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ABSTRACT: Molecular dynamics simulations depend critically on the
quality of the force field used to describe the interatomic interactions and
the extent to which it has been validated for use in a specific application. Using
a curated test set of 52 high-resolution structures, 39 derived from X-ray
diffraction and 13 solved using NMR, we consider the extent to which
different parameter sets of the GROMOS protein force field can be
distinguished based on comparing a range of structural criteria, including
the number of backbone hydrogen bonds, the number of native hydrogen
bonds, polar and nonpolar solvent-accessible surface area, radius of gyration,
the prevalence of secondary structure elements, J-coupling constants, nuclear
Overhauser effect (NOE) intensities, positional root-mean-square deviations
(RMSD), and the distribution of backbone ϕ and ψ dihedral angles. It is
shown that while statistically significant differences between the average values of individual metrics could be detected, these were in
general small. Furthermore, improvements in agreement in one metric were often offset by loss of agreement in another. The work
establishes a framework and test set against which protein force fields can be validated. It also highlights the danger of inferring the
relative quality of a given force field based on a small range of structural properties or small number of proteins.

■ INTRODUCTION
Molecular dynamics simulations of protein and peptide systems
play an ever-growing role in academic and industrial research.1

The use of classical mechanics in conjunction with empirical
force fields makes it possible to study processes ranging from the
reversible folding of peptides to the functional motions of large
protein complexes in atomic or near atomic detail. Such
empirical force fields use simple analytical functions to describe
the potential energy of the system in terms of the atomic
coordinates. While the empirical force fields commonly used to
simulate protein systems, such as CHARMM,2 AMBER,3

OPLS,4 and GROMOS,5,6 employ very similar functional
forms to represent the bonded and nonbonded interactions,
the strategies used to parametrize these functions vary
significantly. In addition, all of the protein force fields listed
above have been refined over decades. The parameters have
been progressively adjusted in light of new theoretical
calculations, the availability of additional experimental data, or
the increase in computational power, which has enabled new
properties or time scales to be examined. While clearly there
have been improvements over time, there is no accepted
benchmarking framework for determining whether a given
parameter set is a fundamental improvement over another.

The testing and validation of protein force fields is challenging
for several reasons. The primary difficultly is that empirical force
field parametrization is a poorly constrained problem. Some
properties can be exquisitely sensitive to small variations in a
particular parameter, while other properties can appear quite
insensitive. The parameters used in a given force field are also
highly correlated. As a result, alternative parameter combina-
tions can yield very similar results. This also means that varying
one parameter may cause a range of other parameters to be no
longer optimal.
A second challenge in the testing and validation of force fields

is the choice of target properties. Parameters adjusted to
reproduce the conformational properties of proteins in one
environment may result in the same protein adopting an
inappropriate conformation in a different environment. Indeed,
some groups have proposed different parameter sets to describe
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proteins in a folded as compared to an unfolded state, despite the
nature of the interactions and the solvent environment being
identical.7,8 All of the protein force fields listed above have been
proposed based primarily on their ability to reproduce a specific
set of experimental or theoretical data. Not only does the nature
of the data used to develop new versions differ between force
fields, but so too does the weighting given to different types of
data. This raises the question of what data are most appropriate
for validation.
It is also important to consider that the theoretical and

experimental data used in force field development and validation
will themselves contain uncertainties. For example, experimental
data can be direct or derived. In this context, direct data are
quantities that can be directly observed by experiment, such as
nuclear magnetic resonance (NMR) nuclear Overhauser effect
(NOE) intensities, J-coupling constants, chemical shifts,
residual dipolar couplings, X-ray reflection intensities, and
vibrational spectra. Derived data, in contrast, are quantities that
can be inferred from experimental data but cannot be measured
directly. Examples include protein structural models, torsional
angles, NMR order parameters, and NOE-derived interatomic
distances. Ideally, direct experimental data would be favored. In
practice, derived data such as structural models are often used
due to the ability to make direct comparisons between a
structural model derived from NMR or X-ray crystallography
and conformations from a simulation.
While the use of direct experimental data is in principle to be

preferred, there are still multiple challenges. Even when a
quantity can be measured experimentally with high accuracy,
calculation of the equivalent quantity from a simulation will
involve a range of approximations. This, combined with a focus
on a narrow range of observables, can lead to overfitting. For
example, attempts have been made to validate or refine different
parameter sets based on their ability to reproduce residual
dipolar couplings, order parameters, and J-coupling con-
stants.9−11 These parameter sets may show good or improved
performance in regard to these specific observables but may
show worse performance in regard to structural or thermody-
namic properties. This is because the structural interpretation of
variations in residual dipolar couplings, order parameters, and J-
coupling constants are highly model-dependent.1,12 Even the
comparison of interproton distances to experimental NOEs is
dependent on the choice of motional model.13

Any force field that accurately represents the underlying
potential energy surface is expected not only to reproduce a wide
range of experimentally observable and derived structural
properties but also to do so for a diverse and representative
range of systems. The final challenge is whether the results
obtained are statistically meaningful, how to weight the relative
importance of different properties, and whether the results of
any calculations can be independently validated. Developing a
framework to deal with these challenges is the primary focus of
the current study.
Attempts to compare the performance of different force fields

and to validate them against experiment have long been limited
by poor statistics. For example, in the original 1995 paper by
Cornell et al.3 describing the AMBER ff94 force field, a single
180 ps simulation of ubiquitin in water formed a key part of the
validation studies. The finding that the root-mean-square
deviation (RMSD) from the crystal structure of all heavy
atoms in the first 72 residues was 0.05 nm lower using ff94
compared to the previous parameter set (0.20 nm as opposed to
0.25 nm) was claimed to indicate a significant improvement.

Although these simulations were long for their time, the
difference in RMSD was clearly within uncertainty. In the same
year, Smith et al.14 used the results of three 1 ns simulations of
hen egg lysozyme (HEWL), one in vacuum and two in water, to
calculate in addition to RMSD the radius of gyration, solvent-
accessible surface area (SASA), and a range of NMR parameters,
including NOEs, backbone 1H−15N order parameters, and
3JHNα-coupling constants. This work highlighted the difficulty of
obtaining sufficient convergence to draw meaningful conclu-
sions in regard to the reproduction of experiment. This finding
was reinforced when Stocker and van Gunsteren were unable to
reliably distinguish between the GROMOS87 37C4+ and
GROMSOS96 43A1 force fields based on the same system.15

Price and Brooks16 simulated three proteins for 2 ns and
concluded that CHARMM22, AMBER94, and OPLSAA were
equally good. The widely used 2003 release of AMBER for
proteins, which incorporated a new charge model, was validated
for proteins based on its ability to distinguish between an
experimentally derived model (X-ray or NMR) and a set of
decoy structures for 54 unique proteins.17 Each trial simulation
was just 10 ps in length and performed using a generalized Born
model to represent solvation effects.17 Van der Spoel and
Lindahl18 conducted one of the first validation studies involving
extended simulation times and many replicates. They performed
28 × 50 ns simulations of the villin headpiece to compare the
performance of theOPLS all-atom force field and theGROMOS
united atom force field (43A1).18 Despite the size of this study,
variations between the replicates made it difficult to distinguish
between the force fields even for this very simple system.
In addition to short simulation times and small numbers of

proteins, the range of proteins considered has historically also
been narrow. The GROMOS 43A1, 45A3, and 53A6 parameter
sets were all validated by computing a range of structural and
NMR parameters for the protein HEWL from 2 to 5 ns
simulations.19−21 The fact that the NMR structure of lysozyme
performs well in the GROMOS family of force fields may not be
surprising, as the NMR data were interpreted in part using the
GROMOS force field. Likewise, the X-ray and NMR structures
solved using X-plor might perform well using CHARMM force
fields. In both cases, errors in the force fields are incorporated
into the structure used for validation.
In 2007, Villa et al.22 attempted to address the effects of poor

statistics and the focus on a narrow range of protein systems.
They compared three versions of the GROMOS force field
(43A1, 53A5, and 53A6) by performing 5−10 ns simulations of
31 proteins in triplicate. Although a wide range of structural
properties were examined, including the RMSD from the
experimental structure, radius of gyration, SASA, secondary
structure retention, and hydrogen-bond propensities, they were
unable to demonstrate that the observed differences between the
force fields were statistically significant. The variations between
proteins and between replicate simulations meant that the scale
of the study was simply insufficient. These relatively measured
conclusions can be contrasted against those of Lange et al.,23

who in 2010 ranked different variants of AMBER, CHARMM,
GROMOS, and OPLS on their deviation of the protein from the
starting X-ray structure and the ability to back-calculate a series
of NMR-derived quantities, in particular residual dipolar
couplings (RDCs). The analysis involved just two proteins
(GB3 and ubiquitin) and a single 1 μs simulation of each
combination of protein force field and long-range electrostatic
treatment. The force fields were ranked based on how long into
the simulation the average deviation of the back-calculated
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RDCs from experimental values remained small. Despite the
uncertainties in the back-calculation of RDCs, they concluded
that force fields that used particle mesh Ewald (PME) to
evaluate long-range electrostatics were superior to those that
used the reaction field method. This conclusion was reached
despite the fact that the effect of a reaction field was only
examined in the case of the GROMOS 43A1 and 53A6
parameter sets. In fact, the results presented in the paper show
little difference in the results using PME or reaction field. What
is shown is a marked difference between the use of PME and a
straight cutoff, a result which is as expected.
The reliable calculation of experimental observables for a

given protein and force field requires simulations that are long
enough to sufficiently sample all the accessible molecular
configurations at the temperature and pressure of interest. For
some small peptides, it is possible to sample a large number of
folding and unfolding events on submicrosecond time scales.24

