proximity, expression and morphological features. Here we present an accurate method to 

perform discovery and quantification of microanatomical tissue structures in multiplexed 

histopathological images without human intervention or prior knowledge. Our method, 
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unsupervised discovery of tissue architecture with graphs (UTAG), combines information on 

cellular morphology and expression with the physical proximity of cells to discover domains 

of tissue architecture. We demonstrate that our approach is able to discover organ-specific 

microanatomical domains in the human lung with high accuracy in comparison with manual 

annotations and outperforms other methods. Furthermore, UTAG can be employed across 

various physiological states, such as infectious disease and cancer, and its results can reveal 

the high-level organization of tissues at the whole-organ scale.

Results

Unsupervised discovery of tissue architecture with graphs

To address the problem of discovery of microanatomical structure in tissue across data 

types and biological systems we developed a method called UTAG (Fig. 1a). Our method 

is generally applicable to images of cells in their native tissue context collected via 

highly multiplexed single-cell imaging data such as codetection by indexing (CODEX), 

cyclic immunofluorescence (CyCIF), imaging mass cytometry (IMC), multiplexed ion beam 

imaging (MIBI) and likewise multiplexed spatial platforms. The central aspect of UTAG 

is the combination of two matrices that represent phenotypic and positional information 

about each cell present in an image (Fig. 1a, gray areas), to generate a new feature space 

that encodes spatially aggregated phenotypic information. This matrix of new features can 

then be clustered into domains of cells that are both phenotypically and spatially related 

(Fig. 1a, orange area). The matrix of phenotypic information (feature matrix) is a numeric 

matrix of gene or protein abundance, or morphology for each cell, while the positional 

information of each cell is used to generate a graph of physical proximity between cells 

through binarization and optional normalization (adjacency matrix).

UTAG then leverages the properties of matrix multiplication through linear algebra to 

combine the matrices in a procedure known as message passing (Fig. 1b). In this, 

nodes of cells in physical proximity will receive a portion of the neighboring cell’s 

phenotypic information in a weighted manner, effectively diffusing the phenotypes into 

physically proximal cells determined by the adjacency matrix. The intermediate resulting 

spatially aggregated features therefore contain information on both cellular phenotypes 

and physical proximity between cells. This spatially aggregated feature matrix allows 

capture of microanatomical domains consisting of multiple cell types that are spatially 

homogeneously distributed. For example, arteries consist of a layer of endothelial cells 

surrounded by smooth muscle cells. Through message passing, endothelial cells become 

more like adjacent muscle cells and vice versa, effectively grouping cells with different 

phenotypic features based on their spatial distribution. Finally, this matrix is clustered 

using standard modern algorithms such as Leiden22 or Phenotyping by Accelerated Refined 

Community-Partitioning (PARC)23 clustering to derive domains of tissue structure in images 

(Fig. 1a, orange area). In this process, the number of captured domains is determined by 

a customizable resolution hyperparameter, which controls the coarseness in both Leiden 

and PARC clustering (Extended Data Fig. 1b). Biological interpretation of the discovered 

domains remains, however, dependent on the user by contextualization in terms of their cell 

type composition, frequency of cellular interactions or association with target variables such 
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as clinically relevant outcomes. We provide a software package for the implementation of 

UTAG, including documentation and tutorials on its application to various datasets (https://

github.com/ElementoLab/utag).

UTAG uncovers microanatomical principles in healthy lung

We first tested UTAG on healthy lung tissue images. The human lung is a highly 

compartmentalized tissue, with the organ physiology dictating an intricate interplay between 

cells and matrix to create functional structures such as the airway lumen, alveolar airspace 

and blood vessels. We applied UTAG to a dataset of 26 highly multiplexed IMC lung 

images from three donor lung specimens, consisting of 28 markers, with a particular focus 

on airways extending from proximal bronchi and succeeding divisions to terminal and 

respiratory bronchioles24 (Fig. 2a, first column). Importantly, in this dataset, each image 

has been manually annotated with organ-specific microanatomical domains such as airways, 

connective tissue, submucosal glands, vessels and alveolar space (Fig. 2a, fourth column). 

The annotated structures effectively serve as a reference for microanatomical annotation 

of the lung. In addition, the cells in these data had been phenotyped into seven broad 

clusters of cell identity (Fig. 2a, second column), which can be helpful when interpreting the 

composition of the domains, albeit not used by UTAG.

We applied UTAG to the IMC data by providing the position of the cells in the image and 

the intensity of each marker in each cell to the algorithm. We then labeled the resulting 

clusters with identities, splitting them into five groups depending on the intensity of markers 

and cellular composition (Extended Data Fig. 1c). The resulting microanatomical domains 

detected by UTAG largely recapitulated the microanatomy of manually labeled domains 

(Fig. 2a, third column, and Extended Data Fig. 2). To assess the performance of our method, 

we compared the discovered microanatomical domains with the labels applied by experts 

using Rand and Homogeneity score based on cell domain properties (Fig. 2b). Rand score 

measures label agreement and is a commonly used metric to benchmark unsupervised 

clustering. Homogeneity score assesses how uniquely each cluster maps to ground truth and 

does not penalize for detection of more granular subdomains. As a baseline comparison, 

we calculated the same metrics based on randomly shuffled domain labels and cell type 

identities. In addition, we also compare UTAG to other methods for inference of higher-

level tissue structure in terms of their features and performance, such as SpaGene25 and 

