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Abstract

Background: ScanNavTM Anatomy Peripheral Nerve Block (ScanNav™) is an artificial intelligence (AI)-based device that

produces a colour overlay on real-time B-mode ultrasound to highlight key anatomical structures for regional anaes-

thesia. This study compares consistency of identification of sono-anatomical structures between expert ultrasonogra-

phers and ScanNav™.

Methods: Nineteen experts in ultrasound-guided regional anaesthesia (UGRA) annotated 100 structures in 30 ultrasound

videos across six anatomical regions. These annotations were compared with each other to produce a quantitative

assessment of the level of agreement amongst human experts. The AI colour overlay was then compared with all expert

annotations. Differences in humanehuman and humaneAI agreement are presented for each structure class (artery,

muscle, nerve, fascia/serosal plane) and structure. Clinical context is provided through subjective assessment data from

UGRA experts.

Results: For humanehuman and humaneAI annotations, agreement was highest for arteries (mean Dice score 0.88/0.86),

thenmuscles (0.80/0.77), and lowest for nerves (0.48/0.41). Wide discrepancy exists in consistency for different structures,

both with humanehuman and humaneAI comparisons; highest for sartorius muscle (0.91/0.92) and lowest for the radial

nerve (0.21/0.27).

Conclusions: Human experts and the AI system both showed the same pattern of agreement in sono-anatomical

structure identification. The clinical significance of the differences presented must be explored; however the percep-

tion that human expert opinion is uniformmust be challenged. Elements of this assessment framework could be used for
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other devices to allow consistent evaluations that inform clinical training and practice. Anaesthetists should be actively

engaged in the development and adoption of new AI technology.

Keywords: artificial intelligence; machine learning; medical devices; regional anaesthesia; sono-anatomy; ultrasonog-

raphy; validation
Editor’s key points

� Methods to evaluate and artificial intelligence (AI)-

based adjuncts to ultrasound-guided regional

anaesthesia have not been established.

� This study compares identification of sono-anatom-

ical structures between expert ultrasonographers

and the AI-based ScanNavTM technology.

� Using a library of ultrasound images across six

anatomical regions, 19 experts in ultrasound-guided

regional anaesthesia annotated 100 structures which

were compared with each other and to the AI-

generated colour overlay.

� Humanehuman and humaneAI agreement was

highest for arteries and lowest for nerves, with wide

differences in consistency for different structures.

� Human experts and the AI system showed the same

pattern of agreement in sono-anatomical structure

identification; this approach provides a model for

future assessment and comparison of AI-assisted

ultrasonography.
Ultrasound image guidance for regional anaesthesia, first

described in 1989,1 is now the predominant technique used to

direct the targeted blockade of peripheral nerves.2 Image

interpretation is critical in this practice, including the accurate

identification of key sono-anatomical structures.3 Recent

guidance aims to standardise anatomical structure identifi-

cation for safe and effective performance of ultrasound-

guided regional anaesthesia (UGRA).4,5

Assistive artificial intelligence (AI) technology could have a

role in UGRA through supporting ultrasound image interpreta-

tion,6 particularly for non-experts, and systems have begun to

emerge that aid in the identification of key structures.7e13

Evaluation of such devices typically involves comparison to

identification by a limited number of human experts (up to

three), comparing the agreement of an AI-generated structure

overlay with that derived from the human experts (the ‘ground

truth’).14e17 However, human image interpretation is known to

be variable,18,19 thus a small number of individuals might not

adequately represent the diversity of expert opinion. Further-

more, these quantitative assessments of system accuracy are

unfamiliar to clinicians and lack clinical context, as there is no

clear threshold at which overlap between an AI prediction and

human expert ground truth is known to be clinically acceptable.

Other studies report qualitative analysis of accuracy, using

expert assessment of AI structure identification of real-time or

pre-recorded ultrasound images.7,8,11 Typically, studies do not

undertake both analyses for the same structures and ultra-

sound images, thus notmaximising the opportunity to evaluate

the system. Furthermore, different systems are evaluated on
different ultrasound scans when visualising different struc-

tures: this limits comparison between one system and another.

