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Abstract
The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in 
metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane 
domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions 
with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these 
receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding 
capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has 
been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family 
is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation 
of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid–receptor 
binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different 
methodologies that can be employed to study lipid–receptor interactions and summarise the importance of this area 
of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.
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Introduction
Lipids are structurally diverse organic compounds 
crucial for the normal functioning of all cells, as they 
are key constituents of membranes essential for cellular 
structure that enable the compartmentalisation of 
tightly regulated processes both within the cell and 
in intracellular organelles. Lipids are also major 
contributors to intracellular signalling, either via 
lipidic post-translational modifications or as allosteric 
modulators of membrane receptors and other factors, as 
well as being important sources of energy, stored within 

cells as lipid droplets (Shevchenko & Simons 2010, 
Klose et al. 2013, Muro et al. 2014, Buenaventura et al. 
2019, Damian et al. 2021). The structural characteristics 
of the lipids present in membranes determines their 
mechanical properties, controlling parameters ranging 
from membrane fluidity and curvature to thickness 
and shape, as well as the propensity for the formation 
of rafts and other signalling nanodomains. Unique 
combinations of membrane lipids and proteins allow 
for the development of cell/organelle-specific functions, 
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ranging from those of the plasma membrane and/
or trafficking vesicles to mitochondrial membranes 
harbouring electron transport chains (Guo et al. 2018), 
or the protein folding and transport functions of 
endoplasmic reticulum (ER) membranes (Phillips & 
Miller 2021), amongst others (Shevchenko & Simons 
2010, Klose et al. 2013, Muro et al. 2014, Bolla et al. 2019).

Incretins, characterised by Creutzfeldt in 1979, are 
peptide hormones secreted in the gastrointestinal tract 
in response to nutrients that potentiate the glucose-
dependent secretion of insulin. The primary incretins 
include glucagon-like peptide 1 (GLP-1), secreted 
mainly from enteroendocrine L cells, with its truncated 
versions, GLP-1(7–37) and GLP-1(7–36)NH2, binding to and 
activating cognate GLP-1 receptor (GLP-1R) (Donnelly, 
2012, Campbell & Drucker 2013, Paternoster & Falasca 
2018), and glucose-dependent insulinotropic polypeptide 
(GIP), a 42-amino acid peptide (GIP(1–42)) secreted from 
enteroendocrine K cells that binds to and activates the GIP 
receptor (GIPR) (Creutzfeldt 1979, Campbell & Drucker 
2013, Chia & Egan 2020). Glucagon is a closely related 
peptide which derives, like GLP-1, from pre-proglucagon 
(Müller et al. 2017) and binds to the glucagon receptor 
(GCGR). It is released from pancreatic alpha cells and it 
is best known for its ability to increase hepatic glucose 
production at times of hypoglycaemia (Marroqui et al. 
2014). Although glucagon is not considered an incretin, 
it has some similar features as it is secreted in response 
to protein ingestion (Müller et al. 1970, Day et al. 1978, 
Ang et al. 2019) and is insulinotropic (Capozzi et al. 
2019a,b). Although not usually associated with type 2 
diabetes or obesity, the glucagon family of receptors also 
includes the GLP-2 receptor (GLP-2R), which is activated 
by GLP-2, a 33-amino acid peptide (GLP-2(1–33)) also 
derived from pre-proglucagon and secreted mainly from 
enteroendocrine L cells, like GLP-1. GLP-2 promotes 
intestinal growth and enhances nutrient absorption 
amongst other functions (Bahrami et al. 2010, Drucker & 
Yusta 2014, Gadgaard et al. 2023).

The GLP-1R is found mainly in pancreatic beta cells 
and hypothalamic neurons. Besides its endogenous  
activation by GLP-1, pharmacological targeting of the 
GLP-1R is achieved with a range of peptide agonists, 
including exendin-4 and semaglutide, amongst others 
(Campbell & Drucker 2013, Knudsen & Lau 2019). The 
main function of the GLP-1R is the regulation of blood 
glucose levels through the potentiation of insulin 
secretion in a glucose-dependent manner and the 
control of appetite through the regulation of neuronal 
feeding centres (Campbell & Drucker 2013, Boer & 
Holst 2020). The best characterised GLP-1R intracellular 
signalling cascade involves coupling of the active 
receptor to Gαs, resulting in the activation of adenylate 
cyclase and leading to the generation of cyclic adenosine 
monophosphate (cAMP). This in turn leads to activation 
of protein kinase A (PKA) and exchange protein activated 
by cAMP 2 (Epac2), followed by engagement of diverse 
downstream signalling networks, culminating in an 

increase in insulin synthesis and secretion as well as 
promotion of beta cell survival (Holst et al. 2009, Boer & 
Holst 2020, El Eid et al. 2022).

Expression of GIPR partly overlaps with that of GLP-1R, 
for example, in pancreatic islets and some anorectic 
brain regions (albeit in mainly distinct neuronal 
subpopulations), but GIPR is also found in non-
overlapping tissues such as bone and adipose tissue 
although there is some uncertainty on the exact cell 
type that expresses the GIPR in the latter (Yip et al. 1998, 
Kim et al. 2013, Campbell et al. 2022). Besides activation 
by its cognate hormone GIP, the GIPR is activated by 
pharmacological peptide agonists such as the GLP-1R/
GIPR dual agonist tirzepatide. However, while there is 
evidence for GIPR engagement by tirzepatide in ex vivo 
human islets (El et al. 2023), the direct engagement of 
GIPR by tirzepatide in vivo in humans is still debated 
(Drucker & Holst 2023). Like the GLP-1R, the GIPR is Gαs-
coupled, with cAMP production and insulin secretion 
promoted downstream of its activation, which also leads 
to glucagon secretion from alpha cells, adipose tissue 
lipid deposition, and a reduction in bone resorption 
(Mayendraraj et al. 2022). On the other hand, GCGR is 
found primarily in the liver and kidney; in hepatocytes, 
where it is also predominantly Gαs-coupled (McGlone 
et al. 2021), GCGR cAMP signalling leads to PKA activation 
and phosphorylation of cAMP response element binding 
protein (CREB), which increases transcription of 
glucagon-activated genes such as phosphoenolpyruvate 
carboxykinase 1 (PCK1) and glucose-6-phosphatase 
(Cajulao et al. 2022), resulting in increased hepatic 
glucose production via simulation of glycogenolysis 
and gluconeogenesis, as well as hepatic amino acid 
uptake and ureagenesis (Marroqui et al. 2014), while 
reducing hepatic fat accumulation by increasing fatty 
acid oxidation and decreasing de novo lipogenesis 
(Longuet et al. 2008). GLP-2R is expressed mainly in 
the gastrointestinal tract and regions of the central  
nervous system. GLP-2R signalling, following activation 
by GLP-2, is mainly via Gαs coupling causing an  
increase in cAMP accumulation leading to increased 
intracellular calcium and expression of cell survival 
genes triggering intestinotrophic effects (Drucker &  
Yusta 2014, Gadgaard et al. 2022, 2023). As a result, 
agonists of the GLP-2R such as teduglutide have been 
used for the treatment of short bowel syndrome and 
other intestinal conditions (Bahrami et al. 2010, Drucker 
& Yusta 2014, Gadgaard et al. 2023).

