Table 2.
Comparison of evaluation metrics of various typical models.
Models | DSC ↑ | HD95 (mm) ↓ | Precision ↑ | Recall ↑ |
---|---|---|---|---|
3D UNet | 0.7172 ± 0.0955 | 5.7052 ± 26.80 | 0.7354 ± 0.1185 | 0.7223 ± 0.1317 |
Isensee et al. [24] | 0.7693 ± 0.0893 | 2.4136 ± 3.5872 | 0.7633 ± 0.1143 | 0.7924 ± 0.1163 |
2D Isensee et al. [24] | 0.6520 ± 0.1463 | 7.9084 ± 10.2189 | 0.8081 ± 0.1134 | 0.5763 ± 0.1846 |
Lin et al. [23] | 0.7754 ± 0.0954 | 2.6832 ± 4.7794 | 0.7695 ± 0.1177 | 0.7983 ± 0.1197 |
TransBTS | 0.7744 ± 0.0929 | 8.6436 ± 87.3025 | 0.7583 ± 0.1107 | 0.8080 ± 0.1221 |
UNETR | 0.7683 ± 0.0944 | 3.0822 ± 6.2588 | 0.7687 ± 0.1184 | 0.7850 ± 0.1199 |
VT-UNet | 0.7758 ± 0.0906 | 2.5433 ± 5.1414 | 0.7690 ± 0.1073 | 0.7989 ± 0.1203 |
MPU-Net | 0.7693 ± 0.0963 | 3.1479 ± 7.7695 | 0.7817 ± 0.1143 | 0.7747 ± 0.1279 |
LVPA-UNet | 0.7907 ± 0.0937 | 1.8702 ± 2.8491 | 0.7929 ± 0.1088 | 0.8025 ± 0.1201 |