SpatialLDA26 (Fig. 2b and Extended Data Fig. 3). UTAG is the only method that can infer 

microanatomical domains without cell type annotations jointly across images; most other 

methods focus on generating per-image results and may only be applicable to certain data 

types due to specific assumptions on the data (Supplementary Table 1). Furthermore, UTAG 

significantly outperformed all other methods both in terms of label Rand and Homogeneity 

score (Fig. 2b and Extended Data Fig. 3). UTAG outperformed SpatialLDA, the next best 

performing algorithm, by 2.42 fold (Homogeneity score), which shows that UTAG can 

discover accurate microanatomical domains in multiplexed imaging data.

The domains discovered by UTAG were enriched in protein expression specific to each 

domain, as evidenced by KRT5, CC16, SCGB3A2, MUC5B and MUC5AC expression in 

airways, or CD31, alpha smooth muscle actin (aSMA) and type IV collagen in vessels 
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(Fig. 2c). Furthermore, we found the cell type composition to reflect the captured domains. 

Airways and submucosal glands consisted predominantly of epithelial cell types while being 

spatially distinct. Connective tissues were generally composed of sparse matrices of cells 

that had low expressions of all markers (Fig. 2c), but sometimes included supportive muscles 

and infiltrating immune cells (Fig. 2d). Other identified domains were well-balanced in 

terms of cell type composition. The alveolar space included a well-balanced proportion of 

epithelial and endothelial cells required for gas exchange (Fig. 2d). This reveals that UTAG, 

without specific training, is capable of effectively capturing both simple domains with a 

dominant cell type and more complex domains composed of multiple cell types. Beyond cell 

type composition, we identified distinct differences in the frequency of physical interactions 

between cells of different cell types across microanatomical domains (Fig. 2e). In airways, 

we observed a tight connection between epithelial cells and reciprocal proximity between 

epithelial and connective tissue. The connective tissue, as a transition tissue between airways 

and other functional domains in the lung, showed high diversity and balance in cellular 

interactions. The alveolar space domain has strong reciprocal interactions between epithelial 

and endothelial cells, which is a hallmark of alveolar type 1 cells closely connected to 

capillary endothelium. Taken together, the observed cell type abundance (Fig. 2d) and 

interaction relationships (Fig. 2e) within the microanatomical domains of the lung provide a 

signature of the architecture of the healthy human lung.

While the composition of an organ in microanatomical domains is an important part 

of its architecture, it is also important to understand the wider-scale architecture of 

an organ in relation to its physiology. To demonstrate how UTAG can be useful 

in uncovering organ-specific high-level architecture, we quantified physical interactions 

between microanatomical domains in IMC images and related domains based on the 

frequency of interactions (Fig. 2f). The resulting network, made by associating the strength 

of microanatomical domain interaction with attraction between nodes, summarizes the 

architecture of the lung—with a main anatomical axis of high-order tissue assembly from 

airway, connective tissue to alveolar space (Fig. 2f). Furthermore, we also found that both 

vessels and submucosal glands, while interacting with similar domains, are diametrically 

opposed to the main axis (Fig. 2f), which may suggest that segregation of vascular and 

secretory domains of the lung is a hallmark of healthy lung architecture. Overall, the 

microanatomical domains detected by UTAG in the lung, along with the inferred high-level 

structure of the organ, illustrate the accuracy and utility of UTAG in understanding tissue 

architecture at various scales with a completely unsupervised approach.

UTAG captures structural changes in diseased lung tissue

Having established the performance and usefulness of UTAG in multiplexed imaging of 

healthy tissue, we sought to determine whether UTAG is able to discover microanatomical 

domains in disease as well. To that end, we ran UTAG on a dataset of 239 IMC images 

with 37 markers from 27 deceased patients due to lung infection27 (Fig. 3a). Despite using 

a different set of markers from the healthy lung dataset (Fig. 2a), we were able to discover 

six largely similar microanatomical domains that were present in images of various disease 

groups: one domain representative of epithelial cells (predominantly airways), one domain 

of fibroblast-rich connective tissue, one domain for alveolar regions, one for vessels, one 
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with clusters of various immune cells and a rare one of clustered neutrophils exclusively. 

Their relative abundance, however, reflects the changes in the morphology and cellular 

composition of the tissue after infection27, with, for example, an increased proportion of 

the epithelial domain following influenza and in late COVID-19, and an increase in the 

fraction of connective tissue in late COVID-19 that is indicative of fibrosis (Fig. 3b). Since 

topological domains aggregate spatially proximal cells of various cell types that contribute 

to tissue function, we hypothesized that the abundance of topological domains across images 

more easily explains the variance in the dataset than the abundance of cell types on their 

own. Indeed, in a principal component analysis (PCA) reduction of the data, we found 

that not only was the fraction of variance in the first component higher with topological 

domains, but they also more easily reconstructed the linear progression of healthy tissue in 

comparison with cell type identities alone (Fig. 3c).