All four receptors, GLP-1R, GIPR, GCGR, and GLP-2R, 
belong to the class B1/secretin-like group of G protein-
coupled receptors (GPCRs), integral membrane proteins 
that can detect a vast array of extracellular signals and 
transmit them into the cells via a range of G protein 
signalling pathways. GPCRs are divided into four major 
classes, rhodopsin-like (class A), secretin-like (class B), 
glutamate (class C), and frizzled (class F) (Latorraca et al. 
2017, Yang et al. 2021).

The glucagon family of receptors has a typical class B1 
GPCR structure, with seven transmembrane domains 
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(TMD), three extracellular and intracellular loops, 
a large N-terminal extracellular domain (ECD), and 
an intracellular C-terminal tail. Being embedded 
in the plasma membrane, they interact intimately  
with lipids, and their function is greatly affected 
by changes in the lipid microenvironment. There is 
extensive evidence to support the effect that lipids 
have on GPCR function, with cholesterol specifically 
acting as an allosteric modulator (Oates & Watts 2011, 
Kumar & Chattopadhyay 2021, Yeliseev et al. 2021, 
Baccouch et al. 2022). However, much of the work done 
to investigate lipid regulation of GPCR functions has 
focused on other GPCR classes, as highlighted in Table 1, 
with our understanding of lipid modulation of class B1 
GPCRs only beginning to be explored. This review will  
focus on highlighting the effects that lipids have on 
the function of the glucagon receptor family (Fig. 1),  
including their importance in the development of 
treatments for type 2 diabetes and obesity, as well as 
a description of current techniques to study lipid–
receptor interactions, as well as areas that need to be  
further explored.

Direct lipid regulation of the 
glucagon receptor family
The plasma membrane is composed of a complex 
matrix of lipids, including glycerophospholipids 
(65%), sphingolipids (10%), and cholesterol (25%), 
and embedded proteins such as glycoproteins, ion 
channels, and other integral proteins like GPCRs 
(van Meer & de Kroon 2011, Koldsø et al. 2014). The 
structure and fluidity of the plasma membrane allows 
for the maintenance of the cellular architecture and 
is key in the regulation of membrane trafficking and 
organisation of its factors in different subdomains such  
as cholesterol-rich lipid rafts. Lipid rafts (also known as 
lipid nanodomains) are highly organised but dynamic, 
detergent-resistant membrane subdomains formed by 
the selective interaction of certain sphingolipids and 
cholesterol with specific membrane proteins required 
for signalling. These subdomains are important 
for the regulation of receptors like GPCRs, playing 
key roles in their sorting, trafficking, and signalling  

Table 1 Effects of lipids on the modulation of GPCR function.

Class GPCR Lipid Evidence References

A β2-Adrenergic receptor 
(β2AR)

Cholesterol Cholesterol interacts with receptor; 
stability; allosteric modulation; dimer 
formation

(Hanson et al. 2008, Manna 
et al. 2016, Cherezov et al. 
2007)

Phospholipids Modulator of receptor structure and 
activation

(Dawaliby et al. 2016, Neale 
et al. 2015)

A2A adenosine receptor 
(A2AAR)

Cholesterol Cholesterol interacts with receptor; 
cAMP modulation

(Liu et al. 2012, McGraw et al. 
2022)

μ-opioid receptor 
(OPRM1)

Cholesterol, 
palmitoylation

Receptor homodimerisation; receptor-
Gαi2 coupling modulation

(Zheng et al. 2012)

Cannabinoid receptor 1 
(CB1R)

Cholesterol Cholesterol interacts with receptor; 
modulates agonist binding; modulates 
G protein signalling via the adenylate 
cyclase and MAPK pathways

(Hua et al. 2017, Bari et al. 
2005, Oddi et al. 2011)

Cannabinoid receptor 2 
(CB2R)

Cholesterol Modulates basal activation of receptor (Yeliseev et al. 2021)

B Glucagon-like peptide-1 
receptor (GLP-1R)

Cholesterol, 
palmitoylation

Receptor internalisation, receptor 
clustering, lipid raft recruitment, 
modulates cAMP production

(Buenaventura et al. 2019)

Glucagon receptor 
(GCGR)

Cholesterol, PI(4,5)P2 Cholesterol predicted to interact with 
receptor, modulates cAMP production; 
PI(4,5)P2 potentially stabilises GCGR 
inactivate state

(McGlone et al. 2022)

Glucose-dependent 
insulinotropic 
polypeptide receptor 
(GIPR)

Cholesterol, 
palmitoylation

Lipid raft recruitment (Buenaventura et al. 2019)

Glucagon-like peptide-2 
receptor

Cholesterol Receptor internalisation (Estall et al. 2004)

C Metabotropic glutamate 
receptor (mGlu1R)

Cholesterol Cholesterol interacts with receptor; 
dimer formation; lipid raft recruitment

(Wu et al. 2014, Eroglu et al. 
2003)

F Smoothened receptor 
(SMO)

Cholesterol Activation via its extracellular cysteine-
rich domain

(Siebold & Rohatgi 2023, Xiao 
et al. 2017, Luchetti et al. 2016)
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(Klose et al. 2013, Koldsø et al. 2014, Buenaventura et al. 
2019, Kwiatkowska et al. 2020), including for the glucagon 
receptor family. Studies in pancreatic beta cells have 
shown that the GLP-1R relocates to detergent-resistant 
membrane fractions after stimulation with GLP-1 and 
the peptide agonist exendin-4 (Fig. 2). This was further 
confirmed via time-resolved (TR)-Förster resonance 
energy transfer (FRET), using Lumi4-TB labelled SNAP-
tagged GLP-1R as the donor and the solvatochromic 
probe NR12S, which emits a blue-shifted wavelength 

when in a liquid-ordered membrane environment, as 
the acceptor in response to exendin-4 stimulation. This 
segregation was accompanied with increased GLP-1R 
clustering, measured using electron microscopy and 
total internal reflection fluorescence photoactivatable 
localisation microscopy (PALM) experiments. Disruption 
of the plasma membrane architecture using methyl-
β-cyclodextrin (MβCD), which sequesters cholesterol, 
caused a dose-dependent reduction in receptor binding 
affinity to a fluorescent exendin-4 derivative due to  
faster agonist dissociation, leading to reduced cAMP 
signalling and inhibition of GLP-1R internalisation. Of 
note, given that GLP-1R signals mainly through Gαs, 
this G protein subunit was shown to preferentially 
partition into detergent-resistant membrane fractions, 
highlighting the importance of lipid domain organisation 
for the regulation of GLP-1R signalling (Buenaventura 
et al. 2019).