This study quantitatively and objectively evaluates the

variability in sono-anatomical structure identification by hu-

man experts. We compare this with AI algorithms used by a

system recently approved for clinical use in Europe and the

USA (ScanNavTM Anatomy Peripheral Nerve Block; ScanNav™,

Intelligent Ultrasound, Cardiff, UK). The aim of the study is to

evaluate and report any differences in sono-anatomical

structure identification when comparing humanehuman im-

age analysis with humaneAI analysis. These data are pre-

sented alongside a subset of published qualitative data8

derived from the same underlying ultrasound videos and AI

system to provide clinical context. This is intended to provide

a case study demonstrating the need for a consistent evalua-

tion framework for novel AI devices in this field.

Methods

Ethical approval for this study was granted by the Oxford

University Medical Sciences Inter-Divisional Research Ethics

Committee (R75449/RE001).

Ultrasound scans

Ultrasound scans were obtained from our previous study8 in

which UGRA experts collected 720 ultrasound scans of 10-s

duration from healthy adult subjects (without known pathol-

ogy affecting the areas scanned), with 80 scans performed for

each anatomical region, using SonoSite ultrasound machines

(Fujifilm SonoSite, Bothell, WA, USA) with an X-Porte HFL50xp/

L38xp linear or C60xp curvilinear probe, and PX L15-4 and L12-

3 linear or C5-1 curvilinear probe. The scans were reviewed by

three UGRA experts to ensure an appropriate ultrasound view

was obtained and no atypical anatomy was present.

Scans from six of the anatomical regions in the study

above, representing ‘basic’ (Plan A) UGRA procedures,4,20 were

utilised: interscalene block (ISB) and axillary block (AxB) levels

of the brachial plexus, erector spinae plane block (ESPB), rectus

sheath block (RSB), adductor canal block (ACB), and popliteal

level sciatic nerve block (SNB). Five scans for each anatomical

region, displaying an appropriate view and without atypical

anatomy, were sampled at random from the scans collected.

Anatomical structures

Anatomical structures considered are strong recommenda-

tions for identification on ultrasound in the block view for

each peripheral nerve block (see Supplementary material for

table of structures by structure class and block region).4 Only

the axillary vein was omitted, as this is not identified by the AI

system in question. In total, 20 anatomical structures were

considered across all anatomical regions. As five scans were

included for each region, a total of 100 anatomical structures

were evaluated across the 30 ultrasound scans.
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Expert reviewer assessment

Nineteen experts in UGRA (including five of the authors) were

recruited from seven centres in the UK to assess the recorded

ultrasound scans, providing a geographically diverse represen-

tation of practice. All were consultant anaesthetists practising

in the UK National Health Service (NHS) and met at least two of

the following criteria: completed advanced training in UGRA or

held a UGRA-related qualification (e.g. European Diploma in

Regional Anaesthesia & Acute Pain Management, higher de-

gree); regularly delivered direct clinical care using UGRA

(including for ‘awake’ surgery where indicated); and regularly

taught UGRA (included advanced techniques).

Experts viewed the 30 ultrasound scans in the same pre-

determined random order on a HUION Kamvas Pro 13 Graphic

Drawing Monitor (HUION, Shenzhen, China). At the end of

each scan, the expert was able to view the final still frame

image and use a stylus to annotate the required structures

before moving on to the next scan (see Supplementary mate-

rial for ‘instructions for annotation’). Thus, 19 experts anno-

tated each of the 100 structures (but were blinded to the

annotations of the other experts).

Artificial intelligence device

A 20th assessment was derived from the AI-generated colour

overlay produced by ScanNav™. ScanNav™ is an approved

medical device in Europe and the USA that uses deep learning

to produce a colour overlay on real-time ultrasound, high-

lighting anatomical structures of interest in UGRA (https://

www.intelligentultrasound.com/scannav-anatomy-pnb/).
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Fig 1. Illustration of Dice and Hausdorff metrics. (a) The Dice metric com