Since differences in cell type composition during lung infection have been reported27, we 

sought to investigate whether there are differences in the high-level composition of tissue, 

as quantified by the spatial proximity in topological domains across images (Extended 

Data Fig. 4). The most prominent differences in topological domain colocalization between 

disease states was observed between the alveolar space and vessel domains (Fig. 3d). In 

influenza, acute respiratory distress syndrome and late COVID-19, vessel domains interact 

with alveolar domains more tightly than in healthy lung or early COVID-19. In healthy 

lung sections, vessels often have high intradomain connectivity and are isolated from 

other domains, whereas in late COVID-19 lung sections we observed high connectivity 

of vessels with other domains, particularly the alveolar space (Fig. 3e). This likely reflects 

the previously described increase in vasculature due to pathology-induced angiogenesis28,29. 

The characterization of microanatomy across various disease states in the lung, along with 

the discovery of changes in the connectivity of tissue domains, demonstrate the versatility of 

unsupervised approaches such as UTAG to detect and quantify microanatomical structure in 

human tissue.

UTAG is applicable across imaging techniques and tissues

We have so far employed UTAG in the lung because we have annotated images allowing 

us to assess whether the discovered microanatomy aligns with current knowledge in the 

field. Given that UTAG is an unsupervised method, it is not guaranteed that its use across 

data types, organs and disease states will always discover microanatomical domains with 

physiological relevance or of pathologic interest.

To address whether UTAG generalizes to various types of multiplexed imaging data, we first 

applied it to a dataset of 19 CyCIF images with26markers from three lung cancerpatients30 

(Extended Data Fig. 5a). We observed that the obtained domains largely reflected tumor or 

stromal microenvironments reflecting a complete departure from the tissue architecture seen 

in normal lung. This is likely due to proliferation of neoplastic cells, which is independent 

of the normal physiological function of the lung. In this setting, UTAG may be of use in 

cancer by detecting the interface between tumor and stromal, facilitating the investigation 

of cellular composition and interactions at this interface, without the need for manual 

annotation of images by an expert.
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Second, to assess whether UTAG is capable of broadly discovering microanatomy across 

organs, we apply it to a set of 15 IMC images of COVID-19-infected intestine31 

(Extended Data Fig. 5b). UTAG was able to clearly demarcate the intestinal epithelium 

from the remaining parenchyma and, within the epithelium, further differentiate between 

the E-cadherin-expressing enterocytes at the top of the villi and the proliferating(Ki67 

+ ) cellsofthecryptsand intestinal glands. Wealsoapplied UTAG to a dataset of 100 IMC 

images of pancreas32, where the predominant microanatomical division is between the 

endocrine Islets of Langerhans and the acinar cell-dominated exocrine regions. UTAG, in 

accordance, accurately identified the two major microanatomical subdivisions in a manner 

very comparable with supervised approaches (Extended Data Fig. 5c). Both the intestinal 

villi and the pancreatic islets constitute examples of specialized microanatomical structures 

with highly eccentric shapes and are therefore difficult to segment manually at scale.

Third, to benchmark UTAG on a different task, we employed a dataset of 58 IMC images 

with 28 markers from seven patients of upper tract urothelial carcinoma (UTUC)33 (Fig. 

4a). In line with our observations in lung cancer (Fig. 3c), the five discovered domains 

largely reflected the division between tumor and stroma microenvironments. However, we 

did notice a gradient between the two, with domains with considerable immune infiltration 

for both tumor and stroma, and a domain present mostly at the interface between tumor 

and stroma (Fig. 4a). Of note, in this dataset, 16 images had been manually annotated with 

boundaries of tumor and stroma, which allowed us to assess the performance of UTAG 

in the delineation of these boundaries (Fig. 4b). We found that UTAG domains largely 

recapitulate these annotations and significantly outperformed both randomly shuffled labels 

and cell types as baseline, as well as other methods in overall agreement with cell type labels 

and purity of the domains, when compared with manual labels (Fig. 4b).

In summary, our analysis of tumor microenvironment domains in large cohorts of cancer 

patients revealed the accuracy of UTAG in detecting microenvironments reflecting tumor–

stromal boundaries in agreement with manual annotations.

Discussion

UTAG performs discovery and quantification of microanatomical tissue structures in 

biological images with no prior knowledge. Our method leverages the combination of 

phenotypic and proximity information of cells to discover topology of tissues in various 

organs and various types of multiplexed imaging data. Given the lack of formal definition of 

microanatomical domains and healthy tissue datasets with such annotation that can be used 

as ground truth, benchmarking of our method relied on two datasets of lung microanatomy 

and tumor–stroma divisions in cancer.