The underlying mechanism of GLP-1R recruitment 
to lipid nanodomains has not been fully elucidated,  
but it was shown to involve specific receptor post-
translational modifications (PTMs), which are covalent 
additions of a modifying group with important effects  
for receptor structure, localisation, and function. 
Amongst the different forms of GPCR PTMs, 
palmitoylation, also known as S-acylation, is a lipid 
PTM which involves the addition of a palmitate  
moiety by covalent linkage to cysteine residues,  
important for the localisation of transmembrane 
proteins to lipid rafts. GPCRs are usually palmitoylated 
in C-terminal tail cysteine residues (Levental et al. 
2010, Baccouch et al. 2022). An increase in GLP-1R 
palmitoylation was detected after stimulation with the 
endogenous agonist GLP-1 as well as with exendin-4. 
GLP-1R contains three cysteine C-terminal residues (C438, 

Figure 2

Schematic of GLP-1R recruitment to lipid rafts and relevance for the control of its signalling.

Figure 1

Schematic diagram summarising the potential effects of lipids on 
glucagon receptor family function.
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C458, and C462), which could potentially be involved in 
GLP-1R palmitoylation, with the cysteine in position 438 
previously shown to undergo palmitoylation (Vázquez 
et al. 2005). Consistently, a C438A point mutation in 
GLP-1R disrupted its palmitoylation without affecting 
receptor surface expression levels or binding affinity 
to fluorescently labelled exendin-4 when compared 
with the wild-type receptor. The palmitoylation mutant 
was also associated with delayed exendin-4-mediated 
receptor clustering, reduced recruitment to detergent-
resistant membrane fractions, reduced internalisation, 
and reduced cAMP response and insulin secretion 
(Vázquez et al. 2005, Buenaventura et al. 2019). These 
findings highlight the importance of lipid PTMs on 
the control of GLP-1R association with specific lipid 
nanodomains to regulate its function, including glucose 
homeostasis.

Like GLP-1R, GIPR has also been found to localise 
to flotillin-positive, detergent-resistant membrane 
fractions in pancreatic beta cells, indicating the likely 
presence of the receptor in lipid rafts. However, unlike 
the GLP-1R, the GIPR seems to be constitutively present 
in rafts, and increased agonist-induced translocation 
to lipid nanodomains was not detected. Furthermore, 
GIPR was found to be constitutively palmitoylated in  
contrast to GLP-1R, which showed increased 
palmitoylation upon agonist stimulation. These findings 
appear to be aligned with previous results indicating 
that GIPR is more active at basal states compared 
to GLP-1R (Al-Sabah et al. 2014). There is currently 
limited information about the interaction of GIPR 
with plasma membrane and other lipids with regard 
to its regulation. However, given that GIPR basal  
activity mirrors its membrane lipid nanodomain 
localisation and palmitoylation status, suggesting 
the likely relevant functional importance of these 
interactions, it will be important to further investigate 
the regulation of GIPR by cellular lipids in the future 
(Al-Sabah et al. 2014, Buenaventura et al. 2019, 
Manchanda et al. 2023).

With regard to the effects of lipids on the regulation 
of GCGR function, it is worth noting that resistance to 
glucagon has been reported in patients with metabolic-
associated steatotic liver disease (MASLD) (Suppli et al. 
2020), although the mechanism underlying this effect is 
not completely understood. The lipid composition of the 
cellular membranes of hepatocytes is altered in patients 
with hepatic steatosis (Gorden et al. 2011); indeed, the 
degree of hepatic cholesterol accumulation correlates 
with the severity of MASLD (Puri et al. 2007). One possible 
explanation is that certain membrane lipids might act as 
allosteric modulators of the GCGR, modifying receptor 
outputs following their accumulation. Downstream 
signalling of this receptor is known to be negatively 
allosterically modulated by the accessory protein 
receptor-activity modifying protein 2 (RAMP2) (McGlone 
et al. 2021, Krishna Kumar et al. 2023), but evidence of a 
direct allosteric effect of specific lipids on the GCGR is yet 
to be demonstrated.

A recent combined mass spectrometry and molecular 
dynamics (MD) simulation study has revealed 
that GCGR binds with high affinity to lipids with a 
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) 
headgroup (Kjolbye et al. 2022). The PI(4,5)P2 tail 
composition determines its binding affinity, which 
is increased for stearic and arachidonic fatty acid 
tails. Interestingly, the binding site of the high-affinity 
saturated 16:0/18:1 PI(4,5)P2, between TM6 and TM7 of 
GCGR, is very similar to that of the negative allosteric 
modulator NNC0640 (PDB 5XEZ) (Zhang et al. 2017). 
This could indicate that 16:0/18:1 PI(4,5)P2 can stabilise 
the inactive conformation of GCGR (Kjolbye et al. 
2022). GCGR also binds to several other phospholipids 
in MD simulations, including phosphatidylglycerols 
(PGs; (Kjolbye et al. 2022)). As PGs are present in  
human and murine hepatocytes, and the relative 
distribution of PG species changes in disease states 
of steatosis and cirrhosis (Gorden et al. 2011), this 
interaction, if validated, could be important to determine 
the functional state of the GCGR under these conditions. 
It remains to be determined if such interactions with 
PI(4,5)P2 are also relevant for other members of the 
glucagon receptor family.