is divided by the total areas of the combined annotations. A higher fi

agreement). (b) The Hausdorff metric compares two line annotations. T

in line B. The minimum distance of this group is calculated. This is re

values is then taken. A lower figure indicates stronger agreement (0¼co

image).
The colour overlay for each structure on the final still frame

image of the videos was used for comparison with the human

expert annotations.
Previous qualitative evaluation of artificial intelligence

In our previous study,8 three experts analysed the ScanNav™

colour overlay and provided a qualitative assessment of ac-

curacy. Experts assessed whether the AI-generated colour

overlay on each structure in that video was correct (true pos-

itive/negative, false positive/negative). The experts also

assessed the potential for the AI overlay to modify the risk of

adverse events (e.g. trauma to nerves, arteries, pleura, or

peritoneum) and block failure. As each structure appeared in a

maximum of five ultrasound videos, each assessed by three

experts, a total of 15 individual assessments could bemade. In

addition, they provided a score (0¼poor; 10¼excellent) to rate

the overall highlighting performance.8 Data from the relevant

sono-anatomical structures in our previous study8 are pre-

sented here for comparison with the quantitative assessment

data gathered in this study.
Quantitative evaluation of human experts and
artificial intelligence

For each expert participant, any image without annotation for

all structures was assumed to have been omitted in error and

discarded from analysis. If a structure was not annotated,

whereas at least one other structure in the image was, it was

assumed to have been deemed ‘not visible’ on the image, and
Set A
Set B Take the points of two

lines, called set A
and set B

Calculate all pairwise
distances between

sets A and B

Calculate minimum
distance between each

point in set A and all points
in set B and vice versa

Hausdorff distance is the 
maximum of distances

shown in previous
diagram

pares two enclosed areas. The area of overlap (multiplied by two)

gure indicates stronger agreement (0¼no agreement, 1¼complete

he distance between each point in line A is compared to all points

peated for each point in line A. The maximum of these minimum

mplete agreement, 1¼lines separated by maximum length/width of

https://www.intelligentultrasound.com/scannav-anatomy-pnb/
https://www.intelligentultrasound.com/scannav-anatomy-pnb/


Table 2 Humanehuman (H-H) and humaneartificial intelli-
gence (H-AI) annotation comparisons by structure.

Comparisons by block and structure (Dice metric)

Structure Min Mean Median Max SD

Interscalene block

C5 & C6
- H-H 0.00 0.60 0.63 0.87 0.18
- H-AI 0.02 0.54 0.52 0.87 0.15
Anterior scalene
- H-H 0.00 0.70 0.80 0.96 0.26
- H-AI 0.00 0.73 0.75 0.95 0.20
Middle scalene
- H-H 0.00 0.67 0.75 0.95 0.25
- H-AI 0.00 0.70 0.75 0.94 0.19

Axillary brachial plexus
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therefore included for analysis. Structure annotations that

enclosed an area (arteries,muscles, and nerves) were compared

using the Dice metric to allow comparison of the overlapping

enclosed areas (Fig. 1a). Annotations that required a single line

to denote a structure or tissue plane (fascial/serosal planes)

were compared using the Hausdorff metric to allow evaluation

of the degree of difference in the lines drawn (Fig. 1b).

Annotations for the C5 and C6 nerve roots were grouped

together for analysis, as were the anterior and posterior layers

of the rectus sheath, as this is the method by which the AI

system was developed and so the predictions produced.

Human annotations for a given structure were initially

compared with all other human annotations to provide an

assessment of inter-observer variability for human experts.

The mean, median, minimumemaximum range, and stan-

dard deviation (SD) of the Dice/Hausdorff metric for each class

of structures are reported (artery, muscle, nerve, and fascia/

serosal plane) and presented for each individual structure. The

AI annotation for that structure was then compared with the

human annotations, and reported in a similar manner to

provide an assessment of AIehuman variability. These were

then compared with the qualitative analysis.
Axillary artery
- H-H 0.00 0.85 0.88 0.96 0.14
- H-AI 0.00 0.84 0.85 0.96 0.11
Median nerve
- H-H 0.00 0.44 0.51 0.86 0.26
- H-AI 0.00 0.42 0.52 0.94 0.34
Musculocutaneous nerve
- H-H 0.00 0.50 0.65 0.94 0.34
- H-AI 0.00 0.38 0.53 0.84 0.32
Radial nerve
- H-H 0.00 0.21 0.00 0.94 0.30
- H-AI 0.00 0.27 0.24 0.74 0.25
Ulnar nerve
- H-H 0.00 0.31 0.06 0.94 0.36
- H-AI 0.00 0.31 0.22 0.84 0.30

