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Abstract

The scoring function is one of the most important components in structure-based drug design. 

Despite considerable success, accurate and rapid prediction of protein-ligand interactions is still a 

challenge in molecular docking. In this perspective, we have reviewed three basic types of scoring 

functions (force-field, empirical, and knowledge-based) and the consensus scoring technique used 

in protein-ligand docking. The commonly-used criteria/methods and publicly available protein-

ligand databases that are used to evaluate the performance of scoring functions are also depicted 

and discussed. We end with a discussion of the challenges faced by existing scoring functions and 

possible future directions for developing improved scoring functions.
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1 Introduction

As the number of three-dimensional protein structures determined by experimental 

techniques grows, computational tools such as molecular docking have played an increasing 

role in the functional study of proteins and structure-based drug design.1–6 In all the 

computational methodologies, one important problem is the development of an energy 

scoring function that can rapidly and accurately describe the interaction between protein and 

ligand. Several reviews on scoring are available in the literature.7–11

There are three important applications of scoring functions in molecular docking. The first 

of these is the determination of the binding mode and site of a ligand on a protein.9 Given a 

protein target, molecular docking generates hundreds of thousands of putative ligand binding 

orientations/conformations at the active site around the protein. A scoring function is used to 

rank these ligand orientations/conformations by evaluating the binding tightness of each of 

the putative complexes. An ideal scoring function would rank the experimentally determined 
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binding mode most highly. Given the determined binding mode of a ligand, scientists would 

be able to gain a deep understanding of the molecular mechanism of ligand binding and to 

further design an efficient drug by modifying the protein or ligand.9

The second application of a scoring function, which is related to the first application, is 

to predict the absolute binding affinity between protein and ligand. This is particularly 

important in lead optimization.4 Lead optimization refers to the process to improve the 

tightness of binding for low-affinity hits or lead compounds that have been identified. 

During this process, an accurate scoring function can greatly increase the optimization 

efficiency and save costs by computationally predicting the binding affinity between the 

protein and modified ligands before the much more expensive step of ligand synthesis and 

experimental testing.

The third application, perhaps the most important one in structure-based drug design, is to 

identify the potential drug hits/leads for a given protein target by searching a large ligand 

database, i.e. virtual database screening.6 A reliable scoring function should be able to rank 

known binders most highly according to their binding scores during database screening. 

Given the expensive cost of experimental screening and sometimes unavailability of high-

throughput assays, virtual database screening has played an increasingly important role in 

drug discovery.

All of these three applications, ligand binding mode identification, binding affinity 

prediction, and virtual database screening, are related to each other. Presumably, an accurate 

scoring function would perform equally well on each of them. Despite over a decade of 

development, scoring is still an open question. Many existing scoring functions perform well 

only on one or two of the three applications. Roughly, the scoring functions can be grouped 

into three basic types according to how they are derived: force field-based, empirical, and 

knowledge-based. In this perspective, we have reviewed several important aspects of scoring 

functions for protein-ligand docking, as outlined in Figure 1. Specifically, we will first 

briefly review different categories of scoring functions in Section 2. We will then describe 

the commonly used criteria that are used to evaluate the performance of a scoring function 

in Section 3. We also review the publicly available protein-ligand databases for developing 

and validating a scoring function in Section 4. Finally, challenges and future directions for 

scoring function development will be discussed in the Conclusion and Discussions.

2 Brief review of scoring functions

Over the years, different scoring functions have been developed that exhibit different 

accuracies and computational efficiencies. In this section, we will briefly review the scoring 

functions in literature developed for protein-ligand interactions in molecular docking. Some 

of the commonly-used scoring functions are summarized in Table 1 and grouped into three 

broad categories.

2.1 Force field scoring function

Force field (FF) scoring functions are developed based on physical atomic interactions,51 

including van der Waals (VDW) interactions, electrostatic interactions, and bond stretching/
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bending/torsional forces. Force field functions and parameters are usually derived from both 

experimental data and ab initio quantum mechanical calculations according to the principles 

of physics. Despite its lucid physical meaning, a major challenge in the force field scoring 

functions is how to treat the solvent in ligand binding.