However, for even the smallest proteins, motions over
milliseconds often play important functional roles.25 Lindorff-
Larsen et al.26 performed 1.2 μs simulations of four proteins
(HEWL, bovine pancreatic trypsin inhibitor (BPTI), ubiquitin,
and the B3 domain of protein G (GB3)) in order to validate
proposed changes in the torsion parameters in AMBER. They
showed improvements in the root-mean-square error of
3JHαCαCβHβ-coupling constants and RDCs but no other proper-
ties. The Shaw group also used their special-purpose machine
ANTON27 to compare the effect of force field on the folding
propensity of the villin headpiece.28 This involved 100 to 300 μs
simulations using AMBER ff03 and ff99SB*-ILDN as well as a
local variant of CHARMM22 and CHARMM27. This was
perhaps the first study to be on a time scale sufficient to sample
most relevant conformational states. Notably, however, the
results for each force field corresponded to a different
temperature, varying by as much as 60 K. None corresponded
to the temperature at which the experimental data were
collected. Three of the four were above the boiling point of
water at 1 atm.
In one of the few studies involving a wide variety of proteins

simulated under comparable conditions, Li and Brüsch-
weiler10,29 used a series of 100 ns simulations for a set of six
trial and 17 validation proteins in an attempt to refine AMBER
torsional parameters based on the ability to predict RDCs, order
parameters, and J-coupling constants. Schmid et al.,30 in testing
the GROMOS 54A7 parameter set, used duplicate 50 ns
simulations of four systems (HEWL, fox1 RNA binding protein,
chorismate mutase, and the peptide GCN4-P1) and considered
a range of structural properties, including RMSD, secondary
structure propensity, NOE violations, and J-coupling constants.
The 54A8 parameter set with revised ion and charged residues
was tested on a total of six proteins, each simulated for 20 to 100
ns.31 Huang and MacKerell32 used six proteins and simulations
of between 100 ns and 1.2 μs to compare the performance of
CHARMM36 against a range of NMR parameters but no other
structural parameters. In the case of OPLS-AA, only two
proteins (ubiquitin and GB3) were used in the validation of a
new set of torsion parameters, with a single 200 ns simulation
being performed in each case and only results for J-coupling
constants being presented.33 In similar work, Maier et al.34 used
four proteins (GB3, ubiquitin, BPTI, and HEWL) and a limited
range of NMR parameters to validate AMBER ff14SB. For
OPLS3, distributed by Schrödinger, Inc., the average RMSD
after 200 ns of simulation for seven relatively small and stable
proteins was provided as evidence of a significant improvement

over earlier OPLS versions.35 In this case, Harder et al.35

reported performing the simulations in triplicate. However, only
the mean RMSD of the final 100 ns averaged over the three
replicates was shown. The variability between the replicates,
which is crucial to understand the statistical significance of the
variation between force fields, was not given. The work of
Robustelli et al.11 also deserves mention. The paper primarily
focuses on results of microsecond simulations of a proposed
benchmark set of 21 systems, of which only four are proteins
with well-defined tertiary structures (GB3, ubiquitin, BPTI, and
HEWL). However, as part of an extensive Supporting
Information, results from multimicrosecond simulations of a
wide range of folded proteins using alternative parameter sets are
also presented but not analyzed in depth.
While the more recent validation studies routinely simulate

microseconds of protein dynamics, a range of fundamental
errors continue to be made.1 Many studies do not perform
simulation replicates in order to mitigate the lack of convergence
and assess the degree of variability between runs. Few include a
wide variety of protein structures in order to demonstrate
transferability of the force field. In some cases there are internal
inconsistencies, such as comparison of simulations that were
performed under different conditions (different thermostats,
temperatures, cutoffs, etc.).28,36 The key point is that the original
validation studies of the force fields currently in widespread use
often only involved a handful of proteins, most frequently
HEWL, GB3, and ubiquitin. GB3 and ubiquitin are notable, as
they have highly stable folds and very similar structures.37 They
are not representative of most systems of interest, and the
reproduction of the experimental observations of such highly
stable proteins is a necessary but not sufficient test of force field
quality.1,38

Here we ask the question whether the results of previous
validation studies involving the structural properties of proteins
are likely to be statistically significant and consider what might
be required to determine the relative quality of alternative force
fields based on structural criteria, given variations between
proteins and variations between individual simulations. To
provide data with which to illustrate the challenges involved and
the types of statistical analysis that can be performed, a wide
range of proteins varying both in size and structural properties
were simulated under identical conditions using four variants of
the GROMOS force field, namely, the 45A4,39 53A6,20 54A7,30

and 54A831,40 parameter sets. A range of metrics were
considered. These included the number of backbone hydrogen
bonds, the number of native hydrogen bonds, polar and
nonpolar SASA, radius of gyration, the prevalence of secondary
structure elements, J-coupling constants, NOE intensities,
positional RMSD, and the distribution of backbone ϕ and ψ
dihedral angles. These properties were considered because they
can be expressed as a deviation from a proposed experimental
structure and are commonly used to judge the quality (or
otherwise) of an individual simulation.
Note that although the total simulation time considered is

significant (>8 μs), we deliberately limited individual runs to be
on the same order as those runs used as part of the initial
development and validation of the parameter sets examined.
This is much less than is required to demonstrate convergence.
The goal of this work is not to propose that a particular
parameter set is fundamentally better than another but rather to
establish a framework for statistical analysis and propose a
comprehensive test set against which the structural properties of
protein force fields can be validated. The comparison of
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alternative variants of the GROMOS force field is presented as
an example to highlight specific challenges and potential bias
without impugning the work of others.

■ METHODS
A total of 52 protein structures were examined, corresponding to
42 different proteins ranging in size from 17 to 326 residues.
This included 39 structures solved by X-ray diffraction (Table 1
and Figure 1) and 13 solved using NMR techniques (Table 2
and Figure 2). All the corresponding proteins are monomeric in
solution, do not contain ligands or cofactors (including ions),
and are not bound to other macromolecules such as DNA or

RNA. An initial set of 32 structures were chosen based on
completeness and a resolution of below 1.5 Å. An additional nine
proteins were included for which both an X-ray structure and an
NMR structure were available. A final structure, that of themajor
cold shock protein (PDB ID 1MJC) was included to facilitate
comparison with a previous validation study.31 Reference
structures solved by X-ray diffraction and NMR are listed in
Tables 1 and 2, respectively. Unless stated otherwise, the
experimental data pertaining to each structure were obtained
from either the PDB41 or the Biological Magnetic Resonance
Data Bank.42

Table 1. List of the 39 Protein Structures Solved by X-ray Diffraction Used in This Studya

PDB ID protein name organism NR
310
(%)b

α
(%)b

β
(%)b pH

res.
[Å] Rwork Rfree

force
field

4LFQ potassium channel toxin L-ShK Stichodactyla helianthus 35 9 34 − 7.0 1.1 0.13 0.16 all
2NLS human β-defensin-1, mutant Q24A Homo sapiens 36 − 19 31 7.5 1.0 0.11 0.12 54A7/8
3E7U plectasin Pseudoplectania nigrella 40 3 23 25 7.5 1.4 0.16 0.18 all
2GKT turkey ovomucoid third domain Meleagris gallopavo 51 − 20 16 7.5 1.2 0.13 0.15 all
3CA7 protein Spitz Drosophila melanogaster 52 − 12 38 6.5 1.5 0.2 0.24 54A7/8
1PGBc protein G, B1 domain Streptococcus sp. gx7805 56 − 25 43 4.5 1.9 0.20 − all
1ZLM osteoclast stimulating factor 1 Homo sapiens 58 5 − 48 7.5 1.1 0.16 0.21 all
1SHGc α-spectrin Gallus gallus 62 5 − 49 4.0 1.8 0.2 0.28 all
1UCS antifreeze peptide RD1 Lycodichthys dearborni 64 14 6 25 7.5 0.6 0.14 0.15 all
1ZVG α-like neurotoxin BmK-I Mesobuthus martensii 66 2 15 30 6.0 1.2 0.16 0.16 all
1YU5c villin headpiece Gallus gallus 67 10 45 − 7.0 1.4 0.19 0.22 all
1MJC major cold shock protein Escherichia coli 69 4 − 46 7.5 2.0 0.19 − all
1UBIc ubiquitin Homo sapiens 76 8 16 33 5.6 1.8 0.17 − all
2J8B human CD59 glycoprotein Homo sapiens 79 8 10 32 7.5 1.1 0.17 0.2 54A7/8
2PNEd glycine-rich antifreeze protein Hypogastrura harveyi 81 − − − 6.5 1.0 0.14 0.16 all
1ULRe putative acylphosphatase Thermus thermophilus 88 1 28 38 7.0 1.3 0.19 0.22 all
1A19c barstar, mutant C82A Bacillus