UTAG performed significantly better than the baselines of random domain permutations and 

cell type identities, as well as SpaGene25 and SpatialLDA26 (Figs. 2 and 4b). We attribute 

this to the fact that 1) UTAG uses cell phenotypes as vectors of continuous variables of 

markers and 2) UTAG infers microanatomical domains for all images in a dataset jointly 

rather than on a per-image basis. The first is unique to UTAG and may explain the advantage 

against the SpatialLDA method, which uses counts of cell types neighboring each cell. 
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The reliance on user-supplied cell type annotations can be a point of introduction of errors 

and does not fully leverage the quantitative information in multiplexing imaging data. The 

second is only common to UTAG and SpatialLDA and may explain why both perform 

better than SpaGene, which can only output microanatomical domain annotations on a single 

image basis—this means the burden of interpreting domains for each image separately is 

on the user, or that domains of various images have to be clustered a posteriori, which 

introduces one more step and does not guarantee discovery of domains present across 

images. Thus, UTAG being the only method capable of jointly inferring microanatomical 

domains across images without cell type information tailored for multiplexed imaging 

at single-cell resolution (Supplementary Table 1) not only likely contributes to its high 

performance but also requires less information and effort from the user before running (no 

cell type information is needed) and after (there is only one step of interpretation across all 

images).

Despite the good performance of UTAG in the discovery of tissue microanatomy, the ground 

truth set of manual annotations is inherently subjective to the observer and often incomplete 

by focusing on a subset of specific predefined structures. In fact, it is conceivable that a fully 

unsupervised method such as UTAG is able to capture gradients of mixtures between known 

domains or even new or poorly defined structure in tissue that is underappreciated.

On top of its ability to detect tissue architecture, UTAG can serve as a method to quantify 

biologically relevant processes such as angiogenesis in native tissue conformation. In this 

article, we presented ways to numerically quantify the loss of compartmentalization of 

vessels in alveolar space of COVID-19 infected lung (Fig. 3d). In a similar fashion, UTAG 

can be used to quantify the extent of various biological processes such as angiogenesis 

in individual samples—just as existing computational methods based on genomics and 

transcriptomics can, but with the advantage that the manifestation of biological processes are 

directly observable in the original physical context of the tissue.

While we believe our method provides a significant step toward the systematic discovery 

of tissue structure, one crucial aspect for its successful application is the interpretation of 

the discovered topological domains in terms of their identity and biological relevance. We 

demonstrated how on cases such as healthy tissue with well-defined structure related with 

organ-specific physiology, interpretation of domain identity based on cell type composition 

and interactions can be achieved (Fig. 2), while in tissues without strong structural 

patterning, or with undefined function such as cancer, interpretation of discovered domains 

can rely on the association with clinically relevant outcomes (Fig. 4). UTAG provides 

flexibility to the user to discover structures present in biological images, but we believe that 

its potential is maximized by the involvement of experts in the field, such as pathologists, in 

the discovery process and interpretation of results.

Beyond the conceptual limitation in the biological interpretation of UTAG results, a few 

technical issues must also be taken into account. UTAG relies on user-supplied cell 

segmentation to determine positional information from the cells and consequently infer 

physical interactions. Recent advances in cellular segmentation algorithms34–37 have greatly 

advanced the quality of segmentation masks for various types of images, but downstream 
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results can only be as good as the segmentation. Furthermore, we greatly simplify the 

geometric complexity of two-dimensional tissue slices by assuming centroids capture most 

of the positional information of cells, which for eccentric cell types such as neurons, 

endothelial cells and various types of eccentric immune cells may not be the case.

The inference of cellular contacts and the scale at which microenvironmental signals diffuse 

across the local cellular context are fields of current study38–41 and of importance for the 

detection of tissue microanatomy. UTAG requires a user-provided parameter to discretize 

cellular contacts. In our experience, we found that changes in this parameter were most 

needed depending on the resolution of the images, since optical imaging typically has 

more resolution than, for example, laser-based tissue ablation in IMC. Nonetheless, this is 

something we purposefully designed to be tuned by the user so that UTAG is adaptable 

without making assumptions on the underlying structure of the tissue, such as has been done 

previously, for example, relying on the consistent shape of germinal centers42.

UTAG opens new possibilities in our ability to understand tissue architecture by detecting 

microanatomical domains, but also by quantifying how they interact at a higher level, 

to a point that we could infer the broad rules of human lung architecture. We envision 

that, in the future, UTAG could be applied to traditional histopathological images if 

an appropriate feature matrix can be extracted. That would open the possibility for the 

detection of microanatomical structures in large biobanks and association of these with 

clinical features at scale. Likewise, systematic application of UTAG in image data from 

various organs will undoubtedly accelerate projects such as spatial cell atlases43–45, by 

providing microanatomical context to the cells and enabling ground-up discovery of tissue 

architecture beyond cell type composition of tissues. Another exciting future application 

is the discovery of microanatomy in volumetric images of tissue13,46–48, since there is 

no conceptual limitation to using UTAG in three dimensions. This would enable robust 

morphometry of tissue structures, since a current challenge in two-dimensional analysis of 

tissue is the detection of structure independent of the cutting angle. Robust assessment of 

tissue microanatomy could enable the definition of tissue integrity ranges in human tissue 

across ages, detection of early precancer lesions and cancer invasion, and the study of 

age-associated diseases characterized by cellular degeneration, fibrosis and loss of tissue 

integrity.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41592-022-01657-2.

Methods

UTAG algorithm

The two inputs to the UTAG algorithm were the cell feature matrix and the location matrix. 