Cholesterol affects deformability and curvature of the 
lipid membrane, thereby modulating the agonist binding 
and activity of GPCRs (Harayama & Riezman 2018), and 
can also directly allosterically modulate certain GPCRs 
(van Aalst & Wylie 2021). Manipulating cholesterol  
levels in hepatocytes affects GCGR sensitivity –  
increasing cholesterol decreases cAMP production, 
and vice versa (McGlone et al. 2022). This relationship 
holds true in mouse models where liver cholesterol 
is manipulated using cholesterol and statin diets 
(McGlone et al. 2022). Whether this is due to a direct 
negative allosteric effect of cholesterol binding on GCGR 
signalling is yet to be established. Although the GCGR 
contains cholesterol-recognition amino-acid consensus 
(CRAC) and inverted CRAC (or CARC) motifs, which  
have been proposed to take part in cholesterol 
interactions, the presence of such motifs is neither 
sensitive nor specific to determine receptor cholesterol-
binding sites (Sejdiu & Tieleman 2020). Recent MD 
simulations using the protein-lipid analysis toolkit, 
PyLipID, have however predicted several likely 
GCGR cholesterol-binding sites (McGlone et al. 2022). 
Two of these are related to the G protein binding 
site, which involves TM6. Experimental cholesterol  
loading reduced glucagon-stimulated recruitment of 
mini-Gs, a conformational biosensor for Gαs favouring 
active GPCR conformations, indicating that cholesterol 
might act as a negative allosteric modulator for the 
GCGR (McGlone et al. 2022). Further investigations 
using mutagenesis techniques are warranted to explore 
this possibility. Additionally, similar MD simulations  
could be applied to the rest of the glucagon receptor 
family to identify and screen potential cholesterol 
binding sites for effects in receptor function and 
suitability for allosteric modulation.
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Finally, Estall et al. showed that, similarly to GLP-1R and 
GIPR, sequestering of cholesterol using MβCD or filipin 
significantly decreased GLP-2R internalisation after 
stimulation with GLP-2. However, unlike the GLP-1R, 
the disruption in internalisation due to cholesterol 
sequestering did not affect GLP-2R-dependent cAMP 
accumulation. GLP-2R was also shown to localise 
to plasma membrane lipid raft domains in vehicle 
conditions, a localisation which was increased after 
stimulation with GLP-2 (Estall et al. 2004). This further 
highlights the importance of lipids on the regulation of 
the function of all members of the glucagon receptor 
family. However, how these lipids, especially cholesterol, 
regulate GLP-2R function still needs to be thoroughly 
investigated.

Indirect lipid regulation of the 
glucagon family of receptors

Aside from the effects that specific membrane lipids 
have on the glucagon receptor family, lipid modifications 
of receptor agonists themselves, and the resulting 
effect that this might have on the nature of the agonist-
membrane interactions, can also play an important 
role in modulating receptor binding kinetics and, in 
turn, receptor function. Incorporation of fatty acid-like 
moieties is a highly successful strategy that prolongs  
the circulatory half-lives of therapeutic peptides 
by allowing reversible binding to albumin, thereby 
preventing renal filtration via size exclusion (Knudsen 
& Lau 2019). Injudicious placement of the lipid 
modification directly affects (usually detrimentally) 
productive interactions between the ligand and the 
receptor, and there is also emerging evidence that the 
lipid can engage in primary interactions with the plasma 
membrane which, in turn, influences subsequent 
binding events with target receptors in the immediate 
vicinity. Table 2 lists the different lipid modified peptide 
agonist targeting the glucagon family of receptors that 
are currently available or being investigated.

Lixisenatide, an analogue of exendin-4 with six lysine 
residues attached to its C-terminal tail, has a faster 
association rate constant compared to other receptor 
ligands, including exendin-4 (Zhao et al. 2022). This 

was proposed to be linked to the basic nature of the 
poly-lysine residues, which tend to bind to the plasma 
membrane, alluding to the role of lipids within the 
plasma membrane to enable this effect. Other agonists 
which display long residence times and varied GLP-1R 
outputs due to the effect of their lipid modifications 
include liraglutide, an analogue of GLP-1 with a C16 fatty 
diacid chain, and peptide-19, a dual GLP-1R and GIPR 
agonist with high potency at both receptors (Johnson 
et al. 2021), with these lipid modifications contributing 
to and modifying their binding properties compared 
to GLP-1 (Zhao et al. 2022). As long residence times are 
often due to slow agonist dissociation rates, we can 
speculate that the interaction between the lipid moiety 
and the cell membrane might preserve a heightened 
local concentration of agonist close to the membrane-
embedded receptors which might contribute to explain 
these effects.

Other lipid-modified GLP-1R agonists with varying 
effects on receptor binding kinetics and function include 
semaglutide, a GLP-1 analogue similar to liraglutide but 
with two amino acid substitutions (Aib8, Arg34), which 
is derivatised at lysine 26 with a C18 diacid with a γGlu-
2xOEG linker, as well as the dual GLP-1R/GIPR agonist 
LY3298176, also known as tirzepatide, which also has 
a fatty acid modification and varied effects on GLP-1R 
function (Coskun et al. 2018, Zhao et al. 2022). The 
lipid modifications in semaglutide have been proposed 
to cause increased agonist-membrane interactions,  
leading to increased receptor signalling (Lau et al. 2015, 
Zhao et al. 2022). These agonists are both clinically 
relevant and currently FDA-approved for type 2 
diabetes, with semaglutide further approved for weight 
loss therapy (Lau et al. 2015, Coskun et al. 2018, Knudsen 
& Lau 2019, Frías et al. 2021).

Further investigations of acylated analogues of 
exendin-4, as well as with differentially biased GLP-1R 
agonists exendin-F1 and exendin-D3, have highlighted 
the importance of agonist lipid modifications on GLP-1R 
activity. Acylation of these analogues included the 
addition of C16 diacid at the C-terminal end through a GK 
linker. The exendin-4-C16 analogue caused an increase 
in plasma membrane interactions, accompanied 
with reduced GLP-1R internalisation, bias towards G 
protein recruitment and increased insulin secretion. 
The exendin-F1-C16 analogue had high affinity for the 

Table 2 Lipid modified peptide agonists targeting the glucagon family of receptors.

Agonist Receptor Target Lipid Modification References

Liraglutide GLP-1R C16 fatty diacid chain (Zhao et al. 2022)
Semaglutide GLP-1R C18 diacid linked with a γGlu-2xOEG linker (Lau et al. 2015)
Peptide 19 GLP-1R and GIPR C18 Acetyl moiety (Zhao et al. 2022)
Tirzepatide GLP-1R and GIPR C20 fatty diacid moiety linked with γ-Glu-2xAdo (Coskun et al. 2018, Chavda et al. 