amyloliquefaciens
90 2 44 17 6.5 2.8 0.2 0.29 54A7/8

4RWU protein Sis1 Saccharomyces cerevisiae
s288c

92 − 62 − 7.0 1.2 0.12 0.15 54A7/8

1T2I ribonuclease Sa Streptomyces
aureofaciens

96 3 11 22 7.2 1.1 0.13 0.17 all

2YXF β-2-microglobulin Homo sapiens 100 − − 49 7.0 1.1 0.18 0.2 54A7/8
2CWRc chitin binding domain of chitinase Pyrococcus furiosus 103 − − 62 6.5 1.7 0.19 0.23 all
2RB8 tenascin Homo sapiens 104 − − 48 7.5 1.4 0.17 0.2 54A7/8
1EW4 CyaY Escherichia coli 106 − 31 32 5.1 1.4 0.19 0.21 all
2PPO FK506 binding protein-12 (FKBP12), mutant

E60A
Homo sapiens 107 4 7 37 7.0 1.3 0.13 0.18 all

2PND Murine CRIg Mus musculus 119 5 − 51 7.5 1.0 0.12 0.14 54A7/8
1FAZc phospholipase A2 Streptomyces

violaceoruber
122 10 57 − 6.0 1.4 0.19 0.23 all

1TVQc chicken liver basic fatty acid binding protein Gallus gallus 125 − 11 58 7.5 2.0 0.23 0.27 all
1AKIc lysozyme Gallus gallus 129 13 30 11 4.5 1.5 0.21 − all
1UXZ cellulase B Cellvibrio mixtus 131 2 − 56 7.0 1.4 0.16 0.18 all
1QK8 tryparedoxin-I Crithidia fasciculata 146 8 27 22 7.5 1.4 0.19 0.22 all
1NG6 hypothetical protein yqeY Bacillus subtilis 148 4 74 − 5.5 1.4 0.21 0.25 all
2WLW TRIM5-CypA Macaca mulatta 165 3 12 32 7.4 1.5 0.16 0.19 54A7/8
3EYE PTS system N-acetylgalactosamine-specific IIB

component 1
Escherichia coli o157:h7 168 5 35 24 7.0 1.4 0.19 0.22 54A7/8

1FL0 endothelial monocyte-activating polypeptide II Homo sapiens 171 7 2 37 7.5 1.5 0.22 0.22 all
1AMM γ-crystallin B Bos taurus 174 6 3 40 6.8 1.2 0.18 − all
1TUAe hypothetical protein APE0754 Aeropyrum pernix 191 7 53 18 7.0 1.5 0.21 0.23 all
2PTH peptidyl-tRNA hydrolase Escherichia coli 193 7 38 21 7.5 1.2 0.2 0.21 54A7/8
3WP5 xylanase CDBFV, mutant E109A Neocallimastix

patriciarum
227 2 8 54 6.5 1.3 0.15 0.18 all

4MHP putative glutaminyl cyclase Ixodes scapularis 326 6 33 17 7.5 1.1 0.17 0.19 all
aAbbreviations: NR = number of residues; 310 = 310-helix; α = α-helix; β = β-strand + β-bridge. bSecondary structure percentages as assigned by
DSSP. cHas a paired NMR structure. dPolyproline II spiral only, not detected by DSSP. epH not reported, set to 7.0.
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Structure Preparation. The first model provided in the
PDB file was used as the starting structure for both the crystal
and NMR-derived structures. Where residues showed multiple
occupancy in the X-ray structures, a single conformation was
selected by visualizing the alternative conformations and

choosing a combination of occupancies that avoided atomic
clashes. All water molecules contained within the modeled
structures were retained. PROPKA343 as implemented in
PDB2PQR (version 2.1.0, PARSE force field44) was used to
assign the protonation state of titratable residues. The pH used

Figure 1. Cartoon depictions of the starting structures derived from X-ray crystallographic data (purple, α-helix; yellow, β-strand; blue, 310-helix; red,
π-helix; cyan, turn; white, coil).

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c08469
J. Phys. Chem. B 2024, 128, 4602−4620

4606

https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08469?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08469?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08469?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c08469?fig=fig1&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c08469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to determine the protonation state of titratable side chains was
either taken from the PDB file (“PH” entry) or extracted from
the relevant publication. Where the pH could not be determined
(2GB1, 1TUA, and 1ULR), a value of 7.0 was used. The C- and
N-termini were taken to be charged in all structures. The
preparation of the systems was performed using the GROMOS+
+ package (version 1.4.0).45 Missing atoms were added, and
their positions were energy-minimized using a steepest decent
algorithm. During this procedure, all atoms present in the
reference structure were positionally constrained. The protein
and any crystal waters were placed in a rectangular periodic box
such that the minimum distance to the box wall was 1.2 nm. The
system was then solvated in SPC water and energy-minimized
with all protein atoms positionally restrained, with a force
constant of 25 × 103 kJ mol−1 nm−2. Na+ and/or Cl− ions were

added by randomly replacing water molecules lying at a distance
of 0.4 nm or greater from any protein atom or existing ion. This
process was repeated until sufficient ions were added to balance
the net charge of the protein and ensure a physiological salt
concentration of 0.15 M. If additional ions could not be added
using a cutoff distance of 0.4 nm, the cutoff was progressively
reduced in steps of 0.01 nm and the process repeated.
MD Simulations. All MD simulations were performed using

the GROMOS11 software package.46 Unless stated otherwise,
the temperature and pressure were set to 298 K and 1 atm,
respectively. The weak-coupling scheme47 was used to maintain
the temperature and pressure with relaxation times of 0.1 and 0.5
ps, respectively. Protein atoms were coupled to a separate
temperature bath to the solvent and ions. A group-based twin-
range cutoff scheme for nonbonded interactions was employed,

Table 2. List of the 13 NMR Protein Structures Used in This Studya

PDB ID protein name organism NR
310
(%)b

α
(%)b

β
(%)b pH NMR data

force
field

2OVN GCN4 trigger peptide (p16-31) Saccharomyces cerevisiae 17 − 76 − 7.5 NOE, Jval all
2GB1c,d protein G, B1 domain Streptococcus sp.

“group g”
56 1 18 44 7.0 − all

1AEYc α-spectrin Gallus gallus 62 5 − 48 3.5 − all
3CI2 chymotrypsin inhibitor 2 (CI-2) Hordeum vulgare 66 − 17 17 4.2 NOE, Jval all
1QQVc villin headpiece Gallus gallus 67 7 37 − 7.0 NOE, Jval all
1AFI mercury binding protein (MerP) Shigella flexneri 72 − 29 28 6.5 NOE all
1D3Zc ubiquitin Homo sapiens 76 8 16 33 6.5 NOE, Jval, RDC all
2AF8 actinorhodin polyketide synthase acyl carrier

protein
Streptomyces coelicolor 86 − 50 − 4.9 − 54A7/8

1BTAc barstar Bacillus amyloliquefaciens 89 3 42 18 6.7 Jval all
2CZNc chitin binding domain of chitinase Pyrococcus furiosus 103 - − 51 5.6 NOE all
1IT5c phospholipase A2 Streptomyces

violaceoruber
122 11 57 − 7.6 − all

1MVGc chicken liver basic fatty acid binding protein Gallus gallus 125 1 12 59 5.6 NOE, Jval all
1E8Lc lysozyme Gallus gallus 129 2 29 6 3.8 NOE, Jval, RDC all

aAbbreviations: NR = number of residues; 310 = 310-helix; α = α-helix; β = β-strand + β-bridge; NOE = nuclear Overhauser effect; Jval = 3J-
coupling; RDC = residual dipolar coupling. bSecondary structure percentages as assigned by DSSP. cHas a paired X-ray diffraction structure. dpH
not reported, set to 7.0.