The cell feature matrix is designed to be as generalizable as possible to incorporate multiple 
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imaging modalities and can contain any features ranging from generic cell properties such 

as cell area, perimeter and morphology to modality-specific attributes such as intensity 

of hematoxylin and eosin from H&E staining to marker expression quantification such as 

CD4, KRT8 or PD1 levels in IMC. From the location matrix, we build a graph using 

squidpy49 (v.1.1.0), where each node is a unique cell and each edge indicates whether two 

cells are within a threshold Euclidean distance. We then perform message passing, an inner 

product between the adjacency matrix of the graph and the feature matrix, so that each cell 

within the graph inherits features from its immediate neighbors. When aggregating spatial 

components with the feature matrix, we provide two possible ways to spatially aggregate 

the feature matrix. The default of the package is to aggregate by the mean, which sums 

all features from immediate neighbors and divides the resulting sum by the number of 

neighbors plus one to account for the cell itself. The second option is to aggregate by the 

sum, which skips normalizing by dividing the sum by the degree of the node’s connectivity. 

Reduction by mean is commonly used for a numerically more smooth aggregation. Sum 

aggregation, however, can be advantageous as it directly encodes cell density information, 

which can vary across structures, though the resulting sum values may be overly separated 

in cell-sparse regions where cells have only a few neighbors. While the spatial smoothing 

operation performed by UTAG may seem as if some of the details are diluted, the spatially 

smoothed matrix is only used for domain segmentation. Nuanced details such as rare cell 

types infiltrating specific domains can still be detected and used in downstream analysis, for 

example, on a per domain level. We denote the resulting matrix ‘spatially aggregated feature 

matrix’ that encodes information of both single cell features and cell locations. The cells in 

the spatially aggregated feature matrix are clustered into groups using the Leiden22 (v.0.8.7) 

and PARC23 (v.0.31) algorithm at multiple resolutions. Each cluster can then be annotated 

into microanatomical domains based on enrichment profiles or by inspecting user-provided 

cell type identities.

User guide on UTAG

UTAG greatly reduces the amount of manual labor involved in segmentation of 

microanatomical domains, but its successful application depends on three key user inputs. 

First is the max_dist parameter, which defines the threshold distance between cells for graph 

construction. Second is the clustering resolution to determine the coarsity of the clustering 

of cells. Last is user interpretation of the resulting clusters to label the microanatomical 

structures detected.

We intentionally leave the optimization of max_dist open to users to maximize the 

applicability of UTAG to unseen datasets. This is because this parameter is tightly related 

to the resolution or magnification of the data being used. In our manuscript, we apply the 

method on IMC data and optical imaging-based CyCIF, which have different per unit area 

pixel densities. In the case of IMC, we suggest that a suitable max_dist is between 10 

and 20, as 1 pixel exactly maps to 1 micrometer. With an imaging-based technique like 

CyCIF, the optimal distance can vary with magnification, focal lengths, distance to tissue 

and other factors, which make it hard to suggest a one-fits-all rule. Also there might be 

nuanced differences for the exact tissue of interest that may vary across specimens under 

examination.
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We believe that the optimal clustering resolution is a hyperparameter that should be explored 

to suit their biological question of interest. We therefore provide a list of resolutions 

as default to be explored by the user. A general rule is that increasing the resolution 

parameter will return more refined substructures, while decreasing it will return coarser, 

more broad structures. We also recommend users to use a higher resolution parameter 

when screening for a rare microanatomical domain, as higher resolution will capture more 

structures, and vice versa. In our benchmarking, we saw that, with the exception of extreme 

hyperparameter values, UTAG’s performance was fairly robust across various clustering 

resolutions (Extended Data Fig. 3).

Running UTAG on IMC data

To quantify cellular phenotypes, we used the cell masks and aggregated all pixels of a cell 

with the mean intensity for each IMC channel. We combined the per cells expression vector 

from all cells in all images into a single matrix. We then performed log transformation, 

z-score normalization truncated at positive and negative 3 standard deviations, followed 

by Combat50 (v.0.3.0) batch correction to phase out sample-specific biases. This was 

subsequently followed by a final z-score normalization truncated at 3 standard deviations.

For the healthy lung dataset, UTAG was run with a max_dist of 12, which, in physical 

dimensions, was 12 microns (Extended Data Fig. 1b). For lung infection and UTUC data, 

we ran UTAG with max_dist of 20; for COVID-19 intestine and diabetic pancreas data it 

was run with a max_dist of 15. Each dataset was clustered at resolutions of 0.05, 0.1, 0.3 

and 0.5. The principle of selecting the optimal resolution was based on how diverse each 

dataset was, or in other words, how many patients and diseases each dataset contained. 

Higher resolutions, resulting in more clusters, were preferred in diverse datasets, whereas 

more homogenous datasets required only a few clusters. For the normal lung dataset, we 

used Leiden clustering at 0.3 resolution and annotated the resulting 11 clusters into 5 

microanatomical domains (Extended Data Figs. 1c and d). For the infected lung, UTUC, 

intestine and pancreas dataset we used PARC clustering with resolution 0.3, 1.0, 0.5 and 0.1 

respectively, which resulted in 20, 34, 12 and 5 clusters.