2022)
MEDI0382 GLP-1R and GCGR C16 palmitic acid with a γ-carboxylate spacer (Li et al. 2023)
SAR425899 GLP-1R and GCGR C16 palmitic acid with a γ-carboxylate spacer (Li et al. 2023)



Journal of Endocrinology (2024) 261 e230335
https://doi.org/10.1530/JOE-23-0335

A I Oqua et al.

receptor compared to its non-acylated counterpart, 
which was accompanied by reduced internalisation 
and cAMP potency compared with exendin-D3-C16. 
Overall, lipid modifications of GLP-1R agonists appear 
to contribute to different agonist–receptor–plasma 
membrane interactions and favour specific receptor 
conformations, thereby contributing to modified or 
biased signalling (Lucey et al. 2020, 2021).

There are other lipid-modified agonists which target the 
GLP-1R, however these also target the GCGR, making  
them GLP-1R/GCGR dual agonists. Li et al. recently 
highlighted the importance of lipid modifications on the 
function of two dual peptide agonists, MEDI0382 and 
SAR425899, on GLP-1R and GCGR function. MEDI0382 
and SAR425899 are both palmitoylated with a 16-carbon 
palmitic acid with a γ-carboxylate spacer at lysine 10 
and 14, respectively. Lipidation of these dual agonists 
stabilised the binding of the peptide through increased 
interactions with the receptors and the plasma 
membrane. Non-lipidated versions of each peptide 
caused a significant decrease in cAMP accumulation 
for GLP-1R and essentially no cAMP accumulation for  
GCGR, highlighting the importance of these lipid 
modifications on altering both GLP-1R and GCGR 
signalling (Li et al. 2023). There is comparatively less 
information on the effects on lipid modifications of 
GCGR agonists on GCGR function alone.

A study investigating the effects of acylation of GLP-2  
also highlights the importance of agonist lipid 
modification on GLP-2R function. Trier et al. showed  
that increased acyl chain length on GLP-2 caused 
enhanced partitioning into POPC simplified lipid 
membranes. This increase in membrane interaction  
was also established within a complex cell plasma 
membrane environment. The difference in acyl chain 
lengths also caused changes in translocation across 
intestinal cells when compared to non-lipid modified 
GLP-2 (Trier et al. 2014). Gadgaard et al. on the other hand, 
investigated the best position/residue for lipidation and 
maintained the same length of the acyl chain. GLP-2R 
internalisation, cAMP accumulation, and β-arrestin 1 
and 2 recruitment were significantly reduced when 
agonists were lipidated at the N or C terminus, while 
changes in the middle of the agonist did not significantly 
affect receptor function (Gadgaard et al. 2023). These 
results highlight the importance of not only the type of 
lipid modification but also the location of this change on 
downstream receptor function.

It is worth noting, however, that certain lipid 
modifications of glucagon receptor family agonists could 
potentially cause biased receptor reactions or agonist-
membrane interaction effects that might not always  
be as favourable as for some of the modifications 
mentioned previously.

There is presently far less information available about 
how lipid modification of GIPR agonists alters GIPR 
function or interactions with membrane lipids, probably 
as a result of the relatively recent interest in GIPR as 

a therapeutic target in type 2 diabetes and obesity 
compared to the GLP-1R. Currently, the focus has been 
on conferring an increased half-life to agonists in order 
to assess chronic GIPR agonism (Lafferty et al. 2023). 
The introduction of 2-aminoisobutyric acid and fatty 
acylation to GIPR agonists confers DPP4 resistance and 
enhanced albumin binding (Mroz et al. 2019), however 
whether these lipid modifications lead to altered GIPR 
signalling is currently unknown.

Another indirect lipid-induced regulation of GLP-1R 
involves the use of endocannabinoid-like lipids 
(Cheng et al. 2015). These lipids, which include 
oleoylethanolamide (OEA) and 2-oleoylglycerol 
(2-OG), are known to regulate food intake, potentially 
via increased GLP-1 release, and are structurally 
similar to endocannabinoids but with saturated or 
monounsaturated instead of polyunsaturated fatty acids, 
and without activating cannabinoid receptors. These are 
circulating lipids present in varying amounts in different 
tissues, with their levels being modified on demand 
via dietary changes in their membrane phospholipid 
precursors (Cheng et al. 2015, Rahman et al. 2021). Cheng 
et al. showed that both OEA and 2-OG can bind to GLP-1 
without disrupting GLP-1 binding to GLP-1R, in a dose 
dependent manner, increasing the potency of GLP-
1R-mediated cAMP production in the rat insulinoma 
RINm5F cell line. cAMP responses were not observed 
with the fatty acids alone or using the GLP-1R antagonist 
exendin-9, indicating their specificity in targeting the 
GLP-1R. As these lipids are differentially expressed 
within different tissues, they have the potential for 
spatial regulation of GLP-1R responses. This study also 
highlights their relevance as potential type 2 diabetes 
therapies (Cheng et al. 2015).

In normal conditions, GLP-1R activation by GLP-1 
enhances glucose stimulated insulin secretion (GSIS) 
by potentiating the closing of ATP-sensitive potassium 
channels, leading to membrane depolarisation, which 
in turn causes an increase in intracellular calcium 
through the opening of voltage-gated Ca2+ channels and 
mobilisation of intracellular Ca2+ stores required for 
the exocytosis of insulin secretory vesicles (Manchanda 
et al. 2021). An earlier study highlighted the localisation 
of certain channels to plasma membrane lipid rafts as 
indirectly affecting GLP-1R function. Specifically, GLP-1 
potentiation of GSIS was affected by the raft localisation 
of the L-type Ca2+ channels Cav1.2 and Cav1.3, with its 
disruption resulting in a significant reduction in GLP-
1-mediated cAMP accumulation and GSIS potentiation 
(Jacobo et al. 2009). This observation highlights the 
importance that these lipid nanodomains have as 
organisers of membrane-protein microarchitecture for 
effective signal transmission.

Other than indirect effects of lipids via lipid modified 
agonists, changes in dietary lipids, specifically free 
fatty acids (short and/or long) and 2-monoacyl glycerol 
(2-MAG), can also modify GLP-1R function indirectly 
by regulating GLP-1 secretion. Free fatty acid-induced 
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changes in cytosolic Ca2+ concentration have been 
shown to regulate GLP-1 secretion (Hirasawa et al. 
2005, Abdalqadir & Adeli 2022). Activation of the GPCR  
GPR40 by long-chain fatty acids and GPR119 by 2-MAG 
have also been identified as involved in regulating GLP-1 
secretion (Müller et al. 2019, Drucker & Holst 2023). 
This, in turn, indirectly regulates GLP-1R activation 
and function. GIP secretion has also been proposed to 
be regulated by the activation of long-chain fatty acid 
receptors GPR120 and GPR40, thereby also indirectly 
regulating GIPR function (Sankoda et al. 2019). Short 
chain fatty acids have also been documented to 
stimulate both GLP-1 and (Abdalqadir & Adeli 2022) 
and GLP-2 (Tappenden et al. 2003) secretion. Varying 
effects of dietary lipids on glucagon secretion and in turn 
GCGR function have also previously been outlined by  
Galsgaard et al. (Galsgaard et al. 2019).

