Skip to main content
. 2024 Apr 30;16(19):24514–24524. doi: 10.1021/acsami.4c00719

Table 1. Comparison of Electrolytic N2 Reduction Performance for MoS2-Based Composite Electrocatalysts under Ambient Conditions.

catalysta electrolyte NH3 yield (μg h–1mgcat.–1) FE % potential (V vs RHE) ref
MoS2-rGO/CP 0.1 M LiClO4 24.82 4.58 –0.45 (23)
MoS2 NDs-RGO/CC 0.1 M Na2SO4 16.41 27.93 –0.75 (25)
MoS2-gC3N4/CC 0.1 M LiClO4 18.5 17.8 –0.3 (22)
FeS2/MoS2@rGO/CC M KOH 10.35 9.62 –0.4 (60)
FeS2/MoS2@rGO/CC 1.0 M K2SO4 41.1 38.6 –0.2
MoS2@rGO/CC 1.0 M K2SO4 27.1 25.5 –0.3
MoS2@BCCF/CC 0.1 M Li2SO4 43.4 9.81 –0.2 (61)
1T-MoS2@Ti3C2/GCE 0.1 M HCl 30.33 10.94 –0.3 (62)
1T’-MoS2@Ti3C2/GCE 0.1 M Na2SO4 31.93 30.75 –0.95 (63)
2H-MoS2@Ti3C2/GCE 0.1 M Na2SO4 26.41 5.23  
FeS2/MoS2@IFx/CC 0.1 M KOH 7.1 × 10–10b 4.6 –0.5 (64)
MoS2@rGO/GCE 0.1 M KOH 195.4 34.65 –0.3 this work
a

MoS2, molybdenum disulfide; CP, carbon paper; NDs, nanodots; CC, carbon cloth; GCE, glassy carbon electrode; rGO, reduced graphene oxide; gC3N4, graphitic carbon nitride; FeS2, iron sulfide; BCCF, bacterial cellulose converted carbon fiber; Ti3C2, titanium carbide MXene; IF, iron framework.

b

→ mol s–1cm–2