Running SpaGene and SpatialLDA

To benchmark UTAG against other methods for high-order tissue structure inference, we ran 

SpaGene25 and SpatialLDA26 on both datasets for which we have ground truth annotation 

of microanatomical domains. For this purpose, we also reran UTAG using a max_dist of 15 

for both datasets, under Leiden clustering resolutions of 0.05, 0.07, 0.1, 0.3, 0.5, 0.8, 1.0 and 

2.0, which resulted in 3, 5, 10, 11, 14, 17, 19, 25, 31 and 55 clusters for the healthy lung 

data, and 3, 4, 6, 22, 23, 27, 38 and 61 clusters for the UTUC data. We intentionally do not 

use the interpreted annotations in Fig. 2c and d and instead use the raw labels for consistent 

and fair comparison across methods. SpaGene was run using R v.4.1.3 on a per slide basis 

using the expression profile and cell location information, as designed by the authors. The 

number of nearest neighbors to build the graph was set to 24, and the number of latent 

topics was set to 10 to learn the various structures in the healthy lung dataset and 4 to learn 

the separation between tumor and stroma for the UTUC dataset. The number of resulting 

cell-to-topic and topic-to-marker matrices were imported back to Python. As there was no 
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guarantee that topics learned for each slide was coherent across slides, we had to regroup 

the topics across slides. We used agglomerative clustering as implemented in the scikit-learn 

package to relabel the topics. The number of resulting clusters from agglomerative clustering 

was set to match the number of clusters from UTAG. Each cell was assigned the maximum 

probability relabeled topic to retrieve exactly one most likely topic per cell.

SpatialLDA was run using a working implementation from scimap51. For the cell type 

distribution in niche, the 7 cell type categories were used for the healthy lung data and 16 

cell type categories were used for the UTUC data. Niche for each cell was defined by a 

radius of 15, matching the max_dist of 15 used for UTAG. The number of motifs was set to 

match the number of clusters from UTAG. Each cell was then assigned with the maximum 

probability topic to discretize the probability matrix.

Benchmarking against manual expert annotation

To show that the gain of information using the UTAG algorithm is statistically significant, 

we compare cell types, SpaGene results, SpatialLDA results and UTAG results against 

manual expert annotations (Extended Data Fig. 3a and b) across various resolutions. To 

objectively assess the performance of UTAG, we used Rand score and homogeneity score 

as an evaluation metric for the unsupervised segmentation task. Rand score, also known as 

Rand index, is a similarity measurement that is calculated by the ratio of agreeing pairs 

over all pairs between the predicted and true labels. The homogeneity score52 assesses 

how uniquely predicted labels associate with true labels (a measure of cluster purity). 

Ranges of both metrics are from 0.0 to 1.0 inclusive, with higher scores indicating better 

performance. To lay out a baseline for how the metrics work, we also show how random 

labels perform against the expert annotation. To test for differences in performance, we 

perform a two-tailed Mann-Whitney test between random labels scores, cell type scores and 

UTAG scores. The resulting performance was reported in Extended Data Fig. 3.

Quantification of cellular and microanatomical interactions

As UTAG achieves microanatomical domain annotation based on graphs leveraging spatial 

proximity, we can take advantage of the spatial neighborhood information for downstream 

analysis. Under the graph formalism, we can quantify cellular and domain interactions 

from edge counts connecting distinct nodes, identified by cell type and domain properties. 

Graphs were constructed with a threshold distance of 40 pixels for healthy lung IMC 

samples to allow a more lenient interaction threshold compared to the UTAG default. For 

cell-to-cell interactions, we quantify edges connecting a cell type to another and aggregate 

the connections into an adjacency matrix denoting the cell type colocalization. We present 

this cellular interaction matrix as a chord plot generated by holoviews python library. 

Microanatomical domains are similarly aggregated for each domain-to-domain interaction. 

These results are presented as a networkx53 (v.2.6.2) graph in a spring force layout, which 

visually demonstrates how each domain colocalizes with others. This was done on the 

logarithm of the counts of edge connections to ensure that the counts are on a comparable 

scale.
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Lung infection univariate and principal component analysis

To quantify the difference in domain composition across disease types, each IMC slide was 

aggregated by the number of cells in each domain. Cell counts were subsequently percent 

normalized to take into account the difference in cell densities. We perform a univariate 

domain proportion comparison for each disease group with respect to healthy samples using 

a two-sided Mann-Whitney U-test. For a multivariate analysis, we reduce the dimensionality 

of domain proportion using PCA. We then perform a two-sided Mann-Whitney U-test on 

the first principal component, similar to the univariate analysis, to show how all domain 

distributions jointly vary across disease. To show that the first principal component of 

domain proportions better captures the difference in diseases, we perform the same analysis 

with cell type proportions. All Mann-Whitney U-tests were performed using pingouin54 

(v.0.3.12) and were Bonferroni-Hochberg corrected.

Quantification of domain colocalization frequency

Quantifying domain-to-domain colocalization by counting the number of edges may not 

provide the most representative measurement because this value would be largely explained 

by the original domain abundance. For example, if there is one domain that is more abundant 

than every other domain, then that domain generally has the highest colocalization count 

with all other domains. To compensate for the original domain distribution, we repeatedly 

performed domain permutation, random shuffling of domains for cells in the graph, to 

establish an expected colocalization frequency given the domain distribution. We add one 

to both the observed colocalization frequency and expected frequency, computed by the 

mean of 100 random permutations, to avoid division by zero. Log-fold change for domain 

colocalization is then computed by taking the differences between two log-transformed 

values.