Erector spinae plane block

ES muscle group
- H-H 0.00 0.81 0.92 0.98 0.25
Results

This study is reported according to the guidelines for early-

stage clinical evaluation of decision support systems driven

by AI (DECIDE-AI).21 Twenty subjects (10 male, 10 female)

contributed to the 30 scans included. The average age of sub-

jects was 41.75 yr (range 23e64) and BMI 28.3 kg m�2

(19.7e38.4; SD 5.5). Information for each subject and block is

contained in the Supplementary material.

The 19 experts asked to annotate 100 structures provided a

total of 1900 potential structure annotations. As the C5/C6

nerve roots and the anterior/posterior layers of the rectus

sheath were each grouped together as a single structure for

analysis, a maximum total of 1710 (19�90) structure annota-

tions was possible. Annotations from one ISB image (three

annotations; C5/6 nerve roots and two scalene muscles) and

one ESPB image (two annotations; ESP muscle group and
Table 1 Humanehuman (H-H) and humaneartificial intelli-
gence (H-AI) annotation comparisons by structure class.

Summary of comparisons

Structure class Min Mean Median Max SD

Dice metric

Artery
- H-H 0.00 0.88 0.89 0.97 0.10
- H-AI 0.00 0.86 0.89 0.96 0.09
Nerve
- H-H 0.00 0.48 0.59 0.96 0.33
- H-AI 0.00 0.41 0.50 0.93 0.29
Muscle
- H-H 0.00 0.80 0.90 0.98 0.23
- H-AI 0.00 0.77 0.84 0.97 0.23

Hausdorff metric

Fascia/serosa
- H-H 0.00 0.08 0.03 1.00 0.13
- H-AI 0.00 0.16 0.05 1.00 0.21
transverse process) were not recorded by one participant, and

thus were removed from the analysis (total of five annotations

omitted). Twenty-six structure annotations were omitted
- H-AI 0.00 0.62 0.75 0.95 0.36

Rectus sheath block

Rectus abdominis
- H-H 0.75 0.92 0.93 0.98 0.04
- H-AI 0.65 0.87 0.91 0.97 0.08

Adductor canal block

Femoral artery
- H-H 0.74 0.90 0.90 0.97 0.04
- H-AI 0.73 0.88 0.89 0.96 0.05
Saphenous nerve
- H-H 0.00 0.51 0.56 0.92 0.26
- H-AI 0.00 0.36 0.50 0.84 0.30
Sartorius
- H-H 0.00 0.91 0.94 0.98 0.14
- H-AI 0.01 0.92 0.93 0.97 0.10

Sciatic nerve block

Sciatic nerve
- H-H 0.31 0.78 0.82 0.96 0.13
- H-AI 0.04 0.60 0.66 0.93 0.28

Continued



Table 2 Continued

Comparisons by block and structure (Dice metric)

Structure Min Mean Median Max SD

Axillary brachial plexus

Fascia over conjoint tendon
- H-H 0.00 0.08 0.03 0.67 0.12
- H-AI 0.00 0.23 0.16 1.00 0.25

Erector spinae plane block

Transverse process
- H-H 0.00 0.05 0.01 0.67 0.09
- H-AI 0.00 0.01 0.00 0.17 0.03

Rectus sheath block

Rectus sheath
- H-H 0.00 0.09 0.05 0.68 0.10
- H-AI 0.00 0.10 0.04 0.97 0.17
Peritoneum
- H-H 0.00 0.09 0.03 1.00 0.17
- H-AI 0.00 0.30 0.29 0.97 0.19
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from analysis because of incorrect annotation (enclosure

instead of line or vice versa). Thus, a total of 31 annotations

were omitted or performed incorrectly by the experts, leaving

a total of 1679 annotations collected and analysed.

Table 1 shows summary data for annotations by structure

class (artery, muscle, nerve, and fascia/serosa) comparing

humanehuman annotations and AIehuman annotations.