Figure 2. Cartoon depictions of the starting structures derived from NMR data (purple, α-helix; yellow, β-strand; blue, 310-helix; red, π-helix; cyan,
turn; white, coil).
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with a short-range cutoff of 0.8 nm and a long-range cutoff of 1.4
nm. To reduce the effects of truncating the electrostatic
interactions beyond the 1.4 nm cutoff, a reaction field
correction48 was applied for which the relative permittivity
was set to 61.49 The pair list was updated every five steps. The
leapfrog algorithm was used to integrate Newton’s equations of
motion using a time step of 2 fs. Bond lengths were constrained
using the SHAKE algorithm.50 Center-of-mass motion was
removed every 1000 steps.
The solvated structures were equilibrated by heating the

system from 50 to 298 K while simultaneously reducing
harmonic position restraints on the protein. This was done by
performing a series of six constant-volume simulations, each 20
ps in length, increasing the temperature by 50 K between each
simulation (48 K on the last). At the same time, the position
restraint force constant was reduced from 25 × 103 kJ mol−1

nm−2 to 0 in 5× 103 kJ mol−1 nm−2 increments. An additional 20
ps simulation was performed to initialize roto-translational
constraints on the solute atoms,51 and a final 20 ps simulation
was performed with pressure coupling at 1 atm. Thus, each
systemwas relaxed over a total of 160 ps. Subsequent production
simulations were performed in triplicate for 15 ns using different
initial velocities. Analysis was performed on the last 5 ns of each
simulation using configurations written every picosecond.
Parameter Sets. Four variants of the GROMOS force field

were considered in this work, namely, the 45A4,39 53A6,20

54A7,30 and 54A831,40 parameter sets. The GROMOS force
field has been parametrized to reproduce the structural and
thermodynamic properties of biomolecules such as peptides,
nucleic acids, lipids, and sugars. It has been fitted against the
densities and heats of vaporization of simple liquids containing
functional groups found in biomolecules as well as the free
energy of solvation of a set of reference molecules in SPC water
and cyclohexane. The 45A4 parameter set was the last iteration
of the 4x parameter set, which was first released in 1996. The
“45” refers to the number of Lennard-Jones atom types, the
letter “A” indicates that the parameters are for a condensed-
phase system, and the number “4” signifies the fourth revision of
the force field. The 53A620 parameter set was released 2004. In
addition to eight new atom types, the Lennard-Jones parameters
and partial charges of polar groups were reparametrized to better
reproduce the solvation free energies in water and cyclohexane
for analogues of the side chains of the 14 neutral amino acids.
The 54A730 parameter set included a reparametrization of the
peptide backbone dihedrals. Finally, 54A840 added refinements
to the Lennard-Jones parameters and partial charges of the
charged amino acid side chains.
Hydrogen Bonds. A hydrogen bond was considered to exist

if the distance between the hydrogen and acceptor was below
0.25 nm and the donor−H−acceptor angle was larger than 120°.
SASA. The solvent-accessible surface area was calculated

using a probe radius of 0.14 nm.52 The radii of the protein
(solute) atoms were assumed to correspond to the minimum in
the Lennard-Jones potential function describing the interaction
between the oxygen of SPC water and the solute atom. In this
work, arginine, aspartic acid, asparagine, glutamic acid,
glutamine, glycine, histidine, lysine, serine, threonine, and
proline were considered to be polar residues. Alanine, cysteine,
isoleucine, leucine, methionine, phenylalanine, tryptophan,
tyrosine, and valine were considered to be nonpolar.53

Radius of Gyration. The mass-weighted radius of gyration
was calculated as

=
=
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m r r1
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i igyr
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where mi is the mass and ri the position vector of atom i, rcom is
the position vector of the center of mass, andM is the total mass
of all N atoms.
Secondary Structure. The secondary structure was

assigned using the Dictionary of Secondary Structures of
Proteins (DSSP) criteria proposed by Kabsch and Sander.54

Positional RMSD. The positional root-mean-square-devia-
tion was calculated after performing a least-squares fit on the
protein backbone (heavy atoms) excluding the first and the last
residue, using
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where ri and rref,i are the position vectors of atom i in the test and
the reference conformations, respectively, and N is the total
number of atoms. As the significance of the magnitude of the
RMSD between two conformations is dependent on the size of
the protein, the RMSD100 as proposed by Carugo and Pongor55

was also calculated:

=
+ N

RMSD
RMSD

1 ln( /100)100
(3)

The RMSD100 attempts to normalize the RMSD (eq 2) to a
value equivalent to that of a protein with 100 residues. This
approach has not been validated for structures with fewer than
40 residues, so the RMSD values for proteins with 40 residues or
less were not adjusted.

3J-Coupling Constants. 3J-coupling constants were esti-
mated from the associated dihedral angles using the Karplus
relation:56

= + +J A B C( ) cos cos2 (4)

where the empirical parameters A, B, and C vary depending on
which heavy atoms are used to define the dihedral.57 A large
variety of alternative empirical parameter sets have been
proposed for use with the Karplus curve, with different studies
using different sets of reference structures and different sets of
NMR data and incorporating different corrections for motional
averaging.58−61 In this work, J(θ) calculations were performed
using the parameters proposed by Lindorff-Larsen et al.60 Note
that as the united atom GROMOS force field was used, Φ was
defined in terms of the atoms C−N−Cα−C. The resulting
dihedral angle used in the Karplus relation was θ = Φ − 60°.
NOE Intensities.To compare experimental NOE data to the

results from simulations, one should in principle compare the
buildup of NOE intensities to the magnitude of the spectral
density (including relaxation effects) as a function of time.
However, for the cases considered in this work, only upper or
upper and lower distance bounds are available. These distance
bounds have been inferred from NOE intensities assuming the
system is freely rotating, that a single rotational correlation time
can be used to describe themotion of the entire protein, and that
the intensity of theNOE at a givenmixing time is proportional to
⟨r−6⟩, where r is the interproton distance and the angle brackets
indicate an ensemble average. Here, given the short time scales
examined in the simulations, the ⟨r−3⟩−1/3 averaged distances
from the simulations are compared to the proposed
experimental upper bounds, in line with the work of Tropp.13
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Violations were computed by averaging over the replicates. To
correct for cases where the assignment is ambiguous, the
pseudoatoms proposed by Wüthrich were used.62,63 Where
other corrections had been applied, these were first removed and
replaced by the pseudoatom corrections.
Statistical Treatment. Ensemble averages for secondary

structure propensities, radius of gyration, SASA, and the number
of backbone hydrogen bonds were computed and compared to
the corresponding quantities obtained from the proposed
experimental model. Unless otherwise noted, each replicate
was treated separately before the results were combined and
averaged.
To determine whether the observed differences in a particular

property were significant given the size of the data set (number
of proteins) and variations between individual runs, a similar
approach to that proposed by Villa et al.22 was employed. In that
work, multiple replicates and multiple proteins were used in an
effort to remove the protein-specific contribution to the variance
in the properties examined in order to test whether any observed
differences were due to the force field. A fixed-effects
multivariate analysis of variance (MANOVA) was then used
to determine the influence of the force fields on the variance.
However, the differences in a particular metric between
alternative parameter sets will be affected by both the variability
due to the choice of protein and the variability between
replicates. The data therefore have three levels of variability: the
effect of the parameter set, the effect of the protein, and the
variability between replicates. Given this, a more appropriate
statistical treatment is to use a multivariate mixed effects model,
as is for example proposed in ref 64.
The work of Villa et al.22 was therefore extended by

considering a nested representation of the data where the
replicate simulations are nested within each of the proteins and
the latter are nested within a given parameter set. This
representation requires the consideration of mixed effects in
the final regressionmodels.64 The choice of protein and replicate
are treated as two random effects with different variabilities. All
parameter settings used to perform the simulations (the
parameter set) were considered fixed effects. To perform the
analysis, the properties used to characterize a particular
simulation were first re-expressed as a one-dimensional “metric”
value denoting a particular observation y of a given property.
The type of metric which is represented by these y values was
coded by a separate factor variable. To obtain a complete
representation of the original multivariate data, we recorded the
parameter set, the protein, and the replicate number. One
advantage of this representation is that it allows for unbalanced
situations where some values are missing. We refer below to this
assessment as multivariate mixed effects likelihood ratio test
(MVMELRT).
When performing a mixed model linear analysis, it is required

that the residuals be Gaussian-distributed. To enforce this
requirement, all metrics that were not Gaussian-distributed were
transformed using an appropriate Box-Cox transformation.65

For this, the protein and the parameter set were used as
regressors. To determine the heteroscedasticity of particular
metrics as well as any correlation between metrics, the linear
mixed effects regression model lme implemented in the
statistical package R (nlme) was used. Whether the effect of
the parameter set has a significant influence on a given metric
vector was then determined by a likelihood ratio test. The
heteroscedasticity and correlations were determined using the
weights and corr parameters in lme, respectively. The nesting

between protein and replicate was considered by regarding them
as random effects in lme.
Whether any observed dependence of a given metric or set of

metrics on the choice of parameter set was significant was tested
by fitting two lme models: a simple model that disregarded the
influence of the parameter set and a more complex model
including the influence of the parameter set. Both models were
fitted using a maximum likelihood approach. A subsequent
likelihood ratio test provided a p value, which was used to assess
whether a given metric vector had a significant dependence on
the parameter set. Once significance was established, a more
specific analysis of significant interactions between force field
and protein characteristics could be obtained with a univariate
mixed effects model. For this analysis, the R package lme4 was
used for modeling and the package emmeans was used for
pairwise comparisons of parameter sets. Since this analysis gives
rise to multiple tests, all p values were adjusted to Benjamini−
Yekutieli false discovery rates (FDRs).66 We refer to this
assessment as Benjamini−Yekutieli adjusted mixed effects
likelihood ratio test (BYMELRT).
As noted above, all the statistical analysis was performed using

R, version 4.1.2 (2021-11-01). Full details are provided in the
Supporting Information. Furthermore, to ensure complete
transparency and reproducibility of our results the raw data
files plus the R code and other commands needed to repeat the
analysis are also provided in the Supporting Information and
through a GitHub repository (https://github.com/psykacek/
rcode4ff).