Running UTAG on CyCIF data

40X CyCIF lung cancer samples were downloaded from https://doi.org/10.7303/

syn17865732. We used the provided cell segmentation probability maps generated with 

standard watershed algorithms in ImageJ or MATLAB to create cell masks using DeepCell, 

similar to the IMC data preprocessing. Cell fluorescence was mean aggregated, just as in the 

IMC data. All cells across images were combined together and the resulting matrix was log 

transformed, z-scaled, batch corrected with Combat and then z-scaled again.

Before running the UTAG algorithm, 11 DNA channels and 7 background channels were 

removed from the feature matrix, leaving 26 channels, to remove background noise and to 

ensure that the algorithm was not overly influenced by replicates of a single feature. The 

UTAG algorithm was run with a thresholding distance of 50 pixels because the per pixel 

distance was more than twice as high at this magnification. We ran both Leiden and PARC 

clustering at multiple resolutions of 0.05, 0.1, 0.3, 0.5 and 1.0. We annotated stromal and 

tumor regions based on 0.1 resolution, as the seven created clusters were more than enough 

for a small dataset with three patients and 16 slides.
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Software used: squidpy49 v.1.1.0, Leiden22 v.0.8.7, PARC23 v.0.31, ilastik55 v.1.3.3, 

DeepCell37 v.0.10.0, Combat50 v.0.3.0, StarDist34, lifelines56 v.0.26.4, scikit-image57, scikit-

learn58 v.0.24.2, scanpy59 v.1.8.0, pingouin54 v.0.3.12., scimap51 v.0.18.1 and R v.4.1.3.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. UTAG analysis of IMC images of healthy lung.
a) UMAP representation of all cells across all images based on cellular phenotypes only 

(left), or cellular phenotypes and positional information combined with UTAG (right). 

b) Labeling of domains from clustering indices. Leiden clustering at resolution 0.3 was 

mapped to domains based on expression profiles as it performed well on both Rand and 

Homogeneity score. Data in boxplots are presented by minimum, 25th percentile, median, 
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75th percentile, and maximum. **p < 0.01,,*p < 0.05, two-sided Mann-Whitney-U test 

Benjamini-Hochberg adjusted. c) Deciding optimal resolution for healthy lung IMC data. 

Leiden clustering for resolution of 0.1 was selected as the ideal resolution because it had the 

greatest median rand score across all slides.

Extended Data Fig. 2 |. Illustration of UTAG results on IMC images of healthy lung.
a) Illustration of lung IMC images where the first column illustrates three channels (KRT5, 

aαSMA, DNA), the second column cell type identities, the third column cells colored by 
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manual annotation of microanatomical domains, and the fourth column cells colored by 

UTAG domains. Each channel on the raw signal is keratin 5 for red, alpha smooth muscle 

for green, and DNA for blue. Scale bars represent 200 μm.

Extended Data Fig. 3 |. Benchmarking UTAG and competing methods against expert labels.
a) Results of each method on healthy lung data to segment microanatomical domains. 

Number of latent topics for SpaGene was set to 10 to capture the diverse target phenotypes. 

Due to supporting only single images, SpaGene topics were relabeled using agglomerative 
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clustering to consistently label topics across slides. b) Results of each method on tumor vs. 

stroma on upper tract urothelial carcinoma. Number of latent topics for SpaGene was set to 

four to differentiate tumor versus stroma. c) Example of running UTAG, SpatialLDA, and 

SpaGene to demonstrate the difference in performance. The color mapping in this panel is 

different for each method as all three methods are unsupervised. d) Same as c) but with 

domain colors remapped to correspond to the ones from expert labels for ease of visual 

comparison. For a) and b), Data in boxplots are presented by minimum, 25th percentile, 

median, 75th percentile, and maximum. Values outside of 1.5 times interquartile range are 

classified as outliers and are denoted as fliers.

Extended Data Fig. 4 |. Application of UTAG to quantify domain colocalization frequency.
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a) Full comparison of domain colocalization frequency for all pairwise microanatomical 

domains in lung infection data grouped by disease type. Data in boxplots are presented by 

minimum, 25th percentile, median, 75th percentile, and maximum. Values outside of 1.5 

times interquartile range are classified as outliers and are denoted as fliers.

Extended Data Fig. 5 |. Application of UTAG to various data and tissue types.
a)Discovery of tumor and stromal domains in CyCIF images of two types of lung cancer. 

The top row illustrates the intensity of three selected channels, while the bottom row 
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displays the UTAG domains. Scale bars represent 200 μm. b) Discovery of structural 

domains in 15 intestine IMC images of COVID-19 infected patients30. The first row shows 

three channels of representative IMC images. The second row shows the corresponding 

segmented microanatomical domains. Scale bars represent 500 μm. c) Discovery of 

microanatomy in a dataset of 100 IMC images from pancreatic tissue of diabetes patients31. 