One typical force field scoring function in molecular docking is the scoring function 

of DOCK whose energy parameters are taken from the Amber force fields.12,52,53 The 

scoring function is composed of two energy components of Lennard-Jones VDW and an 

electrostatic term

E = Σ
i

Σ
j

Aij

rij
12 − Bij

rij
6 + qiqj

ε(rij)rij

(1)

where rij stands for the distance between protein atom i and ligand atom j, Aij and Bij are 

the VDW parameters, and qi and qj are the atomic charges. Here, the effect of solvent is 

implicitly considered by introducing a simple distance-dependent dielectric constant ε(rij) in 

the Coulombic term. Despite the computational efficiency of the force field scoring function 

of DOCK, the distance-dependent dielectric factor cannot account for the desolvation 

effect, an important solvent effect that charged groups favor aqueous environments whereas 

non-polar groups tend to stay in non-aqueous environments. The desolvation energy is a 

many-body interaction term and depends on specific geometric and chemical surrounding 

environments of the considered solute atoms. If the desolvation effect is ignored, a scoring 

function would be biased on Coulombic electrostatic interactions and therefore would tend 

to select highly charged ligands.

A rigorous method to account for the solvent effect such as free energy perturbation (FEP) 

and thermodynamic integration (TI) is to treat water molecules explicitly (see refs 3 and 

54 for review). However, these methods, together with their simplified approaches such 

as LIE, PROFEC and OWFEG (see ref 3 and references therein) are too computationally 

expensive to be used in virtual database screening. In addition, while simulations with 

explicit waters is theoretically ideal/rigorous, the accuracy of the results may be limited 

by the high computational cost of sampling due to the inclusion of water molecules 

in real applications. To reduce the computational expense, some accelerated force field 

models have been developed for scoring use in molecular docking by treating water as a 

continuum dielectric medium. Typical examples of such implicit solvent models include 

the Poisson-Boltzmann/surface area (PB/SA) model55–57 and the generalized-Born/surface 

area (GB/SA) model,58–60 that are often used in post-scoring of docking programs. Shoichet 

and colleagues applied a modified Born equation to calculate the electrostatic component 

of ligand solvation.13,14 In their study, the electrostatic potential of the protein is calculated 

by using the finite-difference Poisson-Boltzmann (PB) method implemented in DelPhi,12,55 

and partial atomic charges are calculated with the Gasteiger algorithm61 implemented in 

the program SYBYL (Tripos) or with the semi-empirical quantum mechanical approach 

implemented in the program AMSOL.62 The desolvation energy penalty for the ligand was 

calculated by assuming full desolvation of each ligand atom or of the whole ligand. The 
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method was validated by screening the Available Chemicals Directory (ACD) against T4 

lysozyme mutants and dihydrofolate reductase (DHFR).

The PB/SA63–69 and GB/SA15–17,70–77 approaches have been successfully used for relative 

potency studies and virtual screening tests. For example, Zou et al. accounted for the 

solvation effect in ligand binding free energy calculations using a GB/SA approach.15,16 

Specifically, the solvent-screened electrostatic interactions and the electrostatic desolvation 

costs are calculated with the GB model. The hydrophobic contributions for non-polar atoms 

are estimated using the solvent-accessible surface areas (SA) of the atoms. The van der 

Waals energies are calculated using Lennard-Jones potentials. Then the weights for the 

electrostatic, van der Waals, and hydrophobic contributions to the free energy of binding 

are optimized so that the predicted binding scores agree well with the experimental affinity 

data for known inhibitors and known inhibitors are distinguished from random molecules 

in database screening. The GB/SA formulation implemented in DOCK78,79 as SDOCK 

was validated on three systems: dihydrofolate reductase (DHFR), trypsin, and a fatty acid-

binding protein. To enhance the computational efficiency, a pairwise format of GB was 

parameterized for protein-ligand docking,16,17 which takes only about 0.5s per orientation 

(with minimization) on a Silicon Graphics Octane R12000 workstation.

After thorough and systematic comparison between PB and GB on protein-ligand complexes 

with a wide range of electrostatic component of binding energies (from −5 to 25 kcal/mol), 

Zou and colleagues showed that being able to reproduce the solvation energy of a ligand 

or a protein calculated with PB is not necessarily suitable for ligand binding calculations. 