Mean Dice score was highest for artery annotations (muscle

highest for median), followed by muscle, and then nerve, in

both humanehuman and AIehuman comparisons. Variation

(SD) in structure identificationwas greatest for nerves, followed

by muscles, and then arteries (also for both humanehuman

and humaneAI). Fascial/serosal planes cannot be directly

compared with the other classes as they were the only class

assessed using the Hausdorff metric. In each case, the mean

score was improved (higher for Dice/lower for Hausdorff) for

humanehuman comparisons than for humaneAI compari-

sons, although humaneAI comparisons showed less variation.

Table 2 shows data for annotations of each structure

comparing humanehuman and AIehuman annotations. Of

the 18 structures considered (C5/C6 and anterior/posterior

layers of rectus sheath combined), the mean score for

humanehuman annotation was superior in 11, humaneAI

annotation was superior in six, and they were equal in one.

However, humaneAI comparisons had greater consistency

(less variation/smaller SD) in 10 structures, compared with

eight structures for humanehuman comparisons.

Table 3 shows the comparative qualitative assessment for

each structure (n¼15 expert assessments from previous

study8). These data are not available for six structures: anterior

and middle scalene muscles, fascia over the conjoint tendon,

erector spinae muscle group, rectus abdominis, and sartorius

muscles. Two data points were not recorded for the qualitative

assessment of AI system accuracy in identifying the radial

nerve (n¼13).
Discussion

This is the most comprehensive objective and quantitative

evaluation of both human expert variability and AI system
performance for evaluating ultrasound images relevant to

regional anaesthesia. It is also the only study to present such

data alongside qualitative and clinically orientated companion

data. Humanehuman expert structure identification typically

displayed a superior mean score (Dice/Hausdorff metric) than

humaneAI, although humaneAI variation was lower.

Human experts displayed variability in the identification of

anatomical structures defined as core (minimum) structures

to be identified on the block view for the relevant peripheral

nerve block. Expert agreement was highest with arteries and

lowest with nerves, both of which are essential to efficacy and

safety in UGRA. Visual interpretation of this variability by

structure class is presented in Figure 2. Structures with lower

level of agreement are often challenging to identify in clinical

practice (e.g. radial nerve) and display anatomical variation

(e.g. musculocutaneous nerve) (Fig. 3). Interpretation of ultra-

sound images is central to UGRA practice,22 but medical image

interpretation is subjective, even amongst experts.18 Struc-

tural and functional dissimilitude in human anatomy has

been described earlier in relation to UGRA.23,24 However, no

prior studies have quantified such variability in UGRA expert

sono-anatomical structure identification. The clinical signifi-

cance of variability as demonstrated in this study is not yet

clear, but future evaluations of AI technology should incor-

porate this factor rather than simply comparing AI perfor-

mance to the pooled opinion of a small number of experts. All

expert participants in this study regularly perform UGRA, and

it is not possible to determine the extent to which this vari-

ability in structure identification influences efficacy or safety

in practice. There is no clear threshold (for either Dice or

Hausdorff metric) at which structure identification is deemed

‘satisfactory’, and any threshold might be different for

different structure classes (e.g. nerve vsmuscle). Nevertheless,

based on these data, the assumption that expert opinion is

uniform or definitive should be challenged.

ScanNav™, an AI system approved for clinical use in

Europe and the USA, showed the same pattern of variability

when compared with human experts. The highest level of

agreement with human interpretation was seen for arteries

and the lowest agreement for nerves. The mean score was

typically lower, but with less variation. As with the differences

in humanehuman agreement, the clinical significance of

these differences is unclear.