Techniques to study  
lipid–receptor interactions

Characterising lipid–protein interactions in vitro is 
challenging, due to their dynamic nature and the  
need to use membrane mimetic environments.  
Structure-based approaches are one avenue for 
exploring specific GPCR–lipid interactions, as lipids 
and lipid-like species can be observed in X-ray 
crystallography and cryo-EM maps of GPCRs. Indeed, 
the progress made in recent years in our understanding 
of GPCR–lipid interactions can be partially attributed to 
the rise in GPCR structures solved by cryo-EM, allowing 
for co-purification with complex lipid compositions.  
Lipid-bound structures are now available for several 
class A and class C GPCRs (Duncan et al. 2020), however 
despite cryo-EM structures being solved for each of 
the 15 class B1 GPCRs since 2017 (Wootten & Miller 
2020), only two of these have resolved lipid species. Six 
cholesterol molecules were modelled in the cryo-EM 
structures of PTH1R, solved by cryo-EM in detergent 
micelle (Zhao et al. 2019). Four cholesterol molecules 
were modelled into the CRF1R and CRF2R maps (Ma 
et al. 2020), which were also solved in detergent micelles.  
The cholesterol binding sites were found to overlap 
across these structures, with the authors of the CRF1R/
CRF2R paper highlighting two conserved and well-
resolved sites in TM4 helix and the ECD as possibly 
functionally important.

MD simulations have emerged as a powerful tool in 
the study of membrane proteins, as they allow the 
investigation of specific protein–lipid interactions at 
atomic or near-atomic resolution in model membranes 
(Corradi et al. 2018). Advances in software and hardware 
now allow the study of receptors in membranes of 
increasing complexity, towards ever-more realistic 
membrane models with asymmetric leaflet distributions 
(Marrink et al. 2019, Souza et al. 2021). Different levels 
of resolution have been used to study GPCR–lipid 

interactions, with much of the work centred around 
atomistic (atMD) and coarse-grained (cgMD) level 
resolution, which currently allows simulation around 
the microsecond range for nanometre membrane 
patches (Duncan et al. 2020). Using the cgMD Martini 
force field allows for longer timescales and system 
sizes compared to atMD, making it possible to measure 
statistically meaningful lipid binding affinities (Marrink 
et al. 2023). A key consideration in using these methods 
for GPCR–lipid interactions is that the Martini model has 
fixed secondary structure, and typically conformational 
changes are limited, whereas atMD simulations are 
limited by the shorter attainable simulation times 
(Borges-Araújo et al. 2023). Employing a multiscale 
approach combining cgMD and atMD analyses allows 
a more complete study of the GPCR conformational 
landscape (Hedger et al. 2019, Ansell et al. 2020).

High-throughput MD approaches have provided 
valuable insights into lipid interactions across GPCR 
families, with the open database ProLint containing 
representative lipid analyses from 20+ GPCRs (Sejdiu 
& Tieleman 2020). Intriguingly, the lipid sites observed 
in the cryo-EM structures of PTH1R (Zhao et al. 2019) 
and CRF1R/CRF2R (Ma et al. 2020) were not observed to 
bind cholesterol in these simulations. This may be due 
to the use of micelles during structure determination, 
or because the simulations are of a single state and 
do not include the ECD. Further work to incorporate 
the ECD and missing loops will be valuable for future 
studies, particularly as previous work has proposed that 
the ECD of GCGR is regulated by GM3, an area which 
should be further explored (Ansell et al. 2020), including 
for other receptors of the glucagon family. The advent 
of AlphaFold2 also allows more exploration of GPCR 
conformational spaces with models available for over 
420 GPCRs in both active and inactive states on GPCRdb 
as of 2023 (Pándy-Szekeres et al. 2023). This opens up the 
possibility of extending the high-throughput approaches 
to find patterns in lipid interactions, including those 
involving multiple lipid species, hence using more 
complete models (Xu et al. 2021).

A particularly powerful approach is to combine MD 
simulations with cryo-EM to correctly identify lipid-
like cryo-EM map densities, by following a pipeline 
such as the one in Fig. 3, in which cgMD simulations 
are used to identify state-dependent lipid binding sites. 
This can be done using tools such as PyLipID, which 
finds bound poses for the identified lipid binding sites, 
and calculates residence times, average duration, and 
number of surrounding lipids of the individual protein 
residues (Song et al. 2022). The final ranked binding 
sites can be subjected to atMD simulations to compare 
with densities obtained from cryo-EM. This has been 
exemplified by the LipIDens pipeline, which allowed an 
informed assignment of the correct lipid species into the 
map density, enabling the identification of cholesterol 
during refinement of the membrane protein hedgehog 
acyltransferase (HHAT) (Ansell et al. 2022).
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Simulations of the receptor of interest can be carried 
out in model membranes of given complexity. Coarse-
grained simulations may be used for a state-dependent 
analysis. Specific lipid interaction metrics can be 
quantified using tools such as PyLipID or Volmap (Cohen 
et al. 2006) to calculate average lipid occupancy around 
the protein. Lipid binding sites and poses may then be 
ranked according to these metrics. Top poses which 
overlap with cryo-EM map densities may be converted 
to atomistic resolution for further sampling of the ligand 
binding site. These simulations may then be used as 
the basis for assigning lipid densities in cryo-EM maps 
of the receptor of interest for further refinement, as 
exemplified by the LipIDens pipeline.

We anticipate that advances in cryo-EM and MD 
simulation approaches will continue to expand our 
understanding of the lipid regulation of GPCRs. This will 
be of particular value in the class B1 GPCR field, where 
a focus area should be to determine class B1 GPCR 
structures solved in lipid-containing environments  
such as nanodiscs, which provide more realistic 
membrane environments than detergent micelles, and 
allow further insights into possible lipid regulation of 
the ECDs (Denisov & Sligar 2016), a technique that has so 
far not been employed to resolve any structure for this 
GPCR class.