Additional quantities should be used for evaluation, particularly quantities such as the 

partial desolvation energy of the receptor.17,70 To warrant the accuracy and efficiency, they 

proposed a multiscale GB approach for the use of virtual screening. In this approach atoms 

are divided into two groups: The few atoms in the first group are most likely to be critical 

to binding electrostatics; their contributions are calculated with accurate GB models at the 

sacrifice of speed. The rest atoms (second group) may be treated with a fast GB method.70

In addition to the challenge in rapidly and accurately accounting for the solvent effect 

in electrostatics, how to combine individual energy terms is also difficult. Usually, 

empirical weighting coefficients have to be introduced because each energy component 

is calculated from unrelated methods.15,16,18,19 For example, the electrostatic component 

can be calculated with Coulombic, PB or GB approaches. The VDW energy component 

is commonly represented by Lennard-Jones potentials. The hydrophobic interaction term is 

often approximated as being proportional to the change of solvent-accessible surface area. 

These terms have quite different scales, and thereby cannot be added up without weighting 

factors. The weighting factors are obtained by fitting experimental binding data, etc. There 

may be more than one set of empirical weighting coefficients to achieve comparable 

answers.15,16 Although it is possible to find appropriate weighting coefficients for a specific 

protein or protein family, it is difficult to obtain a universal set for diverse protein-ligand 

complexes. Furthermore, even accurate electrostatic energy calculations can be blown off by 

poor treatment of entropic contributions. Finally, it is well-known that individual free energy 

terms may not be additive.80
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2.2 Empirical scoring function

A second kind of scoring functions are empirical scoring functions, which estimate the 

binding affinity of a complex on the basis of a set of weighted energy terms

ΔG = Σ
i

W i ⋅ ΔGi

(2)

where ΔGi represents different energy terms such as VDW energy, electrostatics, hydrogen 

bond, desolvation, entropy, hydrophobicity, etc. The corresponding coefficients Wi are 

determined by fitting the binding affinity data of a training set of protein-ligand complexes 

with known three-dimensional structures.24–30,32–35,81,82. Compared to the force field 

scoring functions, the empirical scoring functions are much faster in binding score 

calculations due to their simple energy terms.

By calibrating with a dataset of 45 protein-ligand complexes, Böhm developed an empirical 

scoring function (SCORE1) consisting of four energy terms: hydrogen bonds, ionic 

interactions, the lipophilic protein-ligand contact surface, and the number of rotatable bonds 

in the ligand.24 This empirical scoring function was further improved by expanding the 

dataset to 82 protein-ligand complexes with known 3D structures and binding constants and 

by considering the energy parameters for the following terms: the number and geometry 

of intermolecular hydrogen bonds and ionic interactions, the size of the lipophilic contact 

surface, the flexibility of the ligand, the electrostatic potential in the binding site, water 

molecules in the binding site, cavities along the protein-ligand interface, and specific 

interactions between aromatic rings.25 Eldridge et al. presented an empirical scoring 

function referred to as ChemScore by taking into account hydrogen bonds, metal atoms, 

the lipophilic effects of atoms, and the effective number of rotatable bonds in the ligand.28 

The scoring function was calibrated using 82 ligand-receptor complexes with known binding 

affinities and was tested using two other sets of 20 and 10 protein-ligand complexes, 

respectively. Based on a larger set of 200 protein-ligand complexes, Wang et al. developed 

a new empirical scoring function, X-Score, consisting of four energy terms including VDW 

interactions, hydrogen bonds, hydrophobic effects and effective rotatable bonds.30

By including different empirical energy terms, empirical scoring functions have been used 

in many well-known protein-ligand docking programs such as FlexX21 and Surflex31. How 

to avoid double-counting problems is a difficult issue for empirical scoring functions with 

many energy terms. Their general applicability may also depend on the training set due to 

their nature of fitting binding affinities of a small dataset. With the rapid increase in the 

number of protein-ligand complexes with known 3D structures and binding affinities, it is 

possible to develop a relatively general empirical scoring function by training with known 

binding constants of thousands of diverse protein-ligand complexes.

In addition to fitting a set of weighted energy terms to the binding affinities of a training set, 

recently, inspired by the knowledge-based scoring functions, a knowledge-based quantitative 

structure-activity relationship (QSAR) approach has been introduced for scoring protein-

ligand interactions.83 In the knowledge-based QSAR method, the atom pair occurrence and 
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distance-dependent atom pair features are used to generate the interaction potentials by 

using a machine-learning method to fit the binding affinities of a training set. One advantage 

of the machine-learning method is that it can fit the binding affinities of a very large training 

set due to the inclusion of more parameters through knowledge-based atom pair features. 

For, example, in a very recent study by Ballester and Mitchell,84 the derived scoring function 

(RF-Score) by a machine-learning method yielded a high correlation (R = 0.953) on a large 

training set of 1105 protein-ligand complexes.