Previous studies have attempted to quantify accuracy of AI

systems for sono-anatomical structures relevant to regional

anaesthesia.7,8,11,16,17,25e27 Many report the Dice metric (or

similar), with results in a similar range, although typically the

ground truth was determined by fewer (one to three) experts

and only for a few selected structures. Three studies have used

subjective evaluation of accuracy by UGRA experts,7,8,11 two of

which are our prior evaluations of ScanNav™. Given the hu-

man expert variability demonstrated here, it is not clear

whether comparison with a small number of experts is

appropriate or whether quantitative assessment (utilising the

Dice metric or similar) is useful. The authors hypothesise that

non-experts display lower mean scores and greater variability

than experts, althoughmany still use these techniques in their

clinical practice (often independently). It is therefore unclear

what level of performance is required for AI systems (or

humans) to be suitable for clinical use. As shown in this study,

systems have higher levels of agreement for some structures

(e.g. sartorius muscle mean Dice metric 0.92) than for others

(e.g. radial nerve mean Dice metric 0.27). This raises the

question of whether systems should be approved in their



Table 3 Subjective assessment of artificial intelligence system accuracy with associated potential to modify the risk of adverse events, block failure, and subjective overall score of
system performance. FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Accuracy rate % (n/n) Adverse event % (n/n) Nerve trauma % (n/n)
*local anaesthetic
systemic toxicity
ypneumothorax
‡peritoneal violation

Block failure % (n/n) Subjective
score

(TPþTN)/
Total

FP/Total FN/Total Increase No
change

Decrease Increase No
change

Decrease Increase No
change

Decrease Mean
(minemax; SD)

Interscalene block
C5 nerve root 86.7 (13/15) 6.67 (1/15) 6.7 (1/15) 13.3 (2/15) 0 (0/15) 86.7 (13/15) 13.3 (2/15) 13.3

(2/15)
73.33
(11/15)

6.67
(1/15)

20.00
(3/15)

80.00
(12/15)

7.267
(0e10; 2.719)C6 nerve root 100 (15/15) 0 (0/15) 0 (0/15) 6.7 (1/15) 20.0 (3/15) 73.3 (11/15)

Scalenus anterior
Scalenus medius
Axillary brachial plexus
Axillary artery 100 (15/15) 0 (0/15) 0 (0/15) 0 (0/15) 0 (0/15) 100 (15/15) 6.7 (1/15)

*6.7 (1/15)
40.0
(6/15)
*6.7
(1/15)

53.33
(8/15)
*86.67
(13/15)

13.33
(2/15)

20.00
(3/15)

66.67
(10/15)

7.0 (2e9; 2.066)
Median nerve 86.7 (13/15) 13.3 (2/15) 0 (0/15) 6.7 (1/15) 20.0 (3/15) 73.3 (11/15)
Musculocutaneous
nerve

80.0 (12/15) 0 (0/15) 20.0 (3/15) 6.7 (1/15) 26.7 (4/15) 66.7 (10/15)

Radial nerve 84.6 (11/13) 15.4 (2/13) 0 (0/13) 7.7 (1/13) 7.7 (1/13) 84.6 (11/13)
Ulnar nerve 93.3 (14/15) 6.7 (1/15) 0 (0/15) 6.7 (1/15) 6.7 (1/15) 86.7 (13/15)
Fascia conjoint
tendon

Erector spinae plane block
Erector spinae
muscle group

‡6.7 (1/15) ‡20.0
(3/15)

‡73.33
(11/15)

13.33
(2/15)

13.33
(2/15)

73.33
(11/15)

6.533
(1e10; 2.7)

Transverse process 80.0 (12/15) 0 (0/15) 20.0 (3/15) 6.7 (1/15) 26.7 (4/15) 66.7 (10/15)
Pleura 93.3 (14/15) 0 (0/15) 6.7 (1/15) 13.3 (2/15) 13.3 (2/15) 73.3 (11/15)
Rectus sheath block
Rectus abdominis y0 (0/15) y20.00

(3/15)

y80.00
(12/15)

0 (0/15) 6.67
(1/15)

93.33
(14/15)

7.467 (5e9; 1.4)
Rectus sheath 100 (15/15) 0 (0/15) 0 (0/15) 0 (0/15) 13.3 (2/15) 86.7 (13/15)
Peritoneum 100 (15/15) 0 (0/15) 0 (0/15) 0 (0/15) 20.0 (3/15) 80.0 (12/15)
Adductor canal block
Femoral artery 100 (15/15) 0 (0/15) 0 (0/15) 0 (0/15) 0 (0/15) 100 (15/15) 6.7 (1/15)

*0 (0/15)
53.3
(8/15)
*0
(0/15)

40.00
(6/15)
*100.00
(15/15)

0 (0/15) 6.67
(1/15)

93.33
(14/15)