Other techniques having increasing impact on our 
understanding of lipid regulation of membrane proteins 
are NMR and mass spectrometry (MS), including native 
MS (nMS), HDX-MS, and lipidomics approaches. MD 
simulations have proven to be a highly complementary 
technique when used in concert with nMS to identify 
lipid species and binding sites. As discussed earlier, 
in recent work on the GCGR, cgMD simulations using 
different membrane compositions were used to screen 
for lipids with high binding affinity for the receptor. 
PI(4,5)P2 was identified as a strong binder, and nMS was 
then used to confirm this (Kjølbye et al. 2022). nMS and 
MD together were used to investigate the effect of tail 
length and saturation on binding. Recent developments 
in the nMS field have shown that membrane proteins 
can be studied directly from the membrane with no need 
for detergent manipulation, paving the way towards 
in situ structural biology (Chorev et al. 2018). We note 

however that cholesterol has not been readily observed 
in nMS of membrane proteins (Kostelic et al. 2019): in 
this instance, alternative NMR approaches might be 
useful as they have shown promise in understanding 
cholesterol binding, with solid-state NMR recently used 
to characterise binding of cholesterol to the influenza 
M2 channel (Elkins et al. 2017).

Click chemistry is another method of directly studying 
lipid–protein interactions. There are different forms of 
click chemistry, with one of the most common being the 
copper(I)-catalysed alkyne–azide cycloaddition method. 
For the case of lipid–protein interactions, the use of a 
‘photoactivated’ click cholesterol has been established; 
here the structure of cholesterol was modified to 
include a diazirine crosslinker activated by ultraviolet 
light irradiation, which then binds to the surrounding 
molecules, including proteins. The photoactivated 
cholesterol also includes an alkyne group which allows 
for its tagging using a fluorescent azide group via copper-
catalysed alkyne–azide cycloaddition (Hulce et al. 2013). 
This technique can be combined with pulldown of a 
protein of interest (including tagged receptors) using 
affinity beads followed by SDS PAGE and western 
blotting or MS to determine the level of interaction with 
the labelled cholesterol under different conditions and 
agonist stimulations. A positive of this method, when 
optimised, is that it is less disruptive of the ‘natural’ 
order of the plasma membrane as the alkyne or azide 
groups are small and the interactions are established 
in its natural environment (Liang & Astruc 2011, Hulce 
et al. 2013, Hofmann et al. 2014, Chauhan et al. 2020). A 
current limitation of this type of click chemistry is that 
this does not allow for the live imaging of lipid–protein 
interactions as cells need to be lysed prior to analysis.

Another means of investigating lipid–receptor  
interactions is the use of fluorescently tagged lipids 
or lipid-binding proteins, allowing cross-correlation 
or co-localisation analysis of fluorescently labelled 
receptors and lipids. A recent development is the 
use of a bioorthogonal-based cholesterol probe 
combined with stimulated emission depletion (STED) 
super-resolution microscopy in living cells. Here the 
cholesterol is modified to introduce an azide group in 
position 24. Copper-free click chemistry is then used to  

Figure 3

Example of a structure-based workflow to identify specific lipid binding sites of receptors.
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fluorescently label the cholesterol using 
dibenzocyclooctyne (DBCO) which contains a linker 
between the dye and the reacting group (Lorizate et al. 
2021). Another fluorescence-based method is the use of 
purified recombinant probes based on toxins including 
the domain D4 of Perfringolysin O (D4H*), Ostreolysin 
A (OlyA), or Anthrolysin O (ALO) fused to a fluorescent 
protein, which bind to cholesterol-rich membrane  
regions and serve as cholesterol biosensors for lipid–
protein interactions (Skočaj et al. 2014, Lim et al. 2019, 
Johnson & Radhakrishnan 2021). However, any tags  
used in this type of experiments should be validated 
to have minimal effects on the functionality of the 
lipids and/or the receptor, and ideally experiments 
should be carried out in functionally relevant cells. As 
previously mentioned, the use of solvatochromic and/
or environmentally sensitive fluorophores like NR12S 
or laurdan, which can change emission depending on 
their location in lipid ordered vs disordered membrane 
environments, can be combined with fluorescently 
tagged receptors to resolve the cross-correlation 
behaviour of the receptor with the dye to investigate 
lipid–protein interactions using high resolution 
microscopy techniques like STED (Saxena et al. 2015, 
Nicovich et al. 2018, Schneider et al. 2018).

Physiological and pathophysiological 
implications of lipids on the function 
of the glucagon receptor family

The incretin effect is greatly affected in patients with  
type 2 diabetes, with the insulinotropic influence of 
the GIP hormone being diminished in pancreatic beta  
cells and the effect of GLP-1 reduced. As previously 
mentioned, agonists of the GLP-1R which avoid 
breakdown by DPP4 have been developed as means 
of treatment for type 2 diabetes and obesity to restore 
this effect (Nauck et al. 2004, Graaf et al. 2016, Chia 
& Egan 2020). The glucagon family of receptors has 
been targeted for the treatment of various diseases  
involving abnormal lipid profiles, lipid content, or 
lipid metabolism (Mulvihill 2018, Seghieri et al. 2018, 
Galsgaard et al. 2019, Ammann et al. 2023, Nauck & Müller 
2023). However, the physiological or pathophysiological 
implications of lipids themselves on the function of 
this family of receptors in their respective tissues still 
needs to be investigated. Although mostly speculative, 
some indirect physiological and pathophysiological 
implications on these receptors are outlined below.

Dyslipidaemia, usually characterised by increased 
levels of plasma triacylglycerols and cholesteryl esters 
(Goldberg 2001, Rhee et al. 2011, Klop et al. 2013, Athyros 
et al. 2018, Eid et al. 2019), is a common risk factor in 
patients with type 2 diabetes and obesity. Rhee et al. 
investigated the difference in LC/MS-based lipid profiles 
of a mixed cohort consisting of control (no diabetes) 
and cases (developed type 2 diabetes) and highlighted 

different triacylglycerol profiles between the two 
groups. Patients with increased risk of type 2 diabetes 
had more triacylglycerols of lower carbon number 
and double bond content compared with controls. 
The nature of these triacylglycerols, i.e. saturated and 
monosaturated fatty acids, was shown to be different up 
to 12 years before overtly developing the disease (Rhee 
et al. 2011). This indicates the potential of changes in 
triacylglycerol composition to impact GLP-1R and GIPR 
activities, thereby increasing the onset of type 2 diabetes 
directly or indirectly within this patient group. How the 
specific triacylglycerols identified in this study could 
potentially modify GLP-1R and GIPR function needs 
further investigation.