2.3 Knowledge-based scoring function

A third kind of scoring functions are knowledge-based scoring functions (also referred to 

as statistical-potential based scoring functions), which employ energy potentials that are 

derived from the structural information embedded in experimentally determined atomic 

structures.85–87 The principle behind knowledge-based scoring functions is simple: Pairwise 

potentials are directly obtained from the the occurrence frequency of atom pairs in a 

database using the inverse Boltzmann relation.88–91 For protein-ligand studies, the potentials 

are calculated by

w(r) = − kBT ln[g(r)], g(r)=ρ(r)/ρ * (r)

(3)

where kB is the Boltzmann constant, T is the absolute temperature of the system, ρ(r) is the 

number density of the protein-ligand atom pair at distance r, and ρ*(r) is the pair density in a 

reference state where the interatomic interactions are zero.

The idea of the inverse Boltzmann method for knowledge-based potentials comes from 

statistical mechanics in the physics field.91 According to the analytical integral equation for 

the pair distribution function g(r) in the simple fluid system, the interaction potentials by 

the inverse Boltzmann method are actually the mean-force potentials rather than the true 

potentials.91,92 In addition, The protein system is also much different from the simple fluid 

system in statistical mechanics due to the effects of atomic connectivity, excluded volume, 

composition, etc.90 Therefore, the knowledge-based potentials are also not the true mean-

force potentials in the physics of the simple fluid system. Howerer, despite these limitations, 

the inverse Boltzmann method provides a simple and effective alternative method to derive 

the interaction scores from the structural information for complicated protein systems.92,93 

Since the pioneering work by Tanaka and Scheraga,85 a large number of knowledge-based 

scoring functions have been developed and widely applied to protein structure prediction and 

protein-ligand studies (see ref 94 for review).

Compared to the force field and empirical scoring functions, the knowledge-based scoring 

functions offer a good balance between accuracy and speed. Because the potentials in eqn 

3 are extracted from the structures rather than from attempting to reproduce the known 

affinities by fitting, and because the training structural database can be large and diverse, the 

knowledge-based scoring functions are quite robust and relatively insensitive to the training 

set.36,37,39,40 Their pairwise characteristic also enables the scoring process to be as fast as 

empirical scoring functions.
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However, there is a challenge in deriving knowledge-based scoring functions, which is the 

reference state (see eqn 3). As pointed out by Thomas and Dill90 and other groups, an 

accurate reference state is not achievable. Therefore, how to calculate ρ*(r) of the reference 

state becomes a longstanding hurdle in deriving knowledge-based potentials. Below we will 

use the reference state treatment to classify various knowledge-based scoring functions.

Most of the current knowledge-based scoring functions approximate the reference 

state with an atom-randomized state by ignoring the effects of excluded volume, 

interatomic connectivity, etc.90 Gohlke et al. developed a knowledge-based scoring function 

(DrugScore) based on 17 atom types and 1376 protein-ligand complex structures.41 

The scoring function consists of a distance-dependent pair-potential term and a surface-

dependent singlet-potential term. It was validated by using two sets of protein-ligand 

complexes (91 and 68 complexes in each set). A further comparative evaluation of 

DrugScore and AutoDock shows that DrugScore yields slightly superior results in flexible 

docking.95 Recently, an improved version (DrugScoreCSD)42 was also developed based 

on the Cambridge Structural Database (CSD) of small molecules,96 which contain low-

molecular-weight structures with higher resolution than huge-molecular-weight structures 

in the Protein Data Bank (PDB).97 Mitchell et al. presented a statistical potential model, 

BLEEP, using 40 atom types.46 This model was tested on nine serine protease-inhibitor 

complexes and obtained a correlation coefficient of 0.71 (or R2 = 0.50) between the 

calculated energy scores and the experimental binding data. A further test on a set of 90 

protein-ligand complexes shows a good correlation (R = 0.74 or R2 = 0.55) in affinity 

predictions.47 Application of BLEEP to the 77 complexes used by Muegge and Martin39 

yields a correlation of R2 = 0.28.98 Based on 725 protein-ligand complexes from the PDB, 

Ishchenko and Shakhnovich presented an improved version of SMoG44 (referred to as 

SMoG2001).45 SMoG2001 uses 13 atom types, two distance intervals, and a reference state 

determined by a self-consistent method. Applying SMoG2001 to Muegge and Martin’s test 

set gives a correlation coefficient of 0.68 (or R2 = 0.46).45 Yang et al. presented a new 

knowledge-based scoring function M-Score to account for the mobility of protein atoms 

based upon 2331 protein-ligand complexes.48 M-Score describes the location of each protein 

atom by a Gaussian distribution based upon the isotropic B-factors, which results in a 

smoothing effect on the pairwise distribution functions and thereby smoothen its knowledge-

based potentials.