7.600 (2e9; 1.8)
Saphenous nerve 93.3 (14/15) 0 (0/15) 6.7 (1/15) 6.7 (1/15) 13.3 (2/15) 80.0 (12/15)
Sartorius

Sciatic nerve block
Sciatic nerve 100 (15/15) 0 (0/15) 0 (0/15) 0 (0/15) 13.3 (2/15) 86.7 (13/15) 0 (0/15) 13.3

(2/15)
86.67
(13/15)

6.67 (1/15) 6.67
(1/15)

86.67
(13/15)

7.667
(1e10; 2.413)
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Fig 2. Visual depiction of the highest, intermediate, and lowest structure class annotations by the Dice metric. All annotations for (a) the

femoral artery, (c) saphenous nerve, and (d) sartorius muscle were all taken from the same adductor canal block ultrasound scan (b).

Colour scheme indicating number of human experts to include the pixel in their annotation (max¼19). The white superimposed overlay

shows ScanNav™.
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entirety, or on a structure-by-structure basis. In either case,

data for a full set of structures should be included in an

assessment of a system in its entirety rather than simply a

subset of the data.

The subjective and qualitative data show similarities in the

patterns of system accuracy (e.g. accuracy is often lowest for

nerves). However, there is less granularity in these qualitative

data (e.g. lower rate of structure identification is less pro-

nounced for the radial nerve compared with the quantitative

data). Given the variability in objective data from the human

experts, it is not certain whether this level of granularity is

useful information. Despite limitations to the AI structure

identification, there were few cases of perceived increased risk

for adverse events or block failure. Because of the emerging

nature of this field and uncertainty over what level and type of

data are required, the authors suggest that an optimal

approach is to present these data in a standardised format as

in this study. This will allow consistent evaluation of different

systems and comparison of one system with another.

Ultrasonography was introduced and used in clinical

practice before data confirmed its efficacy or safety. Several

benefits have since been proven, although it is still not

established that use of ultrasound reduces the incidence of

nerve injury in UGRA.28 Similarly, AI is a rapidly evolving field
with an emerging influence on clinical practice. The clinical

community must familiarise themselves with the AI field and

its common methodologies (e.g. Dice/Hausdorff metrics) to

evaluate the level of evidence required when implementing AI

systems in anaesthetic practice.

There is currently no uniform system of evaluation or

agreement on what approach is sufficiently robust to evaluate

emerging AI devices in UGRA prior to approval for clinical use.

Technical (quantitative) methods of system evaluation lack

clinical context, whereas clinical evaluations can be subjective

and lack the same level of detail. These data demonstrate a

consistent framework to evaluate novel AI devices in UGRA,

combining objective/quantitative with subjective/clinical

assessments.

An open-access repository of anonymised ultrasound

videos and images, with an independent ‘ground truth’ eval-

uation using an agreed set of recommended structures,4,5

could be used in future to evaluate the performance of AI de-

vices (or assess the performance of other human operators).

Such an approach is used in other fields of AI applied to image

interpretation.29e31 Expert assessment of scans, such as that

presented here, can provide a benchmark against which per-

formance of non-experts can be compared. Consistent

reporting, in accordance with existing and forthcoming

mailto:Image of Fig 2|eps
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Fig 3. Examples of variability in annotation and associated artificial intelligence colour overlay for the radial nerve, the structure with the

greatest variability. All annotations for the radial nerve in two images. The white superimposed overlay shows the ScanNav™ prediction.
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guidelines (e.g. DECIDE-AI and STARD-AI),21,32 could further

enable transparent and meaningful comparison between

studies and better inform clinicians. This strategy of evalua-

tion would allow standardisation, a concept that has become

popular in other aspects of UGRA.4,5,33,34

Finally, objectivemeasures of evaluation do not necessarily

translate to clinical utility or patient benefit. Therefore, vali-

dation of devices would benefit from both objective and sub-

jective measures, from a clinical and technical perspective,

before proceeding to real-world clinical trials. These issues

must be addressed urgently as AI systems are already avail-

able in clinical practice. The initial systems focus on sup-

porting ultrasound scan acquisition and interpretation by

non-experts, deskilling a key element of UGRA. This is a pos-

itive aspiration for delivery of UGRA by junior anaesthetists or

by other specialities (e.g. emergency medicine). However,

although AI systems can provide guidance, underlying

knowledge is still required of the operator. It is therefore

paramount they are deployed in this way, as the clinician

utilising the system is likely to be less experienced. The

anaesthetic workforce must be engaged and well-informed if

they are to guide development and adoption of this technology

safely and effectively.