■ RESULTS
In this work, the extent to which it is possible to assess the
relative performance of alternative versions of the GROMOS
force field based on structural criteria is considered. Following
the approach of Villa et al.,22 multiple replicates and multiple
proteins were used in an effort to remove any protein-specific
contributions to the observed variance in the properties
examined, i.e., to distinguish differences due to the choice in
force field from the effects due to alternative initial conditions or
the specific proteins simulated. Of the 52 protein structures
considered, a total of 40 structures were simulated with all
parameter sets (45A4, 53A6, 54A7, and 54A8) for 15 ns in
triplicate. A further 12 structures were simulated for 15 ns in
triplicate using just 54A7 and 54A8. This provided a sample size
of 120 for the 45A4 and 53A6 parameter sets and 156 for the
54A7 and 54A8 parameter sets. All systems were simulated
under identical conditions. In total the analysis presented is
based on 8.3 μs of simulation time. To quantify the relative
performance of the different parameter sets, a range of metrics
were considered. Properties such as the number of native
hydrogen bonds, the radius of gyration, and J-coupling constants
were chosen, as they can be expressed as a deviation from a
proposed experimental structure. These properties are also often
used as metrics to judge the quality (or otherwise) of an
individual simulation.
The first question that must be asked is whether the

differences in the simulations obtained using the four different
parameter sets are statistically significant given the number of
proteins, the number of replicates, and the length of time
simulated. The answer to this question is overwhelmingly yes.
Combining all data using MVMELRT and performing a
multivariate multilevel analysis, the probability that the
differences observed are due to chance is very low (p ≪
0.0001). The deviations are rapid, systematic, and dependent on

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c08469
J. Phys. Chem. B 2024, 128, 4602−4620

4609

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.3c08469/suppl_file/jp3c08469_si_001.pdf
https://github.com/psykacek/rcode4ff
https://github.com/psykacek/rcode4ff
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c08469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the force field. The effect of the force field is evident despite the
relatively short simulation times, the fact that the simulations
were initiated from the same initial structures, and the small

number of replicates, all of which would suggest that the true
variance is severely underestimated. An underestimation of the
variance in properties calculated using finite trajectories is a

Figure 3.Boxplots of the percentage change in (A) the number of backbone hydrogen bonds, (B) the number of native backbone hydrogen bonds, (C)
the total polar solvent accessible surface area (SASA), (D) the total nonpolar SASA, and (E) the radius of gyration for all proteins simulated with a
given parameter set compared to the corresponding starting conformation (see the text). Outliers are marked with blue text. An outlier was defined as a
value which lies above or below the quartile boundary plus 1.5 times the interquartile range. Multiple occurrences of the same code refer to replicas.
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general problem when analyzing MD simulations. Unless the
simulation is ergodic and the Boltzmann probabilities of all
relevant states are well-converged, the variance will depend on
the precise starting configuration (coordinates and velocities) as
well as the length of the simulation(s). Without complete
sampling, the variance will be underestimated or at least contain
a degree of uncertainty. Furthermore, any uncertainty in the
variance implies uncertainty in the p value. However, unlike the
variance, which is an absolute measure, the p value listed above
corresponds to a relative measure. It is based on a comparison of
variances as opposed to the variance itself. Thus, the uncertainty
in the p value can be mitigated by ensuring that the trajectories
analyzed are of equal length and performed under similar
conditions. This is a prime reason why only the initial velocities
were varied between replicate runs. Nevertheless, it is important
to stress that the p values have a high degree of uncertainty and
should not be overinterpreted. They are presented primarily to
illustrate how the proposed framework to compare force fields
can be used.
Considering each of themetrics individually by amixed effects

model likelihood ratio test, there was more variation between
the effects of the choice of parameter set. The effect of the choice
of parameter set on the number of backbone hydrogen bonds,
the number of native backbone hydrogen bonds, the polar and
nonpolar SASA, the radius of gyration, RMSD100, and the
proportions of α-helix and β-strand was highly significant, with p
< 0.0001. The effect on other metrics, including the proportions
of π-helix, 310-helix, and β-bridge and both NOE and J-coupling
constants was marginal (0.03 < p < 1.0). Pairwise comparisons
between alternative parameter sets and individual metrics tell a
different story again. Specific parameter sets affect a given metric
muchmore than others. These differences are described in detail
below. In order that a reader can compare the values of the
specific metrics provided directly to what they would obtain
from their own simulations, the figures and tables presented in
the main paper contain untransformed data. All statistical
analysis was, however, performed using Box-Cox-transformed
data. Individual values for transformed and untransformed data
are provided in the Supporting Information (data files S2, S3,
and S4).
Structural Metrics.The most straightforward of the metrics

listed above to examine are structural metrics, which can be
compared directly to the equivalent value calculated from the
experimental structure using the same theoretical model. These
include the number of backbone hydrogen bonds, the number of
native backbone hydrogen bonds, the polar and nonpolar SASA,
the radius of gyration, and the presence of specific elements of
secondary structure (α-helix, β-strand, and 310-helix). For each
simulation, the percentage deviation from the value of the
quantity q in the experimental structure, Δq%, was calculated
with respect to the average over the last 5 ns of each simulation:

= ×q
q q

q
100% calculated

protein,replicate
experimental
protein

experimental
protein

Boxplots of these percentage differences for each of the
parameter sets for the number of backbone hydrogen bonds,
the number of native backbone hydrogen bonds, the polar and
nonpolar SASA, and the radius of gyration are shown in Figure 3.
The prevalence of the main elements of secondary structure are
shown in Figure 4. In addition, the pairwise differences, Δμ,
between the absolute value of the mean of a given metric, μ =
mean(Δq), considering all proteins and all replicates obtained

using the alternative parameter sets are presented in Table 3.
Note, Δq is the difference between the metric from the
simulation and the reference. In Table 3, a positive number

Figure 4. Boxplots of the percentage difference between the fraction of
the sequence assigned to an individual element of secondary structure
by the program DSSP in the simulation compared to the corresponding
starting conformation for (A) α-helix, (B) β-helix, and (C) 310-helix.
Note: to avoid overlap in (A), only outliers 2.25 times the interquartile
range or greater are shown.
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indicates that the value obtained in the simulation is closer to
that calculated from the starting structure or measured
experimentally for the newer of the two parameter sets
compared. Also presented in Table 3 is an assessment of
whether the differences between the values obtained using
alternative parameter sets for that specific metric are significant.
Box-Cox-transformed data on these and additional metrics (β-
bend and π-helix) as well as boxplots of the transformed data are
provided in Supporting Information (data file S1).
The primary point to note in relation to Figures 3 and 4 as well

as Table 3 is that the range of the values is large compared to the
differences in the medians and means. There are also many
outliers. As a result, observed differences in any one metric for
any given protein have little (if any) significance when taken in
isolation. Figures 3 and 4 also show little apparent correlation
between the parameter sets for different metrics. The greatest
loss of native hydrogen bonds is not obviously associated with
the largest change in the radius of gyration or the greatest loss of
a particular element of secondary structure. Thus, although a
certain parameter set may appear to perform better with respect
to a particular metric or a given protein may appear to perform
better using a certain parameter set for a particular metric,
comparisons based on individual metrics or involving a limited
sample (i.e., a small set of proteins or few replicates) would
appear to be of very little value when attempting to quantify the
relative performance of different parameters sets.
The difficulty in identifying which parameter set performs

best overall is also evident in Table 3. The first thing to note is
that statistically significant differences in the means of the
number of backbone hydrogen bonds, the number of native
backbone hydrogen bonds, the polar and nonpolar SASA, and
the radius of gyration could be readily observed despite short
time scales examined. For example, it is clear that 54A8 and
54A7 yield similar results and that both are easily distinguished
from 53A6 and 45A4. However, determining whether one of the
parameter sets performs significantly better than another is
much more challenging. For example, the only structural metric
for which there was a significant difference between 54A8 and
54A7 is the polar SASA. As the primary difference between these
parameter sets is the description of charged residues, this is not
surprising. While statistically significant, the difference in the
means was only 0.6%. This means the agreement between the