In addition to adopting the traditional atom-randomized reference state, researchers have 

also tried to improve the accuracy of the reference state by introducing some corrections or 

scalings. The potential model by Muegge and Martin, PMF (potential of mean force), was 

the first knowledge-based scoring function to be extensively tested for affinity predictions.39 

Based on 34 ligand atom types and 16 protein atom types, the distance-dependent pair 

potentials were derived using 697 protein-ligand structures in which a ligand volume factor 

is introduced to correct the reference state. The model was tested on a diverse set of 

77 protein-ligand complexes with known binding affinities and outperformed LUDI24 and 

SMoG44, yielding a high correlation (R2 = 0.61) between the calculated scores and the 

experimental binding constants. The PMF scoring function was also successfully applied to 

docking/scoring studies of weak ligands for the FK506 binding protein99 and inhibitors for 

matrix metalloprotease MMP-3100. Recently, a newer version of PMF (PMF04) has been 
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developed using a much larger database of 7152 protein-ligand complexes from the PDB 

and received similar results.40 Zhang et al. developed a knowledge-based statistical energy 

function for protein-ligand, protein-protein, and protein-DNA complexes by using 19 atom 

types and a distance-scale finite ideal-gas reference state (DFIRE).43 The scoring function 

obtained a correlation coefficient of 0.63 on 100 protein-ligand complexes, 0.73 for 82 

protein-protein complexes, and 0.83 for 45 protein-DNA complexes, respectively.

No matter whether one chooses to use an atom-randomized state or a more physical 

approximation, the accuracy of the reference state remains a problem in knowledge-based 

scoring functions. The problem is more prominent for binding mode predictions and virtual 

screening, as the pairwise potentials, which are derived from nicely-bound structures, are 

not sufficiently sensitive to different ligand positions and may give good scores even to bad/

wrong modes. Attempting to solve this problem, Huang and Zou have recently developed 

a new kind of knowledge-based scoring function (referred to as ITScore) using an iterative 

method so as to circumvent the accurate calculation of the reference state.36,37,101–103 The 

basic idea of the iterative method is to adjust the pair potentials uij(r) by iteration until 

the interaction potentials reproduce the experimentally determined pair distribution function 

in the training set, yielding a set of potentials discriminating the native structures from 

decoys.104–107 During the iteration procedure, the improvement for the potentials is guided 

through the difference between the predicted and experimentally observed pair distribution 

functions instead of through accurate calculation of the aforementioned reference state, 

where the predicted pair distribution function gij(r) is calculated from the ensemble of the 

native structures and a set of well-sampled decoys according to the Boltzmann probability. 

In such a way, the iterative method circumvents the reference state problem faced by 

traditional knowledge-based scoring functions. Another major advantage of the iterative 

method is that it considers the full binding energy landscape of the complexes by including 

both the native structures and decoys during the calculation of gij(r), instead of considering 

only the energy minima (i.e., native structures) like what conventional knowledge-based 

scoring functions do. Extensive evaluations on diverse test sets showed that ITScore yielded 

good performances on predictions of ligand binding modes and affinities and on virtual 

screening of compound databases.36,37 Very recently, Huang and Zou have included the 

solvation effect and configurational entropy in ITScore. The new scoring function, referred 

to as ITScore/SE, has further improved the performance of ITScore.38

2.4 Consensus scoring

Despite a large and ever increasing number of scoring functions developed, none of them 

is perfect in terms of accuracy and general applicability. Every existing scoring function 

has its advantage and limitation. To make use of the advantages and balance out the errors 

from different scoring functions, the consensus scoring technique has been introduced to 

improve the probability in finding correct solutions by combing the scores from multiple 

scoring functions.108 The most important/challenging task in consensus scoring is how 

to make an appropriate consensus scoring strategy of individual scores so that the true 

modes/binders can be discriminated from others according to the consensus strategy.109,110 

Commonly used consensus scoring strategies include vote-by-number, numberby-number, 
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rank-by-number, average rank, and linear combination, etc.111 Examples of consensus 

scoring have MultiScore,112 X-Cscore,30 GFscore,113 SCS,114 and SeleX-CS,115

3 Criteria for evaluating scoring functions

In response to the three important applications of a scoring function as described in 

Introduction, three related but independent criteria are commonly used to evaluate the 

performance of a scoring function for its ability in binding mode identification, binding 

affinity prediction, and virtual database screening.