The authors recognise limitations to this study. Firstly, the

experts analysing the images did not acquire the scans. A

major component of information-gathering in ultrasound

image interpretation is the dynamic scanning process, which

allows the operator to track structures in relation to one

another, determine features such as anisotropy, and gain

tactile feedback. This might have been particularly important

for nerves in the axillary brachial plexus region given the
lower scores. Real-time performance of scanning was not

available to the expert participants in this study, although they

were able to review the video repeatedly and without a time

limit. However, had each participant been able to acquire and

interpret their own scans, even on the same subject, they

would almost certainly result in a different image and thus the

study would lack consistency. Thus, these analyses were

based on individual still frame images as opposed to real-time

ultrasound, whereby structure identification can become

clearer in a preceding or subsequent frame. Despite draw-

backs, if the same (pre-recorded) data from expert analysis is

to be used for different AI systems, this allows a consistent

evaluation for each one.

A second limitation is that expert participants commented

that some images were difficult to interpret, reporting that

they would typically acquire superior images for their own

UGRA practice. The scans underwent a quality control process

as part of the acquisition protocol in the previous study; ex-

perts (not involved in this study) acquired the scans and a

panel of three further experts assessed whether the scan was

adequate for clinical use. The discrepancy in opinion might

reflect variation in what an expert considers to be an accept-

able scan. In addition, it is important that AI systems accu-

rately interpret suboptimal scans, which could be where their

value is greatest. Thus, evaluation of model performance on

suboptimal scans, and scans of subjects with challenging or

varied anatomy, should necessarily form part of validation.

A third limitation is that data entries where a structure was

not annotated were included in the analysis (interpreted as ‘not

present’). Although participants were instructed to omit anno-

tation for structures they felt were not present, they did not

mailto:Image of Fig 3|eps
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have the opportunity to explicitly state this. Thus, individual

structure annotations could have been missed in error rather

than because the expert believed it to be ‘not present’. However,

the scans had undergone a quality control process in the pre-

vious study, whereby a panel of three experts determined that

the view was appropriate and excluded any atypical anatomy.

Although AI systems might not be as accurate as human ex-

perts in identifying specific structures, this element of ‘human

error’ (whereby a structure annotation is inadvertently missed)

does not occur in machines, making them more accurate and

consistent in that regard. Furthermore, it is notable that most

structures had aDice score range that started at 0,meaning that

there was no overlap between at least two of the expert anno-

tations. This includes structures that one might expect to

identify clearly (e.g. the axillary artery). In such cases, ‘human

error’ again might have contributed to identifying/annotating

the wrong structure (e.g. axillary vein rather than artery, or

scalenus posterior vs anterior if the scan orientation is mis-

interpreted despite it being labelled).

Limitations to qualitative and subjective data have been

discussed,8 although the authors recognise that fewer (and

different) experts provided the qualitative data. Future studies

should aim to concurrently obtain qualitative/subjective and

quantitative/objective data from the same experts.

Finally, it is not possible to determine whether the differ-

ences in these data translate to meaningful differences in the

clinical setting; further work to investigate the clinical impli-

cations is necessary.

Conclusions

We performed a quantitative and objective evaluation of the

variability of human experts and an AI system when identi-

fying structures on ultrasound images relevant to UGRA,

presenting this alongside a qualitative and subjective evalu-

ation of the same ultrasound and AI data. Both humans and

the AI system showed the greatest level of consistency when

identifying arteries, followed by muscles, and then nerves.

Humanehuman mean scores tended to be higher, whereas

humaneAI scores tended to show less variation. The clinical

significance of these differences is yet to be determined. AI is

a rapidly emerging field; greater understanding and clinician

engagement is required to inform the development, evalua-

tion, and adoption of these novel devices. The evaluation

structure described here, despite the acknowledged limita-

tions, could form a framework to evaluate such novel AI de-

vices in UGRA to allow meaningful comparison between

them.
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