polar SASA calculated from the simulations and that calculated
from the corresponding experimental models was slightly better
in the case of 54A8. Two points should be noted. First, a
difference of 0.6% would be barely detectable in a single
simulation. Second, X-ray structures might be expected to
underestimate the polar SASA due to crystal packing effects.
However, using either 54A8 or 54A7, the number of native
backbone hydrogen bonds maintained during the simulations is
significantly higher than when using 45A4 or 53A6. The
difficulty is that in no case did the agreement with experiment
improve for all metrics considered in the pairwise comparisons.
For example, fromTable 3 it can be seen that in going from 45A4
to 54A8, seven of the metrics examined showed a statistically
significant difference regarding the agreement with experiment.
Three showed an improvement, three showed a loss of
agreement, and in one case the deviations from experiment
are of the same magnitude with opposite signs, leading to no net
change.Which parameter set might be judged to be better would
depend on the weighting given to each of these individual
metrics. Also, not all metrics improved with time: using either of
the older parameter sets considered (45A4 or 53A6), the
percentage of β-strand is much closer to the values obtained
from the experimental structures than using any of the more
recent parameter sets, suggesting that there are compensating
effects.
It is possible that global properties based on the structure in

the crystal and subject to crystal packing effects, such as the
radius of gyration, might not be representative of the system free
in solution and that local properties such as variations in
elements of secondary structure are a better measure of whether
the structure of the protein is maintained appropriately. Figure 4
shows boxplots of the difference in the percentage of residues
assigned to the three main types of secondary structure observed
in these structures based on the DSSP criteria. In the vast
majority of cases, the deviation in the proportion of a given type
of secondary structure compared to the experimental structures
is less than 5%. Nevertheless, it has been suggested previously30

that the 53A6 parameter set leads to a higher proportion of β-
strand than earlier or later parameter sets. However, the
statistical significance of the observed differences between 53A6
and either 54A7 or 54A8 is marginal. In all cases the differences
in the means are less than 2% (Table 3). The change in the

Table 3. Difference in the Absolute Value of the Mean Error Obtained Using Different Parameter Sets for the Properties
Considereda,b

54A7 → 54A8 53A6 → 54A8 45A4 → 54A8 53A6 → 54A7 45A4 → 54A7 45A4 → 53A6

backbone H-bonds (%)d 0.6 5.7*** 5.2*** 5.0*** 4.5*** −0.5
native H-bonds (%)d 0.9 4.5*** 6.8*** 3.6*** 6.0*** 2.3**
polar SASA (%)d 0.6*** 1.8*** −1.2*** 1.2 −1.8*** −2.9***
nonpolar SASA (%)d 1.5 2.1 −2.4*** 0.6 −4.0*** −4.6***
radius of gyration (%)d 0.2 0.8 ∼0.0***e 0.5 −0.3*** −0.8***
α-helix (%)d 0.1 1.6*** 0.3 1.5*** 0.2 −1.2
β-strand (%)d 0.2 −1.4*** −1.2*** −1.5*** −1.3*** 0.2
310-helix (%)

d −0.1 0.5 0.4 0.6** 0.5 −0.1
J-coupling (Hz) 0.071 0.171 0.186 0.100 0.114 0.014
NOE violations (nm) 0.003 0.004 0.001 0.001 −0.002 −0.003
RMSD100c (nm) 0.006 0.040*** 0.019*** 0.034*** 0.013** −0.021

aPositive values indicate an improvement in performance between parameter sets. bThe statistical significance was determined using transformed
data as described in the text. It refers only to whether the results obtained using different parameter sets could be distinguished. Significance is
denoted as follows: ***, p ≤ 0.001; **, 0.001 < p ≤ 0.01l *, 0.01 < p ≤ 0.05. cRMSD normalized to 100 residues (only proteins with >40 residues
were normalized). dDifferences in the percent error with respect to the experimentally derived quantity. eThe deviations from experiment are of the
same magnitude with opposite signs.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c08469
J. Phys. Chem. B 2024, 128, 4602−4620

4612

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.3c08469/suppl_file/jp3c08469_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c08469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


percentage of residues assigned to α-helix and 310-helix shows
little dependence on the parameter set. This shows how the use
of a limited test set can easily lead to bias.
Distance Metrics. The quality of a simulation is often

judged in terms of a relative distance between a reference and the
simulated structures. Most commonly this is done by calculating
the positional RMSD from the starting configuration taken from
the crystal or a given conformer in the NMR ensemble. The
relative distance can also be quantified in terms of pairwise
distances or dihedral angles. Each of these measures has
limitations. For example, the positional RMSD is non-Euclidian
and dependent on the size and shape of the molecule. While a
change of 0.1 or 0.2 nm in positional RMSD may be highly
significant in the case of a small globular protein, in the case of a
large protein with an elongated structure it could be well within
uncertainty. In an attempt to reduce the size and shape
dependence and ensure that all proteins were given equal
weighting, the backbone positional RMSD values were scaled to
that of a 100-residue protein (RMSD100). Figure 5 shows a
boxplot of the average of the RMSD100 between the starting
experimental structure and conformations sampled over the last
5 ns of simulation. Themedian RMSD100 varies between a low of
0.15 nm in the case of 54A8 and a high of 0.19 nm in the case of
53A6. The 45A4 parameter set shows the least spread. However,
the difference between the first and third quartile suggests that
the differences observed are difficult to distinguish from noise.
The mean values are provided in the Supporting Information
(data file S4). Figure 5 also shows the same data after a Box-Cox
transformation was performed to obtain data that are normally
distributed. As indicted in Table 3, 54A8 did not differ
significantly from 54A7, but 54A7 and 54A8 showed significant
improvements over 53A6 and 45A4. Again, the effects were
subtle, with the largest difference in the averages being only 0.04
nm between 54A8 and 53A6. There were also significant
variations between individual proteins. The protein which
showed the lowest RMSD100 differed for each parameter set. In
fact, only one protein (4MHP) was among the lowest three
proteins for more than one parameter set (i.e., second for 53A6
and third for 54A7). 4MHP is highly compact and the largest

protein examined (Table 1 and Figure 1). The individual protein
showing the largest RMSD100 also differed for each parameter
set, although 1QQV, 1YU5, and 1TUA occurred multiple times
in the top three. As can be seen from Figures 1 and 2, these three
proteins are much less densely packed than others in the test set.
Discrimination Based on Structural and Distance

Metrics. When attempting to perform a validation study, it is
important to determine whether any combination of the
available criteria could be used to unambiguously distinguish
between the alternative parameter sets given the time scale and
range of proteins examined. As can be seen from Table 3, the
results for the pairwise comparison are inconclusive, meaning
that it is not possible to unambiguously rank the performance of
the four parameter sets using the set of structural and distance-
based metrics examined in this work.
This raises the question of whether the parameter sets are

significantly different. In this case, we can treat this as a
multivariate problem and combine the data from different
metrics. For example, we can use BYMELRT to ask whether the
choice of parameter set affects the outcome of the simulations. If
we consider the RMSD100, the DSSP types α-helix, β-strand, β-
bridge, and π-helix, the number of backbone hydrogen bonds,
polar and nonpolar SASA, and radius of gyration for all 40
systems that were simulated with the four parameter sets
simultaneously, the answer is clearly yes. In fact, the BYMELRT
analysis suggests that the effect of the choice of parameter set on
the combined outcomes from the simulations is highly
significant (p < 1 × 10−4). Alternatively, we can use R’s lme
function to generate a series of linear models to represent the
available data. If we generate two sets of models that either
include or exclude the choice of parameter set as a variable and
then ask whether these two sets of linear models differ, again the
result is positive, with the likelihood ratio test suggesting that the
choice of parameter set has a significant effect on the results (p <
1 × 10−4). The analysis of the combined data clearly suggests
that the alternative parameter sets lead to different outcomes. It
is the determination of which parameter set performs best that is
challenging. Based on the number of backbone hydrogen bonds
and the adjusted positional RMSD100, the 54A8 parameter set