One of the essential measures for the performance of a scoring function is its ability 

to distinguish native binding modes from decoys. Namely, given a set of decoys for a 

protein-ligand complex, a reliable scoring function should be capable of ranking the native 

structure to the top by the calculated binding scores. In docking applications, successful 

prediction of a native binding mode is commonly defined by the rmsd value between 

the top ligand conformations and the experimentally observed (native) structure. If rmsd 

is ≤ 2.0 Å, the prediction is considered successful. Because it is simple and easy to 

implement, the rmsd criterion for binding mode prediction has been widely used and 

accepted in the field. However, this criterion could be problematic in some cases. For 

example, small or nearly symmetrical ligands always have good rmsd values when they 

are randomly placed in a small active site. On the contrary, for a large flexible ligand, 

the large rmsd value due to a solvent-exposed irrelevant group may hide the correctness 

of the overall binding mode. To overcome these limitations, several alternative methods 

have been presented for pose evaluations, such as relative displacement error (RDE),116 

interaction-based accuracy classification (IBAC),117 real space R-factor (RSR),118 and 

Generally Applicable Replacement for rmsD (GARD).119

A second important measure for a scoring function is its ability to predict the binding 

affinity of a complex, i.e. how tightly the ligand binds the protein. It is generally difficult 

to achieve a score scale similar to experimental binding data. (Certainly, one may scale the 

calculated scores to fit the normal affinity range.) Therefore, the commonly-used criterion 

for affinity prediction is the Peason correlation between the calculated scores and the 

experimental data, which is calculated as follows:

R= ∑k = 1
N xk − x yk − y

∑k = 1
N xk − x 2 ∑k = 1

N yk − y 2

(4)

where N is the number of tested complexes. xk and yk are the experimentally determined 

binding energy and the calculated score for k-th complex, respectively. 〈⋯〉 is an arithmetic 

average over all the complexes. Yet, the correlation between the predicted and experimental 

binding energies does not have to be linear for a scoring function. Therefore, the Spearman 

correlation coefficient, which calculates the correlation between two sets of rankings, is also 

often used in the binding affinity prediction evaluation as
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Rs = 1 − 6∑k = 1
N dk

2

N(N2 − 1)

(5)

where the complexes in the test set are ranked by their known affinities and calculated 

scores, respectively, and dk is the difference in two rankings for the k-th complex. Compared 

to binding mode prediction, binding affinity prediction is more challenging to be evaluated. 

One major reason is the uncertainties of the collected experimental affinity data that may 

come from different experimental conditions by different research groups or the inherent 

experimental error of an assay.

The third criterion for assessing a scoring function is its capability of selecting potential 

binders (hits) from a large database of compounds for a given protein target. The practical 

application is virtual screening in computer-based drug design, which is often used to 

identify lead compounds in drug discovery. Virtual database screening tests whether or 

not a scoring function is able to rank the known binders/inhibitors above many inactive 

compounds in a database. The enrichment test is a commonly-used criterion to quantify 

the performance of a scoring function in virtual database screening. The enrichment is 

defined as the accumulated rate of active inhibitors/binders found above a certain percentile 

of the ranked database that includes the active binders and inactive ligands. The higher 

enrichment corresponds to a better scoring function at a fixed percentage of the ranked 

database. Another measurement for virtual database screening is the receiver operating 

characteristic (ROC).120,121 This method is normally more appropriate when the number of 

inactive ligands is comparable to the number of active binders.

Theoretically, an accurate scoring function should be able to perform equally well on all 

of the three criteria on any test set. However, due to the inherent limitations, most of the 

existing scoring functions usually perform well on only one or two of the criteria and 

fail on others. For example, as shown in a previous study37 that SYTYL/F-Score yields a 

good success rate (74%) in binding mode prediction on the test set of 100 protein-ligand 

complexes constructed by Wang et al.122 (Table 2), but the F-Score performs poor with a 

correlation coefficient of R = 0.30 in binding affinity prediction on the same set (Table 

3). Similar examples can also be found in the comparative assessment of 16 scoring 

functions on a larger test set of 195 protein-ligand complexes by Cheng et al.123 To be 

successful in virtual database screening usually requires good performance in both binding 

mode and affinity predictions. A scoring function that yields a good correlation in binding 

affinity prediction does not necessarily perform well in database ranking.124 For example, 