Hyperglucagonaemia is characterised by excess plasma 
concentration of glucagon and has been observed in 
individuals with MASLD (Albrechtsen et al. 2018, Grandt 
et al. 2023). MASLD is characterised by abnormal lipid 
accumulation in hepatocytes due to a combination of 
factors including lipotoxicity, diet, sedentary lifestyle, 
and genetics, amongst others (Zarghamravanbakhsh 
et al. 2021). It is likely that patients with MASLD have 
resistance to the actions of glucagon, resulting in 
increased circulating amino acids, which stimulate 
the pancreas to secrete further glucagon (Suppli et al. 
2016, Wewer Albrechtsen et al. 2018). Since one of the 
actions of glucagon is to decrease liver fat accumulation, 
hepatic resistance to glucagon could contribute to 
the pathophysiology of MASLD. Alternatively, or 
additionally, lipid accumulation in hepatocytes (MASLD) 
could reduce their ability to respond to glucagon. Further 
investigation is required to properly understand the 
potential effects of increased liver fat content on hepatic 
GCGR function. A similar pathophysiology has also been 
identified involving increased fat accumulation in the 
pancreas, known as non-alcoholic fatty pancreas disease 
(NAFPD). NAFPD has received a lot of interest recently 
as it is associated with loss of beta cell function (Silva 
et al. 2021, Zhang et al. 2021). As the pancreas is one of 
the main locations for GLP-1R and GIPR function, we  
can speculate that this could have detrimental effects  
on the function of these receptors, with the potential 
effects that these lipid changes might have on receptor 
outputs warranting further examination.

Certain lipids and lipid derivatives have previously 
been implicated in disrupting physiological responses 
of incretin receptors. Specifically, increased plasma 
non-esterified fatty acids (NEFA) have been proposed 
to cause impaired beta cell function in type 2 diabetes. 
Kang et al., investigating the role of NEFA on disrupting 
incretin responses, showed that exposure of pancreatic 
beta cells and mouse islets to palmitate caused a 
reduction in the expression of Glp1r mRNA and GLP-1R 
protein levels without affecting Gipr levels (Kang 
et al. 2013). They also showed that islets isolated from 
diabetic mice, when compared with those from control 
mice, had reduced Glp1r and Gipr expression, and that 
this expression was partially restored after treatment 
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with the lipid lowering agent bezafibrate. Treatment of 
INS-1E cells or mouse islets with palmitate also caused 
a reduction in both GLP-1R and GIPR potentiation of  
GSIS. This pattern was different for cAMP production  
and CREB phosphorylation in rat INS-1E vs mouse 
MIN6 cells, with palmitate causing a decrease in the 
former for both GLP-1R and GIPR but only for GLP-1R in 
MIN6 cells. This highlights the importance of increased 
NEFA on impaired beta cell function, which might 
be species-specific (Kang et al. 2013). A human study 
carried out by Astiarraga et al. also showed that acute 
increases in plasma NEFA levels via lipid infusion of 
healthy non-diabetic volunteers caused a decrease 
in incretin-induced potentiation of insulin secretion 
(Astiarraga et al. 2018, Chueire & Muscelli 2021). Tanabe 
et al. also noted that increased triglyceride levels 
impaired liraglutide efficacy in type 2 diabetes patients,  
potentially through a reduction in Glp1r expression 
(Tanabe et al. 2016), suggesting that the effects can be 
translated to human physiology.

Conclusion and prospective 
future work

Current literature highlights the importance of lipids 
on the function of GPCRs, with cholesterol playing 
a direct role as a potential allosteric modulator as 
well as an indirect effect related to the segregation of 
these receptors to cholesterol-rich nanodomains in 
the plasma membrane. While most of the work done 
regarding lipids and the glucagon receptor family has 
revolved around incretin receptor regulation of lipid 
metabolism (Yaribeygi et al. 2021), there is currently 
sparse information about the regulation of GLP-1R  
and GLP-2R by lipids, and little to no information about 
the regulation of GIPR, either directly or indirectly 
due to lipid modification of GIPR agonists. While 
an initial prediction of cholesterol binding sites has 
been performed for the GCGR, there is currently no 
corresponding information for the GLP-1R, GLP-2R, 
or GIPR. Given the importance of lipid interactions for 
the regulation of GPCR function (Baccouch et al. 2022), 
mapping cholesterol and/or other lipid binding sites is 
fundamental to increase our current understanding of 
the biology of this key family of metabolically relevant 
receptors. Identification of relevant and specific 
lipid interaction sites should be attempted using 
multidisciplinary structural and computational biology 
approaches and taking into consideration active vs 
inactive receptor states.

There is still a lot of research that needs to be done to 
fully understand the effect that lipids have on regulating 
the specific functions of the glucagon family of receptors 
besides identification of cholesterol, sphingolipid, 
and/or other lipid-binding sites. Important areas that 
need to be addressed include (i) extensive functional 
characterisation of lipid binding in physiologically 

relevant systems and determination of the effects of 
altering interacting lipid levels on receptor function 
in relevant tissues; (ii) harnessing the information 
generated on the effects of lipid–protein interactions as 
potential targets for drug development for the treatment 
of type 2 diabetes, obesity, and/or fatty liver disease; and 
(iii) human studies to investigate the effect of changes 
in lipid levels, either through diet or pharmacologically, 
on receptor function, and potential effects on patient 
responses to agonists targeting this family of receptors.

There might be the possibility of exploiting interactions 
between lipids and the glucagon family of receptors 
to develop small allosteric modulators that target and  
mimic the effect of identified lipid-binding sites, allowing 
for the pharmacological manipulation of receptors 
to either increase or reduce their lipid association to 
modulate receptor activity. In this context, genetic 
variants of these receptors (Michałowska et al. 2022, 
van der Velden et al. 2022, Gao et al. 2023, Lagou et al. 
2023) are already known to trigger specific signalling 
responses; it will be interesting to determine the 
effects that these variants might have on receptor–lipid 
interactions, potentially allowing the development 
of personalised medicine approaches which take 
into consideration specific lipid associations when 
devising the most beneficial treatment regime. Another  
aspect to consider is the potential impact that lipid-
modifying drugs might have on patients who are 
concomitantly prescribed an agonist that target the 
glucagon family of receptors.

This is a promising area of research not only for the 
development of novel treatments for metabolic diseases 
but also for the better fundamental understanding of 
lipid regulation of class B1 GPCR behaviours.
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