Each row represents a different region of interest. The first column shows three channels 

of IMC images. The second column shows identified cell types in the dataset. The third 

column shows supervised islet segmentation results from a trained random forest using 

manual labels available in the original publication. The fourth column shows unsupervised 

islet segmentation results from UTAG. Scale bars represent 200 μm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Unsupervised discovery of tissue architecture with graphs.
a, Schematic description of the methodology for the discovery of domains of tissue 

microanatomy and architecture using graphs of cellular interactions. Intensity values and 

cellular segmentation masks are used to derive an expression matrix containing the intensity 

of each marker in each cell and a graph of physical cellular interaction based on proximity, 

which can be represented as a binary adjacency matrix. Message passing (described in b) 

combines the expression and adjacency matrices into a new matrix of spatially aggregated 

expression values which serves as the input for clustering methods. The resulting clusters 

represent domains of tissue microanatomy underlying the tissue architecture. The procedure 

can be performed jointly across several images, yielding consistent microanatomical 

domains across images. b, Graphical description of the message passing procedure, in which 

the adjacency and expression matrices are combined with the dot product. Note how in the 

message-passed graph, the node colors are linear combinations of the colors of the nodes 

with which they share edges. Each element in the feature matrix in this example depicts a 

vector of features.
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Fig. 2 |. Discovery of microanatomical domains and principles of tissue architecture in human 
lung.
a, Microanatomical domains detected in IMC images of healthy human lung tissue. The first 

column illustrates the intensity of three selected channels in four representative images; the 

second column, the cell identity of the cells in those images; the third column displays 

the microanatomical domains discovered with UTAG; and the fourth column displays 

the microanatomical domains manually annotated by experts. Scale bars, 200 μm. b, 

Benchmarking of UTAG and competing methods against expert annotation. n = 26 highly 
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multiplexed IMC lung images from three donor specimens. For a baseline comparison, we 

include randomized domain labels per cell and cell type identities. Each point represents one 

image and for both metrics values closer to 1 are optimal.** P < 0.0001, two-sided Mann-

Whitney U-test after Benjamini-Hochberg P-value correction. Data in boxplots are presented 

by minimum, 25th percentile, median, 75th percentile and maximum. Values outside of 1.5 

times interquartile range are classified as outliers and are denoted as fliers. c, Mean channel 

intensity for all channels aggregated by the discovered microanatomical domains. d, Cellular 

composition of microanatomical domains. e, Composition of microanatomical domains in 

terms of intercellular interactions derived from physical proximity. f, Model of physical 

proximity between microanatomical domains in the lung. The nodes of the graph represent 

the microanatomical domains, and the color of the edges between them show the strength 

and direction of their physical interactions. The node position is determined based on the 

edge weight using the Spring force-directed algorithm.
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Fig. 3 |. Microanatomical domains discovered by UTAG across data types and disease states.
a, Discovery of microanatomical domains in IMC images of lung from patients of 

various pathologies. The top row illustrates the intensity of three selected channels and 

the bottom row displays the UTAG domains. Scale bars, 200 μm. b, Univariate analysis 

of microanatomical domain composition across lung infection disease. Microanatomical 

domain composition was percent normalized per slide. c, PCA for joint analysis of domain 

(left) or cell type (right) composition per image. The top two plots visualize the position of 

images in the first two principal components. The bottom two plots show the distribution 
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of the first principal component aggregated by disease group. d, Log odds of domain 

colocalization frequencies across diseases in alveolar domains. Log odds indicates observed 

frequency over expected, as estimated empirically by random permutation. Positive values 

indicate high intradomain (alveolar–alveolar) colocalization compared to random mixtures 

and negative indicates low interdomain colocalization. **P < 0.01, *P < 0.05, two-sided 

Mann-Whitney U-test after Benjamini-Hochberg adjustment. e, IMC images of healthy 

and COVID-19 infected lung tissue. The image of healthy lung tissue shows highly 

compartmentalized domains, particularly in the vasculature, while the image of the diseased 

lung shows loss of compartmentalization. Scale bars, 200 μm. For b and c, n = 239 highly 

multiplexed IMC lung images from 27 deceased patients due to lung infection. *P < 0.05, 

two-sided Mann-Whitney U-test after Benjamini-Hochberg adjustment. Data in boxplots 

are presented by minimum, 25th percentile, median, 75th percentile and maximum. Values 

outside of 1.5 times interquartile range are classified as outliers and are denoted as fliers. 

ARDS, acute respiratory distress syndrome.
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Fig. 4 |. Discovery of microanatomical domains associated in cancer.
a, Discovery of tumor and stromal domains in IMC images of UTUC. The top row illustrates 

the intensity of three selected channels and the bottom row displays the UTAG domains. 

Scale bars, 200 μm. b, Benchmark of the UTAG domains against manual annotation of 

tumor and stromal domains. For comparison, we include randomized domain labels per 

cell and cell type identities. Each point represents one image and for both metrics values 

closer to 1 are optimal. n = 16 highly multiplexed IMC images with manually annotated 

microanatomical domains. Data in boxplots are presented by minimum, 25th percentile, 

median, 75th percentile and maximum. Values outside of 1.5 times interquartile range are 

classified as outliers and are denoted as fliers. **P < 0.01, *P < 0.05, two-sided Mann-

Whitney U-test, Benjamini-Hochberg adjusted.
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