PMF-Score yielded a high correlation (R2 = 0.61) in binding affinity prediction on the PMF 

validation set of 77 complexes (Figure 2), but performed much less satisfactorily in virtual 

database screening and failed to identify any binder on two of four tested targets at the 

5% of the ranked database (Table 4). In addition, the performances of scoring functions are 

test set-dependent. For example, ITScore and PMF-Score perform significantly better on the 

PMF validation set than on the Wang at al.’s set in binding affinity prediction (Figure 2 and 

Table 3). For the PMF validation set, all of the tested scoring functions perform better on the 
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serine protease than the others (Figure 2). Therefore, to fully evaluate the performance of a 

scoring function, all of the three criteria should be examined on multiple test sets.

4 Databases for evaluating scoring functions

In addition to the success criteria for evaluating scoring functions, another important issue 

in developing an efficient scoring function is the construction of an appropriate training/test 

set. Commonly-used (but not limited) criteria for constructing an appropriate training/test set 

include: The complexes in the set should be high quality structures with no atomic clashes 

(e.g. crystal structures with high resolutions); The set of complexes should cover a wide 

range of proteins and binding affinities; The ligands should be drug-like and non-covalent 

with the protein. Examples of the protein-ligand complex databases that can be used to 

construct the training/test set include:

1. LPDB (http://lpdb.chem.lsa.umich.edu/)125

2. PLD (http://chemistry.st-andrews.ac.uk/staff/jbom/group/PLD.xls)126

3. Binding DB (http://www.bindingdb.org/bind/)127

4. PDBbind (http://sw16.im.med.umich.edu/databases/pdbbind/)128,129

5. Binding MOAD (http://www.bindingmoad.org/)130

6. AffinDB (http://www.agklebe.de/affinity)131

5 Conclusion and Discussions

We have reviewed the scoring functions currently used for protein-ligand interactions in 

molecular docking and the commonly-used criteria/methods for evaluating the performance 

of scoring functions in three different applications: binding mode prediction, binding affinity 

prediction, and database screening. The criteria for constructing an appropriate training/test 

set and publicly available protein-ligand databases for evaluating a scoring function are also 

briefly depicted.

Despite considerable progress, current scoring functions are still far from being universally 

accurate, considering the test set-dependency of their performance and the fact that many of 

the scoring functions failed on one or two of the three widely-used criteria. To improve the 

universal applicability of the empirical scoring functions, a large training set of complexes 

with known affinity data are desired for parameter fitting. For force field and knowledge-

based scoring functions, explicit and accurate inclusion of the desolvation and entropic 

effects is requisite to improve the accuracy. The categorization of atom types with a good 

balance of the statistics of the pair occurrences and the number of atom types is also 

important for knowledge-based scoring functions. Extension of the pairwise potentials to 

many-body potentials theoretically will help improve the accuracy of knowledge-based 

scoring functions but practically remains unknown because of the introduction of many 

more parameters to be determined. Lack of a universal set of weighting coefficients for 

different energy terms for diverse protein-ligand complexes is a challenge for force field 

scoring functions. What is even more challenging, neglect or inaccurate treatment of 
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entropic effect may easily render the hard efforts on accurate electrostatic calculations 

in force field scoring. Transition metal ions such as zinc impose great parameterization 

difficulty for all scoring functions. Another issue is how to evaluate the increasing number 

of scoring functions being developed.132 Comparing different scoring functions is not 

always possible if they are tested on different sets. Although some comparison studies 

have been done by researchers,122,124,133–136 publicly available benchmarks such as CCDC/

Astex set,137 CSAR (http://www.csardock.org/), and DUD (http://dud.docking.org/)138 are 

invaluable for development of new and existing scoring functions.
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Figure 1: 
An illustration of categories and evaluations for scoring functions in protein-ligand docking.
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Figure 2: 
Correlations of binding affinity predictions for 7 knowledge-based scoring functions with 

the PMF validation set of 77 protein-ligand complexes (all) that consists of five classes: 

16 serine protease (ser), 15 metalloprotease (met), 18 L-arabinose binding protein (L-ara), 

11 endothiapepsin (end), and 17 diverse protein-ligand complexes (oth).39 The correlation 

parameter here is the square of correlation coefficient (R2) rather than correlation coefficient 

itself (R) to maintain consistency with the original data. The correlation data for ITScore/SE, 

ITScore, BLEEP and SMoG2001 are taken from our previous study,38 and those for 

DrugScorePDB and DrugScoreCSD were calculated by the DrugScoreONLINE server (http://

pc1664.pharmazie.uni-marburg.de/drugscore/).
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Table 1:

Types of scoring functions.