Figure 5. (A) Boxplots of the scaled positional root-mean-square deviation (RMSD100)
55 between the backbone of conformations sampled during the

last 5 ns of simulation and the corresponding starting conformation for a given parameter set. Note that the RMSDwas not scaled for the three proteins
that contained fewer than 40 residues (see the text). (B) The data in (A) after a Box-Cox transformation was performed.
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would appear to be optimum. If properties such as the number of
native backbone hydrogen bonds, polar and nonpolar SASA,
radius of gyration, and DSSP secondary structure types are also
included, the 54A7 parameter set has a better overall match to
experiment. However, when the deviations from the target
values for the structural and distance metrics were considered in
combination, the results obtained using 54A7 and 54A8 did not
differ significantly.
NMR Observables. A potential criticism of the preceding

analysis is that it is based on a comparison of single
conformations and that the conformations of the proteins are
primarily derived from crystallographic studies while the
simulations yield an ensemble of conformations for a protein
free in solution. In principle, one can directly compare the
ensemble of conformations obtained in a simulation to NMR
observables such as J-coupling constants, NOE intensities, or
RDCs. However, while such NMR data are often used in both
structure determination and to validate simulations, there are
multiple challenges.1,12 First, J-coupling constants, NOE
intensities, and RDCs are ensemble-averaged data, sensitive to
motions on a millisecond time scale. Second, even if one ignores
the effect of large-scale motions and structural heterogeneity, to
directly calculate NOE intensities without assuming a motional
model, one must compute spectral density functions. This
requires simulation times well in excess of the rotational
correlation time of the protein. Despite enormous advances in

the time scales that can be accessed in simulations, a direct
comparison to NMR observables is still only tractable for
relatively small systems. Instead, derived data are used. J-
coupling constants are related to dihedral angles using the
Karplus curve and a given set of empirical parameters (as
described in Methods) while comparisons to NOE intensity
measurements are made based on distances derived assuming
that the structure is spherical, rigid, and tumbling uniformly.
RDCs avoid the need for a motional model or an empirical
function such as the Karplus curve but instead require fitting of
the orientation of the molecule and assumptions in regard to the
number of distinct conformational states.
Of the 52 structures considered in this work, 13 were solved

using NMR data. The structures of nine of the proteins were
determined by both X-ray crystallography and NMR. Boxplots
of the RMSD between the calculated J-value and experiment (J-
coupling RMSD) for the protein backbone and the average
NOE violation for the 13 structures solved using NMR data are
shown in Figure 6. The average NOE violations were calculated
by summing all NOE distance violations of the pooled replicates
and dividing this by the total number of reportedNOEs. It might
be argued that the results obtained using 45A4 are the most
consistent between proteins or that the 54A7 and 54A8 force
fields perform slightly better. However, as indicated in Table 3,
none of the differences between the parameter sets is statistically
significant. This is due to the small number of proteins

Figure 6. Boxplots showing (A) the RMSD between the J-coupling value measured experimentally and the J-coupling value calculated from the
simulations configurations and (B) the average NOE violation. Only systems for which the starting conformation was derived based on NMR data and
for which the corresponding experimental data were available were considered. The calculated values were based on conformations sampled during the
last 5 ns of each simulation. Data from different replicas were pooled. The average NOE violation for each protein was obtained by summing the NOE
distance violations and dividing by the total number of reported NOEs.

Figure 7. Normalized (A) ϕ and (B) ψ dihedral angle distributions for all proteins. The distributions were obtained by combining data from
conformations sampled during the last 5 ns for all proteins simulated with a given parameter set. The equivalent plot obtained by combining data from
each of the starting conformations is shown for comparison. The bin size was 5°. Note that the line width used for 54A7 is increased so that it can be
distinguished from that of 54A8.
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considered in this aspect of the study and the need to pool
replicates. Which parameter set appears to perform best also
depends on how the data are selected. For example, in the case of
1AFI, larger NOE violations were observed when using 54A7 or
54A8 compared to 53A6. However, the most significant NOE
violations related to a single phenylalanine residue (Phe47).
Inspection of the structure and the violations strongly suggests
that the phenyl ring hydrogens HE1/2 and HD1/2 are wrongly
assigned. Treating this assignment as ambiguous and applying
pseudoatom corrections removed all NOE violations >0.05 nm
in this structure. This would alter the statistics in favor of the
more recent parameter sets. In contrast, 2OVN, a short helical
peptide of just 17 residues, partly unfolds in replicates of 53A6
and 54A7 but not 54A8, suggesting that the results involving this
peptide are statistically unreliable. Disregarding this case would
remove much of the apparent difference between 54A8 and the
other parameter sets by eliminating a case with high violations in
53A6 and 54A7 but low violations in 54A8.
Backboneϕ andψDihedral Angles.The backboneϕ and

ψ dihedral angles play a central role in determining the
secondary and tertiary structure of a protein. Figure 7 shows the
distributions of (A) ϕ and (B) ψ derived from conformations
sampled during the last 5 ns of the simulations performed using
each of the parameter sets for all systems. The dihedral
distributions derived from the starting conformations are also
shown for comparison.
In the case of the ϕ angles, the most pronounced differences

between the parameter sets occur in the region between −140°
and −100°. This region is over-represented compared to the X-
ray-derived starting structures using 45A4 and 53A6 but under-
represented using 54A7 and 54A8. Greater deviations between
the distribution of angles observed in the simulations and the
starting X-ray structures were found forψ. For all four versions of
the force field considered, angles between −100° and −50° and
between 70° and 120° are over-represented in the simulations
compared to the experiment, whereas angles between −30° and
30° are under-represented. The largest differences between the
simulations and experiment are in the region between 70° and
120° using 45A4 or 53A6.
While the histograms of the backbone ϕ and ψ angles clearly

highlight the differences between the force fields, it is also useful
to examine the relationship between the backbone ϕ and ψ
angles as captured in a Ramachandran plot. Figure 8 shows
Ramachandran plots derived from conformations sampled
during the last 5 ns of the simulations initiated from structural
models based on X-ray crystallography. The equivalent plot
derived from the starting conformations is presented in Figure
8E. Although the overall helical propensity using 53A6 is known
to be less than when using 45A4, 54A7 or 54A8, the α-helical
region around φ = −65° and ψ = −40° differs little between the
parameter sets with all being quite similar to the starting
structures. The main difference is that the center of the
distribution in 45A4 and 53A6 is shifted by 5° in ϕ to be just
below −60°. In contrast, there are marked differences between
the parameter sets in the β-strand region from ϕ = −130° to
−60° and ψ = 60° to 130°. In the starting configurations the
angles sampled in these structures are evenly distributed
between ϕ = −120° and −70° and the density falls rapidly
below ψ = 120°. In 45A4 and 53A6 the density in this region is
primarily centered at ϕ = −120° and extends to ψ = 90°. In
contrast, using 54A7 and 54A8 the density is primarily centered
at ϕ = −70°. The density decreases below ψ = 120° but less than
in the starting configurations.

Many of the deviations result from individual amino acids.
Figure 9 shows ϕ and ψ values for alanine and threonine using
the 54A8 parameter set. Equivalent plots for all amino acids
simulated with each of the four parameter sets are provided in
the Supporting Information (data file S5). Alanine and
threonine are common amino acids. Nevertheless, ϕ and ψ
statistics even using 52 proteins are limited (∼350 ϕ and ψ
angles). For alanine, the distributions from the simulations
closely match the starting conformations. For threonine, there
are marked differences, especially in the region ϕ = −140° to
−60°. Indeed, the under-representation in the region ϕ = −150°
to −100° for 54A7 and 54A8 evident in Figure 7B is primarily
due to the Cβ-branched amino acids (isoleucine, valine, and
threonine). Problems with these residues have been noted
previously, and corrections have been proposed.67,68 The
combined Ramachandran plots shown in Figure 8 also suggest
an over-representation of ϕ and ψ combinations nominally
associated with disorder or a left-handed helix with significant
density in the region ψ =−60° to−120°. This stems in part from
residues that form strong local interactions (aspartic acid,
glutamic acid, asparagine, and histidine). The major contribu-
tion, however, is from glycine. In particular, the differences in the

Figure 8. Ramachandran plots showing the relative probability of
finding a given combination of ϕ and ψ angles for all structures
simulated with the (A) 45A4, (B) 53A6, (C) 54A7, and (D) 54A8
parameter sets. The plots were constructed by combining all
conformations sampled during the last 5 ns of the simulations using a
bin size of 0.5°. (E) Equivalent plot for the starting conformations. Due
to the more limited statistics in the case of the starting conformations,
the probabilities were calculated using a bin size of 5°, resulting in the
pixelated appearance.
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values around ψ = 0° in Figure 7B are primarily associated with
glycine.67 Whether the under-representation of ψ = 0° values in
the simulations is a limitation in how glycine is described in the
force field or a reflection of averaging in the X-ray data is
uncertain.