Type Scoring function

Force field-based DOCK,12 DOCK3.5(PB/SA),13,14 DOCK/GBSA(SDOCK),15–17 AutoDock,18,19 GOLD,20 SYBYL/D-Score,12 SYBYL/G-
Score20

Empirical FlexX,21 Glide,22 ICM,23 LUDI,24,25 PLP,26,27 ChemScore,28 SCORE,29 X-Score,30 Surflex,31 SYBYL/F-Score,21 

LigScore,32 MedusaScore,33 AIScore,34 SFCscore35

Knowledge-based ITScore,36–38 PMF,39,40 DrugScore,41,42 DFIRE,43 SMoG,44,45 BLEEP,46,47 MScore,48 GOLD/ASP,49 KScore50
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Table 2:

Success rates of 16 scoring functions for Wang et al.’s test set of 100 diverse protein-ligand complexes, using 

the criterion of rmsd ≤ 2.0 Å (from Huang and Zou, 2010).38

Scoring function Type of scoringa Success rate (%)

ITScore/SE38 K 91

DrugScoreCSD42 K 87

ITScore37 K 82

Cerius2/PLP26,27 E 76

SYBYL/F-Score21 E 74

Cerius2/LigScore32 E 74

DrugScorePDB41 K 72

Cerius2/LUDI24,25 E 67

X-Score30 E 66

AutoDock18 F 62

DFIRE43 K 58

DOCK/FF12 F 58

Cerius2/PMF39 K 52

SYBYL/G-Score20 F 42

SYBYL/ChemScore28 E 35

SYBYL/D-Score12 F 26

a
“K” stands for knowledge-based scoring functions, “E” for empirical scoring functions, and “F” for force field scoring functions, respectively.

Phys Chem Chem Phys. Author manuscript; available in PMC 2024 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang et al. Page 21

Table 3:

Correlation coefficients between the experimentally determined binding energies and the calculated binding 

scores of 17 scoring functions for Wang et al.’s test set of 100 complexes (from Huang and Zou, 2010).38

Scoring function Function type Correlation (R)

ITScore/SE K 0.65

ITScore K 0.65

X-Score E 0.64

DFIRE K 0.63

DrugScoreCSD K 0.62

DrugScorePDB K 0.60

Cerius2/PLP E 0.56

SYBYL/G-Score F 0.56

KScore K 0.49

SYBYL/D-Score F 0.48

SYBYL/ChemScore E 0.47

Cerius2/PMF K 0.40

DOCK/FF F 0.40

Cerius2/LUDI E 0.36

Cerius2/LigScore E 0.35

SYBYL/F-Score E 0.30

AutoDock F 0.05
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Table 4:

Enrichments of nine scoring functions at the top 5% of the ranked databasesa on four targets of ERα, MMP3, 

fXa, and AChE (from Huang and Zou, 2006).37

Enrichment at the top 5% (%)

Scoring function Function type ERα MMP3 fXa AChE

ITScore iterative/knowledge-based 19.2 68.3 34.9 37.0

DOCK/FF12 force-field-based 2.7 56.7 14.0 7.4

ICM-Score23 empirical 38.4 36.7 29.5 0.0

ICM-PMF23 knowledge-based 9.6 20.0 19.4 1.9

SYBYL/F-Score21 empirical 23.3 31.7 26.4 1.9

SYBYL/G-Score20 force-field-based 0.7 31.7 31.8 11.1

SYBYL/ChemScore28 empirical 0.0 73.3 23.3 9.3

SYBYL/PMF-Score39 knowledge-based 0.0 5.0 21.7 0.0

SYBYL/D-Score12 force-field-based 0.0 0.0 16.3 0.0

Maximum enrichmentsb 39.2 88.3 43.7 97.5

a
For each protein target, the constructed database includes known inhibitors (146 for ERα, 60 for MMP3, 129 for fXa, and 54 for AChE) and 999 

random, diverse drug-like molecules served as a set of inactive compounds.

b
The last row lists the maximum theoretically possible enrichments at the top 5% of the ranked database, given the compositions of the databases 

including active and inactive compounds.
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