■ DISCUSSION
To validate a particular protein force field or demonstrate that a
proposed change in parameters results in a fundamental
improvement in predictive ability, it is not sufficient to simply
consider whether simulations performed for a given set of
proteins are compatible with a particular (experimental)
observable. Instead, one must consider a range of factors.
These include the extent of variation between simulation
replicas, the extent to which the replicates are independent, the
extent of variation between different proteins, the accuracy with
which the (experimental) observable has been determined, the
accuracy with which the (experimental) observable can be
calculated from the simulations, the sensitivity of the property
calculated to changes in the parameters used in the simulations,

and whether the improvement in the ability to predict one
property is associated with a degradation in the ability to predict
other properties of interest. All these factors affect the statistical
robustness of the results. This makes determining whether
changes in a parameter set leads to a fundamental improvement
in the ability to represent protein systems extremely difficult.
In this work, 52 systems (39 X-ray diffraction structures and

13 NMR structures) were simulated for 15 ns in triplicate
starting from the same initial structure with the GROMOS11
software package46 using four alternative parameter sets
(45A4,39,69 53A6,20 54A7,30 and 54A840). A wide range of
structural properties were calculated and compared to the
available experimental data. Two questions were examined.
First, were the differences between simulations performed using
alternative parameter sets statistically significant? Second, did a
particular parameter set lead to a better overall match with
experiment?
Before discussing the statistical analysis, it is important to

highlight the choice of reference structures. The structures were
selected primarily based on quality and the ability to compare

Figure 9. Example dihedral probability distributions for individual amino acids (alanine, panel I; threonine, panel II): (A) probability of finding a given
combination ofϕ and ψ angles in the experimentally obtained starting conformations; (B) probability of finding a given combination of ϕ and ψ angles
simulated with the 54A8 parameter set; (C) probability distributions of the ϕ dihedral angle; (D) probability distributions of the ψ dihedral angle. The
plots were constructed from conformations sampled during the last 5 ns of the simulations as described in Figures 7 and 8. The total numbers of alanine
and threonine residues included in this analysis are 357 and 351, respectively.
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results from structures of the same protein obtained in different
environments. They varied from 17 to 326 amino acids in length
and contained a diversity of secondary structure from all α-helix
to all β-strand as well as various combinations of α-helix, β-
strand, and 310-helix. Some structures were highly compact,
others elongated. Some contained disulfide bridges, others not.
The set also contained multiple examples of some more
common folds. In short, the set was chosen to be both robust
and representative of systems of interest.
The most striking finding of this work is evident from simple

visual inspection of the boxplots presented in Figures 3, 4 and 5:
the variation due to the different parameter sets is small
compared with the variation between alternative proteins and
even replicate simulations of a given protein. This is despite the
relatively short simulation times and the fact that the replicates
were initiated from the same structures. While on average the
results obtained with one parameter set may be closer to
experiment for a specific quantity than another, if one performed
a single simulation of a novel structure, the expected uncertainty
in the results would be much greater than any difference due to
the choice of parameter set. This does not mean the results
obtained using the different parameter sets were equivalent. If
one considers each of the structural metrics examined in
isolation, the differences in the averages due to the choice of
parameter set were statistically significant in at least one pairwise
comparison for the number of backbone hydrogen bonds, the
number of native hydrogen bonds, polar and nonpolar SASA,
radius of gyration, the prevalence of secondary structure
elements, and the RMSD100. However, even though the
alternative parameter sets yielded significantly different results,
the differences in the averages (Table 3) are small, and it is not
possible to state unequivocally which set shows better overall
agreement with experiment.
The inability to demonstrate which parameter set agrees best

with experiment is not simply due to limitations in the number
of proteins and/or the length of the replicate simulations. It is
also due to changes in the parameter sets having opposing
effects. For example, in the case of 45A4 and 54A8 an increase in
the relative agreement with experiment for the RMSD100 and the
presence of specific backbone hydrogen bonds is offset by a
decrease in the relative agreement for the SASA and the radius of
gyration (Figures 3 and 5).
The results presented here might lead one to question

whether the changes introduced in going from the 45A4
parameter set to the 54A8 parameter set of the GROMOS force
field are important. The introduction of the 53A6 parameter set
was associated with improvement in the ability to reproduce the
partitioning behavior of analogues of amino acids between polar
and nonpolar environments. The 54A7 and 54A8 parameter sets
clearly reproduce the φ and ψ distributions observed in the
experimental structures better than earlier versions. Both
represent fundamental advances in the underlying model
irrespective of whether the changes lead to fundamentally
different outcomes in an individual simulation.
A key aim in compiling this work was to highlight the difficulty

of determining the relative utility of a given force field or
parameter set. Despite marked differences between the
parameter sets in terms of partitioning behavior and the
distributions of the backbone dihedrals, the differences in
structural criteria (RMSD, hydrogen-bonding patterns, etc.) or
the ability to reproduce NMR parameters are minor. Even
combining the results from over 8 μs of simulation involving 52
protein structures varying in size and secondary structure

composition, it is simply not possible to rigorously determine
which parameter set (if any) provides a better overall match to
experiment. In short, given the variation between replicate runs
and the variation between proteins, any differences obtained
when performing a single simulation (or even a set of
simulations) using any of these four parameter sets would be
within the expected statistical uncertainty. This draws into
question the utility of many studies in the literature purporting
to show the superiority of a particular variant of a force field
based on comparisons of structural properties, especially those
which compare results from just a handful of proteins.
Finally, it should be noted that this work, and indeed all

similar studies, involve trade-offs between the number of
parameter sets examined, the number and size of the individual
systems, the number of replicates, and the length of each
simulation. We focused on quantifying differences in specific
metrics due to the choice of parameter set given the variation
between systems and the variation between replicate simulations
on time scales similar to those used in the initial development of
the GROMOS force field. The length of the individual
simulations and factors that affect the accuracy of the forces
calculated using a given parameter set will also be
important.70−72 The length of the individual replicates (15 ns)
means only the local conformational space was explored. The
simulations were too short to probe large-scale protein motions.
Much longer simulation times (μs range or longer) would be
required to achieve complete sampling of the conformational
space accessible to even the smallest of the systems in this test
set. We chose to perform short simulations of a large number of
diverse proteins as opposed to performing long simulations on a
small number of proteins in order to increase the number of
independent samples. By including structural models of the
same protein derived fromNMR as well as X-ray crystallography
and by performing replicate simulations using the same initial
structure but alternative starting velocities, we have been able to
highlight the variation in the results both between runs and
between closely related but different initial structures. It is also
important to note that performing short runs, as done here,
restricts the conformational space sampled to be close to the
starting configuration (NMR or X-ray model). This artificially
reduces sampling noise and facilitates the comparison to
quantities derived from the experimental models. For example,
it allowed us to illustrate how rapidly specific properties diverged
and the extent of variations between runs. Indeed, the variation
between runs and systems suggests that it would be very easy to
bias the results of this or other studies by varying the reference
system and/or run length.

■ CONCLUSIONS
The parametrization and validation of empirical force fields used
for simulating proteins is challenging. While small differences in
parameters can lead to large deviations in whole proteins,
variations between proteins and between replicates make it
difficult to obtain statistically meaningful results. This, together
with uncertainties in how structural properties are characterized,
means that the robustness of many force field validation studies
is questionable. To help provide a framework for achieving
statistical robustness, a test set of 52 protein systems (39 X-ray
diffraction structures and 13 NMR structures) has been
developed. To illustrate how this set might be used as part of
a validation study, each protein was simulated for 15 ns in
triplicate using four alternative GROMOS parameter sets. A
wide range of structural metrics were examined, including
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changes in backbone hydrogen bonding, polar and nonpolar
SASA, the radius of gyration, the occurrence of elements of
secondary structure, and positional RMSD, as well as the ability
to reproduce experimental NOE upper bound distances and J-
coupling constants. Though the individual simulations were
short, the combinations of a large number of proteins, multiple
replicate simulations, and a diverse range of metrics meant that it
could be readily shown that the results obtained using the
alternative parameter sets differed significantly. However, the
statistical scatter and variations between systems for different
metrics meant it was not possible to determine, in a statistically
rigorous manner, which parameter set best reproduced experi-
ment, irrespective of which combination of metrics was used.
That it was not possible to determine which parameter set was
optimal despite combining results over 8.2 μs of simulation and
multiple metrics should not be surprising. The times scales over
which the structural properties of proteins vary are much longer
than that sampled in this work. Additionally, the metrics
commonly used to compare the structures sampled during a
simulation to either models based on experimental data or the
experimental observations themselves have multiple ambigu-
ities. Indeed, the aim of this study was not to prove the
superiority of a given parameter set or to promote the use of a
particular set of structural metrics in validation studies. The aims
were instead to highlight the challenges associated with the
validation of protein force fields based on structural criteria and
to establish a general framework for the testing and validation of
protein force fields in a statistically robust manner for use in
future studies by ourselves and others.
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Data Availability Statement
To facilitate the use of this framework within the broader
simulation community, all starting configurations, simulation
input parameter files, and trajectories used in this analysis are
available as part of the Australasian Computational and
Simulation Commons (ACSC) Molecular Simulation Data
Repository73 at https://molecular-dynamics.atb.uq.edu.au/
collection/protein-force-field-validation-set. Furthermore, the
code used for the statistical analysis and the relevant datafiles are
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